Polynomial Regression Model Utilization to Determine Potential Refuse-Derived Fuel (RDF) Calories in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Methods
2.2. RDF Calorie Potential Forecasting Model Development
2.2.1. Ground Truth Dataset (Calorie Test Dataset)
2.2.2. Regression Analysis and Modeling
2.3. Model Validation
2.3.1. Waste Composition Dataset
2.3.2. Processing Data
2.3.3. RDF Calorie Forecasting Model Validation
- A lower limit (round down) and an upper limit (round up) are set on the organic attributes of each city.
- The lower and upper limit calories are determined by referring to the calorie value according to the calorie test dataset.
- The deviation difference between the lower and upper limit caloric values and the potential calories for each city is calculated, with the result being the absolute value (positive number) of the deviation.
- The deviation value of each city is the maximum result of the deviation of the upper or lower limits.
- The deviation value of each determined city (maximum deviation) is then compared to the calorie potential of each city produced in percent (%)
- The deviation value/calorie prediction model’s validation is thereby obtained from the average deviation (%) of all cities.
- The lower limit (round down) and upper limit (round up) are determined for the organic attributes of each city; for example, in City 1, the organic value is 51.09%, and the lower limit = 51%, and the upper limit = 52%.
- The lower limit and upper limit calories are determined by referring to the calorie value according to the calorie test dataset (Table 2) with a potential calorie value of 4946.80 kcal/kg (for the organic value lower limit of 51%) and a potential calorie value of 5032.60 kcal/kg (for the organic value upper of limit of 52%).
- The difference between the lower limit calorie value and the upper limit calorie value is determined with the calorie potential of each city, with the result being the absolute value (positive number) of the deviation. For example, in City 1, the lower limit deviation value is 4946.80–4917.73, resulting in 33.07, while the upper limit deviation value is 5032.60–4917.73, resulting in 118.87.
- The deviation value for each city is the maximum value of the difference between the upper and lower limits. From example point 3, the deviation values obtained are 33.07 and 118.87, so the largest deviation value is 118.87 for City 1.
- The specified deviation value for each city (maximum deviation) is then compared with the calorie potential of each city produced in percent (%). For example, in City 1, when the resulting deviation value of 118.87 is divided by the potential calories of 4917.73, a value of 2.42% will be obtained.
- The deviation value/calorie prediction model validation is obtained from the average deviation (%) of all cities, with a deviation value of = 1.95%.
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- PLN. Textbook of National Electricity Supply Business Plan (NESBP) PT PLN (Persero) 2021–2030; PT PLN: Jakarta, Indonesia, 2021; pp. 68–80. [Google Scholar]
- Usta, S.; Gencoglan, C.; Gencoglan, S. Estimation of Daily Average Global Solar Radiation with Nonlinear Regression Models Developed Using Some Meteorological and Geographical Parameters. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 2022, 3, 589–597. [Google Scholar] [CrossRef]
- Chen, D.M.C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020, 15. [Google Scholar] [CrossRef]
- Brahimi, T.; Kumar, C.R.; Abdulmajid, M.; Alyamani, N. Sustainable Waste Management through Waste to Energy Technologies in Saudi Arabia: Opportunities and Environmental Impacts. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Riyadh, Saudi Arabia, 26–28 November 2019; Volume 9. [Google Scholar]
- Albores, P.; Petridis, K.; Dey, P.K. Analysing Efficiency of Waste to Energy Systems: Using Data Envelopment Analysis in Municipal Solid Waste Management. Procedia Environ. Sci. 2016, 35, 265–278. [Google Scholar] [CrossRef]
- Latosińska, J.; Żygadło, M.; Dębicka, M. The Biological Drying of Municipal Waste in an Industrial. Energies 2022, 15, 1039. [Google Scholar] [CrossRef]
- Anssari, O.M.; Alkaldy, E.A.; Almudhaffar, N.; AlTaee, A.N.; Ali, N.S. A feasibility study of electrical energy generation from municipal solid waste in Iraq: Najaf case study. Int. J. Electr. Comput. Eng. 2020, 10, 3403–3411. [Google Scholar] [CrossRef]
- Wang, W. Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China. Energies 2023, 16, 2725. [Google Scholar] [CrossRef]
- Kraemer, H.C.; Blasey, C. Linear Regression Analysis. In How Many Subjects?: Statistical Power Analysis in Research; Sage Publications: Thousand Oaks, CA, USA, 2017; pp. 73–85. [Google Scholar] [CrossRef]
- Gujarati, D.N. Basic Econometrics, 4th ed.; Gary Burke: New York, NY, USA, 2003; Volume 82. [Google Scholar] [CrossRef]
- Fox, J. Applied Regression Analyis and Generated Linear Models, 3rd ed.; SAGE: London, UK, 2016. [Google Scholar]
- Jose, J.T.; Chattopadhyay, A.B. Modeling of the magnetizing phenomena of doubly fed induction generator using neuro-fuzzy algorithm considering non-linearity. Int. J. Electr. Comput. Eng. 2019, 9, 23. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of machine learning approaches to predict soil organic matter and pH using vis-NIR spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef] [PubMed]
- Abaszade, R.G.; Mammadov, A.G.; Kotsyubynsky, V.O.; Gur, E.Y.; Bayramov, I.Y.; Khanmamadova, E.A.; Kapush, O.A. Modeling of Voltage-Ampere Characteristic Structures on the Basis of Graphene Oxide/Sulfur Compounds. Int. J. Tech. Phys. Probl. Eng. 2022, 14, 302–306. [Google Scholar]
- Amar, L.A.; Taha, A.A.; Mohamed, M.Y. Prediction of the final size for COVID-19 epidemic using machine learning: A case study of Egypt. Infect. Dis. Model. 2020, 5, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.M. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput. Methods Programs Biomed. 2001, 65, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Ding, Y. Energy & Buildings Cooling load prediction and optimal operation of HVAC systems using a multiple nonlinear regression model. Energy Build. 2019, 197, 7–17. [Google Scholar] [CrossRef]
- Bhatsada, A.; Patumsawad, S.; Towprayoon, S.; Chiemchaisri, C.; Phongphiphat, A.; Wangyao, K. Modification of the Aeration-Supplied Configuration in the Biodrying Process for Refuse-Derived Fuel (RDF) Production. Energies 2023, 16, 3235. [Google Scholar] [CrossRef]
No | Type of Energy | Potentials | Installed Capacity | Utilization |
---|---|---|---|---|
1 | Geothermal | 29,544 MW | 1438.5 MW | 4.9% |
2 | Hydro | 75,091 MW | 4826.7 MW | 6.4% |
3 | Mini- and Micro-Hydro | 19,385 MW | 197.4 MW | 1.0% |
4 | Bioenergy/Waste-to-Energy (WTE) | 32,654 MW | 1671.0 MW | 5.1% |
5 | Solar | 207,898 MW (4.80 kWh/m2/day) | 78.5 MW | 0.04% |
6 | Wind | 60,647 MW (≥4 m/s) | 3.1 MW | 0.01% |
7 | Ocean Waves | 17,989 MW | 0.3 MW | 0.002% |
Organic (%) | Non Organic (%) | Calories (kcal/kg) | Organic (%) | Non Organic (%) | Calories (kcal/kg) | Organic (%) | Non Organic (%) | Calories (kcal/kg) |
---|---|---|---|---|---|---|---|---|
X | Y | X | Y | X | Y | |||
100 | 0 | 3008 | 70 | 30 | 6138 | 40 | 60 | 3653 |
99 | 1 | 3114 | 69 | 31 | 6096 | 39 | 61 | 3619 |
98 | 2 | 3221 | 68 | 32 | 6054 | 38 | 62 | 3585 |
97 | 3 | 3327 | 67 | 33 | 6012 | 37 | 63 | 3551 |
96 | 4 | 3434 | 66 | 34 | 5970 | 36 | 64 | 3517 |
95 | 5 | 3540 | 65 | 35 | 5929 | 35 | 65 | 3483 |
94 | 6 | 3646 | 64 | 36 | 5887 | 34 | 66 | 3449 |
93 | 7 | 3753 | 63 | 37 | 5845 | 33 | 67 | 3415 |
92 | 8 | 3859 | 62 | 38 | 5803 | 32 | 68 | 3380 |
91 | 9 | 3966 | 61 | 39 | 5761 | 31 | 69 | 3346 |
90 | 10 | 4072 | 60 | 40 | 5719 | 30 | 70 | 3312 |
89 | 11 | 4193 | 59 | 41 | 5633 | 29 | 71 | 3278 |
88 | 12 | 4314 | 58 | 42 | 5547 | 28 | 72 | 3244 |
87 | 13 | 4434 | 57 | 43 | 5462 | 27 | 73 | 3210 |
86 | 14 | 4555 | 56 | 44 | 5376 | 26 | 74 | 3176 |
85 | 15 | 4676 | 55 | 45 | 5290 | 25 | 75 | 3142 |
84 | 16 | 4797 | 54 | 46 | 5204 | 24 | 76 | 3108 |
83 | 17 | 4918 | 53 | 47 | 5118 | 23 | 77 | 3074 |
82 | 18 | 5038 | 52 | 48 | 5033 | 22 | 78 | 3040 |
81 | 19 | 5159 | 51 | 49 | 4947 | 21 | 79 | 3006 |
80 | 20 | 5280 | 50 | 50 | 4861 | 20 | 80 | 2972 |
79 | 21 | 5366 | 49 | 51 | 4740 | 19 | 81 | 2938 |
78 | 22 | 5452 | 48 | 52 | 4619 | 18 | 82 | 2904 |
77 | 23 | 5537 | 47 | 53 | 4499 | 17 | 83 | 2869 |
76 | 24 | 5623 | 46 | 54 | 4378 | 16 | 84 | 2835 |
75 | 25 | 5709 | 45 | 55 | 4257 | 15 | 85 | 2801 |
74 | 26 | 5795 | 44 | 56 | 4136 | 14 | 86 | 2767 |
73 | 27 | 5881 | 43 | 57 | 4015 | 13 | 87 | 2733 |
72 | 28 | 5966 | 42 | 58 | 3895 | 12 | 88 | 2699 |
71 | 29 | 6052 | 41 | 59 | 3774 | 11 | 89 | 2665 |
Province | Average | Total | ||
---|---|---|---|---|
Organic (%) | Calories Potential (kcal/kg) | RDF Production (kg/day) | Calories Potential (Gcal/day) | |
Central Java | 69.14 | 5381.91 | 2,832,456 | 15,226 |
Jakarta | 70.92 | 4994.74 | 2,534,331 | 13,600 |
West Java | 68.69 | 5892.39 | 1,864,335 | 11,011 |
East Java | 70.39 | 5346.11 | 1,838,235 | 10,383 |
North Sumatra | 73.36 | 5468.74 | 1,172,376 | 6573 |
South Sumatra | 70.22 | 5490.26 | 876,996 | 4901 |
Banten | 67.51 | 5849.91 | 803,883 | 4688 |
West Sumatra | 75.21 | 5519.28 | 623,151 | 3485 |
Bali | 69.78 | 5578.19 | 466,527 | 2670 |
South Sulawesi | 77.26 | 5275.90 | 515,061 | 2621 |
East Kalimantan | 73.01 | 5635.16 | 424,764 | 2400 |
Riau | 57.05 | 4927.46 | 486,057 | 2328 |
Yogyakarta | 77.24 | 5549.15 | 313,302 | 1781 |
West Nusa Tenggara | 61.11 | 5488.39 | 317,232 | 1728 |
North Sulawesi | 62.69 | 5534.00 | 295,089 | 1689 |
Central Kalimantan | 59.30 | 5435.41 | 304,038 | 1688 |
West Kalimantan | 71.25 | 5289.66 | 334,758 | 1660 |
South Kalimantan | 69.76 | 5497.36 | 294,612 | 1635 |
Jambi | 64.56 | 5418.51 | 294,942 | 1521 |
Lampung | 69.17 | 5711.55 | 205,104 | 1178 |
Aceh | 49.33 | 4794.52 | 229,037 | 1112 |
Bangka Belitung Island | 68.41 | 5799.70 | 111,504 | 648 |
Central Sulawesi | 75.23 | 5697.15 | 104,169 | 586 |
Maluku | 67.76 | 5986.27 | 83,310 | 499 |
Riau islands | 68.27 | 5986.40 | 62,016 | 371 |
Bengkulu | 82.82 | 5028.35 | 71,265 | 358 |
North Maluku | 79.08 | 5434.43 | 56,646 | 303 |
West Sulawesi | 85.46 | 4686.79 | 57,423 | 269 |
Southeast Sulawesi | 84.95 | 4755.04 | 48,045 | 228 |
Gorontalo | 56.89 | 5458.33 | 19,380 | 106 |
Papua | 86.35 | 4565.76 | 17,526 | 80 |
North Kalimantan | 78.23 | 5527.33 | 12,543 | 69 |
East Nusa Tenggara | 70.83 | 5959.08 | 7800 | 46 |
No | Regression Type | R2 | Validity Test |
---|---|---|---|
1 | Linear Regression | 0.2676 | 20.93% |
2 | Second-order Polynomial Regression | 0.7687 | 10.65% |
3 | Third-order Polynomial Regression | 0.9588 | 4.73% |
4 | Fourth-order Polynomial Regression | 0.9661 | 5.64% |
5 | Fifth-order Polynomial Regression | 0.9963 | 1.95% |
No | Province | RDF Caloric Potential (Gcal/day) | |||
---|---|---|---|---|---|
2019 | 2020 | 2021 | Average | ||
1 | East Java | 21,366.32 | 20,492.80 | 10,383.05 | 17,414.06 |
2 | Central Java | 15,285.58 | 17,948.61 | 15,225.67 | 16,153.29 |
3 | Jakarta | 8839.53 | 13,474.05 | 13,600.24 | 11,971.27 |
4 | West Java | 10,895.98 | 13,942.48 | 11,010.50 | 11,949.65 |
5 | Banten | 10,846.63 | 7099.22 | 4687.51 | 7544.45 |
6 | North Sumatra | 7675.29 | 7318.71 | 6573.38 | 7189.13 |
7 | South Sumatra | 4470.25 | 6378.12 | 4901.50 | 5249.95 |
8 | South Sulawesi | 2923.75 | 4897.75 | 2620.55 | 3480.68 |
9 | West Sumatra | 2759.52 | 3417.76 | 3484.62 | 3220.63 |
10 | Bali | 2852.60 | 3728.89 | 2670.33 | 3083.94 |
11 | East Kalimantan | 3315.45 | 3387.21 | 2399.59 | 3034.08 |
12 | South Kalimantan | 2640.59 | 2777.10 | 1634.97 | 2350.88 |
13 | Riau | 1907.11 | 2739.27 | 2327.69 | 2324.69 |
14 | West Kalimantan | 1731.28 | 1925.22 | 1660.12 | 1772.20 |
15 | Yogyakarta | 1580.87 | 1802.62 | 1780.91 | 1721.47 |
16 | Lampung | 1751.87 | 1991.08 | 1178.19 | 1640.38 |
17 | Jambi | 1492.66 | 1715.99 | 1520.89 | 1576.51 |
18 | Central Kalimantan | 1417.70 | 1425.18 | 1688.39 | 1510.42 |
19 | North Sulawesi | 1093.42 | 1740.22 | 1688.80 | 1507.48 |
20 | West Nusa Tenggara | 691.38 | 1790.14 | 1727.97 | 1403.16 |
21 | Riau Islands | 3104.68 | 726.90 | 371.24 | 1400.94 |
22 | Aceh | 855.66 | 933.84 | 1112.47 | 967.32 |
23 | Central Sulawesi | 746.02 | 1054.88 | 585.79 | 795.56 |
24 | Bangka Belitung Island | 762.17 | 790.46 | 647.93 | 733.52 |
25 | Maluku | 597.27 | 539.94 | 498.72 | 545.31 |
26 | Bengkulu | 449.18 | 467.85 | 358.48 | 425.17 |
27 | North Maluku | 413.26 | 426.76 | 302.67 | 380.90 |
28 | Gorontalo | 472.68 | 485.53 | 105.78 | 354.66 |
29 | West Sulawesi | 300.48 | 331.59 | 269.13 | 300.40 |
30 | Southeast Sulawesi | 314.07 | 354.21 | 228.46 | 298.91 |
31 | North Kalimantan | 349.98 | 390.45 | 69.33 | 269.92 |
32 | West Papua | 253.58 | 253.58 | ||
33 | Papua | 90.01 | 82.96 | 80.02 | 84.33 |
34 | East Nusa Tenggara | 45.84 | 46.48 | 46.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luqman, L.; Madenda, S.; Prihandoko, P. Polynomial Regression Model Utilization to Determine Potential Refuse-Derived Fuel (RDF) Calories in Indonesia. Energies 2023, 16, 7200. https://doi.org/10.3390/en16207200
Luqman L, Madenda S, Prihandoko P. Polynomial Regression Model Utilization to Determine Potential Refuse-Derived Fuel (RDF) Calories in Indonesia. Energies. 2023; 16(20):7200. https://doi.org/10.3390/en16207200
Chicago/Turabian StyleLuqman, Luqman, Sarifuddin Madenda, and Prihandoko Prihandoko. 2023. "Polynomial Regression Model Utilization to Determine Potential Refuse-Derived Fuel (RDF) Calories in Indonesia" Energies 16, no. 20: 7200. https://doi.org/10.3390/en16207200
APA StyleLuqman, L., Madenda, S., & Prihandoko, P. (2023). Polynomial Regression Model Utilization to Determine Potential Refuse-Derived Fuel (RDF) Calories in Indonesia. Energies, 16(20), 7200. https://doi.org/10.3390/en16207200