Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications
Abstract
:1. Introduction
2. Numerical Model and Validation against Experimental Results
2.1. The Volume Integral Elements Formulation (VIE) Model
2.2. Numerical Model Validation
3. Results and Discussion-Performance of Different HTS Tapes for Flux Pump Applications
3.1. Performance Comparison of Flux Pumps Based on Different Commercial HTS Tapes at 77.5 K
- THEVA Pro-Line 2G HTS;
- Shanghai Superconductor Low Field High Temperature 2G HTS;
- SuperOx GdBCO 2G HTS;
- SuperOx YBCO 2G HTS;
- SuperPower Advanced Pinning 2G HTS;
- Fujikura FYSC 2G HTS;
- SuNAM HAN04200 2G HTS.
3.2. Impact of Operating Temperature
- Open circuit voltage;
- Limit current of the generator mode;
- Maximum output power;
- AC loss in open circuit condition;
- Maximum efficiency.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van de Klundert, L.J.; ten Kate, H.H. Fully superconducting rectifiers and flux pumps part 1: Realized methods for flux pumping. Cryogenics 1981, 21, 195–206. [Google Scholar] [CrossRef]
- Van de Klundert, L.J.M.; ten Kat, H.H.J. On fully superconducting rectifiers and fluxpumps. A review. Part 2: Commutation modes, characteristics and switches. Cryogenics 1981, 21, 267–277. [Google Scholar] [CrossRef]
- Coombs, T.A. Superconducting flux pumps. J. Appl. Phys. 2019, 125, 230902. [Google Scholar] [CrossRef]
- Coombs, T.A.; Geng, J.; Fu, L.; Matsuda, K. An overview of flux pumps for HTS coils. IEEE Trans. Appl. Supercond. 2017, 27, 1–6. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, H.; Mueller, M. High Temperature Superconducting Flux Pumps for Contactless Energization. Crystals 2022, 12, 766. [Google Scholar] [CrossRef]
- Mataira, R.C.; Ainslie, M.D.; Badcock, R.A.; Bumby, C.W. Origin of the DC output voltage from a high-Tc superconducting dynamo. Appl. Phys. Lett. 2019, 114, 162601. [Google Scholar] [CrossRef]
- Ghabeli, A.; Ainslie, M.; Pardo, E.; Quéval, L.; Mataira, R. Modeling the charging process of a coil by an HTS dynamo-type flux pump. Supercond. Sci. Technol. 2021, 34, 84002. [Google Scholar] [CrossRef]
- Ghabeli, A.; Pardo, E.; Kapolka, M. 3D modeling of a superconducting dynamo-type flux pump. Sci. Rep. 2021, 11, 10296. [Google Scholar] [CrossRef]
- Ainslie, M.; Queval, L.; Mataira, R.; Badcock, R.; Bumby, C. Modelling an HTS Dynamo Using a Segregated Finite-Element Model. 2019. Available online: https://core.ac.uk/download/pdf/237398489.pdf (accessed on 13 September 2023).
- Ainslie, M.; Grilli, F.; Quéval, L.; Pardo, E.; Perez-Mendez, F.; Mataira, R.; Morandi, A.; Ghabeli, A.; Bumby, C.; Brambilla, R. A new benchmark problem for electromagnetic modelling of superconductors: The high-Tc superconducting dynamo. Supercond. Sci. Technol. 2020, 30, 105009. [Google Scholar] [CrossRef]
- Prigozhin, L.; Sokolovsky, V. Two-dimensional model of a high-Tc superconducting dynamo. IEEE Trans. Appl. Supercond. 2021, 31, 5201107. [Google Scholar] [CrossRef]
- Prigozhin, L.; Sokolovsky, V. Fast solution of the superconducting dynamo benchmark problem. Supercond. Sci. Technol. 2021, 34, 65006. [Google Scholar] [CrossRef]
- Campbell, A.M. A finite element calculation of flux pumping. Supercond. Sci. Technol. 2017, 30, 125015. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, H.; Mueller, M. Sensitivity analysis and machine learning modelling for the output characteristics of rotary HTS flux pumps. Supercond. Sci. Technol. 2021, 34, 125019. [Google Scholar] [CrossRef]
- Morandi, A.; Russo, G.; Fabbri, M.; Soldati, L. Energy balance, efficiency and operational limits of the dynamo type flux pump. Supercond. Sci. Technol. 2022, 35, 65011. [Google Scholar] [CrossRef]
- Ainslie, M.D. Numerical modelling of high-temperature superconducting dynamos: A review. Superconductivity 2022, 5, 100033. [Google Scholar] [CrossRef]
- Hoffmann, C.; Pooke, D.; Caplin, A.D. Flux Pump for HTS Magnets. IEEE Trans. Appl. Supercond. 2011, 21, 1628–1631. [Google Scholar] [CrossRef]
- Bumby, C.W.; Pantoja, A.E.; Sung, H.J.; Jiang, Z.; Kulkarni, R.; Badcock, R.A. Through-Wall Excitation of a Magnet Coil by an External-Rotor HTS Flux Pump. IEEE Trans. Appl. Supercond. 2016, 26, 500505. [Google Scholar] [CrossRef]
- Fu, L.; Matsuda, K.; Lecrevisse, T.; Iwasa, Y.; Coombs, T. A flux pumping method applied to the magnetization of YBCO superconducting coils: Frequency, amplitude and waveform characteristics. Supercond. Sci. Technol. 2016, 29, 4LT01. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Ye, H.; Wang, X.; Gao, Y.; Zhou, Q.; Liu, X.; Lei, Y. Compact Linear-Motor Type Flux Pumps with Different Wavelengths for High-Temperature Superconducting Magnets. IEEE Trans. Appl. Supercond. 2020, 30, 5000305. [Google Scholar] [CrossRef]
- Mataira, R.; Ainslie, M.; Pantoja, A.; Badcock, R.; Bumby, C. Mechanism of the high-Tc superconducting dynamo: Models andexperiment. Phys. Rev. Appl. 2020, 14, 24012. [Google Scholar] [CrossRef]
- Fu, L.; Matsuda, K.; Shen, B.; Coombs, T. HTS flux pump charging an HTS coil: Experiment and modeling. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Geng, J.; Bumby, C.W.; Badcock, R.A. Maximising the current output from a self-switching kA-class rectifier flux pump. Supercond. Sci. Technol. 2020, 33, 45005. [Google Scholar] [CrossRef]
- Gawith, J.D.D.; Geng, J.; Li, C.; Shen, B.; Zhang, X.; Ma, J.; Coombs, T.A. A half-bridge HTS transformer–rectifier flux pump withtwo AC field-controlled switches. Supercond. Sci. Technol. 2018, 31, 85002. [Google Scholar] [CrossRef]
- Ma, J.; Geng, J.; Gawith, J.; Zhang, H.; Li, C.; Shen, B.; Dong, Q.; Yang, J.; Chen, J.; Li, Z.; et al. Rotating permanent magnets based flux pump for HTS no-insulation coil. IEEE Trans. Appl. Supercond. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Hamilton, K.; Pantoja, A.E.; Storey, J.G.; Jiang, Z.; Badcock, R.A.; Bumby, C.W. Design and performance of a “squirrel-cage” dynamo-type HTS flux pump. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Hamilton, K.; Mataira, R.; Geng, J.; Bumby, C.; Carnegie, D.; Badcock, R. Practical estimation of HTS dynamo losses. IEEE Trans. Appl. Supercond. 2020, 30, 4703105. [Google Scholar] [CrossRef]
- Sung, H.J.; Badcock, R.A.; Jiang, Z.; Choi, J.; Park, M.; Yu, I.K. Design and Heat Load Analysis of a 12 MW HTS Wind Power Generator Module Employing a Brushless HTS Exciter. IEEE Trans. Appl. Supercond. 2016, 26, 5205404. [Google Scholar] [CrossRef]
- Tuvdensuren, O.; Sung, H.J.; Go, B.S.; Le, T.T.; Park, M.; Yu, I.K. Structural design and heat load analysis of a flux pump-based HTS module coil for a large-scale wind power generator. J. Phys. Conf. Ser. IOP Publ. 2018, 1054, 12084. [Google Scholar] [CrossRef]
- Russo, G.; Morandi, A. A Numerical Study on the Energization of the Field Coils of a Full-Size Wind Turbine with Different Types of Flux Pumps. Energies 2022, 15, 5392. [Google Scholar] [CrossRef]
- Rice, J.H.P.; Geng, J.; Bumby, C.W.; Weijers, H.W.; Wray, S.; Zhang, H.; Schoofs, F.; Badcock, R.A. Design of a 60 kA Flux Pump for Fusion Toroidal Field Coils. IEEE Trans. Appl. Supercond. 2022, 32, 5500205. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Gao, Y.; Lei, Y.; Ye, H.; Zhang, Y.; Zhou, Q.; Zhu, Y.; Liu, X. An HTS NI Magnet Charged by Multiple Flux Pumps: Construction and Test of the Prototype. IEEE Trans. Appl. Supercond. 2020, 30, 4602005. [Google Scholar] [CrossRef]
- Wei, J.; Wang, W.; Zhou, L.; Zhang, C.; Wang, X.; Yang, Z.; Xiong, C.; Yang, C.; Long, R.; Wu, C.; et al. Improving the central magnetic field of an HTS magnet using multiple flux pumps. IEEE Trans. Appl. Supercond. 2022, 32, 4602705. [Google Scholar] [CrossRef]
- Öztürk, Y.; Shen, B.; Williams, R.; Gawith, J.; Yang, J.; Ma, J.; Carpenter, A.; Coombs, T. Current Status in Building a Compact and Mobile HTS MRI Instrument. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Ainslie, M.D.; Quéval, L.; Mataira, R.C.; Bumby, C.W. Modelling the frequency dependence of the open-circuit voltage of a high-T c superconducting dynamo. IEEE Trans. Appl. Supercond. 2021, 31, 4900407. [Google Scholar] [CrossRef]
- Bumby, C.W.; Phang, S.; Pantoja, A.E.; Jiang, Z.; Storey, J.G.; Sung, H.-J.; Park, M.; Badcock, R.A. Frequency dependent behavior of a dynamo-type HTS flux pump. IEEE Trans. Appl. Supercond. 2016, 27, 1–5. [Google Scholar] [CrossRef]
- Mataira, R.; Ainslie, M.D.; Badcock, R.; Bumby, C.W. Modeling of Stator Versus Magnet Width Effects in High-Tc Superconducting Dynamos. IEEE Trans. Appl. Supercond. 2020, 30, 1–6. [Google Scholar] [CrossRef]
- Pantoja, A.E.; Jiang, Z.; Badcock, R.A.; Bumby, C.W. Impact of stator wire width on output of a dynamo-type HTS flux pump. IEEE Trans. Appl. Supercond. 2016, 26, 4805208. [Google Scholar] [CrossRef]
- Ghabeli, A.; Pardo, E. Modeling of airgap influence on DC voltage generation in a dynamo-type flux pump. Supercond. Sci. Technol. 2020, 33, 35008. [Google Scholar] [CrossRef]
- Jiang, Z.; Bumby, C.W.; Badcock, R.A.; Sung, H.J.; Long, N.J.; Amemiya, N. Impact of flux gap upon dynamic resistance of a rotating HTS flux pump. Supercond. Sci. Technol. 2015, 28, 115008. [Google Scholar] [CrossRef]
- Zhou, P.; Ren, G.; Ainsile, M.; Ghabeli, A.; Zhang, S.; Zhai, Y.; Ma, G. Impact of Magnet Number on the DC Output of a Dynamo-Type HTS Flux Pump. IEEE Trans. Appl. Supercond. 2023, 33, 4603509. [Google Scholar] [CrossRef]
- Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; A Coombs, T. Origin of dc voltage in type II superconducting flux pumps: Field, field rate of change, and current density dependence of resistivity. Phys. D Appl. Phys. 2016, 49, 11LT01. [Google Scholar] [CrossRef]
- Robinson Research Institute. Available online: http://htsdb.wimbush.eu/ (accessed on 13 September 2023).
- Wimbush, S.C.; Strickland, N.M. A Public Database of High-Temperature Superconductor Critical Current Data. IEEE Trans. Appl. Supercond. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Russo, G.; Yazdani-Asrami, M.; Scheda, R.; Morandi, A.; Diciotti, S. Artificial intelligence-based models for reconstructing the critical current and index-value surfaces of HTS tapes. Supercond. Sci. Technol. 2022, 35, 124002. [Google Scholar] [CrossRef]
- Strickland, N.M.; Hoffmann, C.; Wimbush, S.C. A 1 kA-class cryogen-free critical current characterization system for superconducting coated conductors. Rev. Sci. Instrum. 2014, 85, 113907. [Google Scholar] [CrossRef]
Specification | Value |
---|---|
Width of the PM, aPM | 3.2 mm |
Height of the PM, bPM | 12.7 mm |
Depth of the PM, lPM | 12.7 mm |
Remanence of the PM | 1.3 T |
Width of the HTS tape, atape | 12 mm |
Operating temperature | 77 K |
External radius of the rotor, Rrotor | 35 mm |
Airgap between the PM and the HTS tape, δ | 3.7 mm |
Specification | Value |
---|---|
Width of the HTS tape, atape | 12 mm |
Thickness of the HTS layer | 1 µm |
Thickness of the substrate (Hastelloy) | 50 µm |
Thickness of the Silver stabilizer layer | 2 µm |
Thickness of the Cu stabilizer layers (at the top and the bottom of the tape) | 25 µm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, G.; Morandi, A. Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications. Energies 2023, 16, 7244. https://doi.org/10.3390/en16217244
Russo G, Morandi A. Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications. Energies. 2023; 16(21):7244. https://doi.org/10.3390/en16217244
Chicago/Turabian StyleRusso, Giacomo, and Antonio Morandi. 2023. "Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications" Energies 16, no. 21: 7244. https://doi.org/10.3390/en16217244
APA StyleRusso, G., & Morandi, A. (2023). Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump Applications. Energies, 16(21), 7244. https://doi.org/10.3390/en16217244