Evaluating Traffic-Calming-Based Urban Road Design Solutions Featuring Cooperative Driving Technologies in Energy Efficiency Transition for Smart Cities
Abstract
:1. Introduction
The Aim of this Study
2. Related Research
3. Materials and Method
3.1. The Background of the Case Study
3.2. The Simulation Plan
- Time Slot 1 (TS1): This time slot spans from 9:00 a.m. to 1:00 p.m., and within this timeframe, access to the LTZ is restricted for all motorized traffic except for CAVs used as part of the public mobility service. In other words, regular vehicles are not permitted during this period, but autonomous vehicles providing mobility services can still operate.
- Time Slot 2 (TS2): This time slot spans from 1:00 p.m. to 4:00 p.m., allowing access for all categories of traffic. This means that all vehicles, including regular cars, are permitted to enter the LTZ during this period. This time interval offers flexibility for residents who may need to return home for lunch and then travel back to work as well as for others who need to move in and out of the area.
- Time Slot 3 (TS3): This time slot extends from 4:00 p.m. to 7:00 p.m. It is similar to TS1, as access to the LTZ is restricted for all motorized traffic except for CAVs. Similar to the morning time slot, only autonomous vehicles used for mobility services are allowed during TS3.
3.3. Aimsun Next Modeling
- Rear-end conflicts: the conflict angle is between 0° and 30°.
- Lane-changing conflicts: the conflict angle is between 30° and 85°.
- Crossing conflicts: the conflict angle is greater than 85°.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambros, J.; Tomešová, L.; Jurewicz, C.; Valentová, V. A review of the best practice in traffic calming evaluation. Accid. Anal. Prev. 2023, 189, 107073. [Google Scholar] [CrossRef] [PubMed]
- Paszkowski, J.; Herrmann, M.; Richter, M.; Szarata, A. Modelling the Effects of Traffic-Calming Introduction to Volume–Delay Functions and Traffic Assignment. Energies 2021, 14, 3726. [Google Scholar] [CrossRef]
- Gonzalo-Orden, H.; Rojo, M.; Pérez-Acebo, H.; Linares, A. Traffic calming measures and their effect on the variation of speed. Transp. Res. Procedia 2016, 18, 349–356. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Roundabouts: An Informational Guide, 2nd ed.; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Seuwou, P.; Banissi, E.; Ubakanma, G. The Future of Mobility with Connected and Autonomous Vehicles in Smart Cities. In Digital Twin Technologies and Smart Cities. Internet of Things; Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani, H., Eds.; Springer: Cham, Switzerland, 2020; Volume 1, pp. 37–52. [Google Scholar] [CrossRef]
- Tumminello, M.L.; Macioszek, E.; Granà, A.; Giuffrè, T. A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving. Sustainability 2023, 15, 9345. [Google Scholar] [CrossRef]
- Rana, M.M.; Hossain, K. Connected and Autonomous Vehicles and Infrastructures: A Literature Review. Int. J. Pavement Res. Technol. 2023, 16, 264–284. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.; Kehagia, F. CAVs and roundabouts: Research on traffic impacts and design elements. Transp. Res. Procedia 2020, 49, 83–94. [Google Scholar] [CrossRef]
- Aimsun Next. Version 20 Dynamic Simulator User Manual; TSS-Transport Simulation Systems: Barcelona, Spain, 2020. [Google Scholar]
- Gettman, D.; Pu, L.; Sayed, T.; Shelby, S.G. Surrogate Safety Assessment Model and Validation: Final Report; Georgetown Pike (US) Report FHWA HRT 08–051; Federal Highway Administration: Washington, DC, USA, 2008. [Google Scholar]
- Chng, S.; Chang, C.; Mosquera, K.; Leong, W.Y. Living in a Silver Zone: Residents’ perceptions of area-wide traffic calming measures in Singapore. Transp. Res. Interdiscip. Perspect. 2022, 16, 100710. [Google Scholar] [CrossRef]
- Cantisani, G.; Corazza, M.V.; Di Mascio, P.; Moretti, L. Eight Traffic Calming “Easy Pieces” to Shape the Everyday Pedestrian Realm. Sustainability 2023, 15, 7880. [Google Scholar] [CrossRef]
- Damsere-Derry, J.; Lumor, R.; Bawa, S.; Tikoli, D. Effects of traffic Calming measures on mobility, road safety and pavement conditions on Abuakwa-Bibiani highway. Front. Sustain. Cities 2020, 2, 26. [Google Scholar] [CrossRef]
- Juhász, M.; Koren, C. Getting an insight into the effects of traffic calming measures on road safety. Transp. Res. Procedia 2016, 14, 3811–3820. [Google Scholar] [CrossRef]
- Juhász Bunn, F.; Collier, T.; Frost, C.; Ker, K.; Roberts, I.; Wentz, R. Traffic calming for the prevention of road traffic injuries: Systematic review and meta-analysis. Inj. Prev. 2003, 9, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Giuffre’, O.; Grana’, A.; Giuffre’, T.; Marino, R. Emission factors related to vehicle modal activity. Int. J. Sustain. Dev. Plan. 2011, 6, 447–458. [Google Scholar] [CrossRef]
- Balant, M.; Lep, M. Comprehensive Traffic Calming as a Key Element of Sustainable Urban Mobility Plans—Impacts of a Neighbourhood Redesign in Ljutomer. Sustainability 2020, 12, 8143. [Google Scholar] [CrossRef]
- Chaves, C.; Vasconcelos, A.L.; Bastos Silva, A.; Almeida, R. Microsimulation–based evaluation of a 30 km/h zone. In Road and Rail Infrastructure, V.; Lakusic, S., Ed.; Tiskara Zelina: Zadar, Croatia, 2018; pp. 1341–1347. [Google Scholar]
- Elvik, R. Area-wide urban traffic calming schemes: A meta-analysis of safety effects. Accid. Anal. Prev. 2001, 33, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Jateikienė, L.; Andriejauskas, T.; Lingytė, I.; Jasiūnienė, V. Impact assessment of speed calming measures on road safety. Transp. Res. Procedia 2016, 14, 4228–4236. [Google Scholar] [CrossRef]
- Lee, G.; Joo, S.; Oh, C.; Choi, K. An evaluation framework for traffic calming measures in residential areas. Transp. Res. Part D Transp. Environ. 2013, 25, 68–76. [Google Scholar] [CrossRef]
- Ariën, C.; Jongen, E.M.; Brijs, K.; Brijs, T.; Daniels, S.; Wets, G. A simulator study on the impact of traffic calming measures in urban areas on driving behavior and workload. Accid. Anal. Prev. 2013, 61, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Distefano, N.; Leonardi, S. Evaluation of the benefits of traffic calming on vehicle speed reduction. Civ. Eng. Archit. 2019, 7, 200–214. [Google Scholar] [CrossRef]
- Aydin, M.M.; Gunay, B.; Akgol, K. Performance Comparison of Various Chicane Types: A Driving Simulator Study. Int. J. Civ. Eng. 2019, 17, 1753–1765. [Google Scholar] [CrossRef]
- Abdulmawjoud, A.A.; Jamel, M.G.; Al-Taei, A.A. Traffic flow parameters development modelling at traffic calming measures located on arterial roads. Ain Shams Eng. J. 2021, 12, 437–444. [Google Scholar] [CrossRef]
- Akbari, A.; Haghighi, F. Traffic calming measures: An evaluation of four low-cost TCMs’ effect on driving speed and lateral distance. IATSS Res. 2020, 44, 67–74. [Google Scholar] [CrossRef]
- Vaitkus, A.; Čygas, D.; Jasiūnienė, V.; Jateikienė, L.; Andriejauskas, T.; Skrodenis, D.; Ratkevičiūtė, K. Traffic calming measures: An evaluation of the effect on driving speed. Promet-Traffic Transp. 2017, 29, 275–285. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Ziółkowski, R.; Linares-Unamunzaga, A.; Gonzalo-Orden, H. A series of vertical deflections, a promising traffic calming measure: Analysis and recommendations for spacing. Appl. Sci. 2020, 10, 3368. [Google Scholar] [CrossRef]
- Pazzini, M.; Lantieri, C.; Vignali, V.; Dondi, G.; Giovannini, A.; Mora, A. Road users’ behaviour in the “30 km/h zones”. The case study of Bologna. Transp. Res. Procedia 2023, 69, 504–511. [Google Scholar] [CrossRef]
- Distefano, N.; Leonardi, S. Evaluation of the effectiveness of traffic calming measures by SPEIR methodology: Framework and case studies. Sustainability 2022, 14, 7325. [Google Scholar] [CrossRef]
- García, A.; Torres, A.J.; Romero, M.A.; Moreno, A.T. Traffic microsimulation study to evaluate the effect of type and spacing of traffic calming devices on capacity. Procedia-Soc. Behav. Sci. 2011, 16, 270–281. [Google Scholar] [CrossRef]
- Shirmohammadi, H.; Mardani, E.; Emdadian Ghane, M.; Hasheminezhad, A. Simulating the Effects of Type and Spacing of Traffic Calming Measures on Urban Road Capacity. Int. J. Transp. Eng. 2018, 6, 65–83. [Google Scholar]
- Ghafghazi, G.; Hatzopoulou, M. Simulating the air quality impacts of traffic calming schemes in a dense urban neighborhood. Transp. Res. Part D Transp. Environ. 2015, 35, 11–22. [Google Scholar] [CrossRef]
- Pérez-Sansalvador, J.C.; Lakouari, N.; Garcia-Diaz, J.; Hernández, S.E.P. The Effect of Speed Humps on Instantaneous Traffic Emissions. Appl. Sci. 2020, 10, 1592. [Google Scholar] [CrossRef]
- Januševičius, T.; Grubliauskas, R. The effect of speed bumps and humps on the concentrations of CO, NO and NO2 in ambient air. Air Quality. Atmos. Health 2019, 12, 635–642. [Google Scholar] [CrossRef]
- Ghafghazi, G.; Hatzopoulou, M. Simulating the environmental effects of isolated and area-wide traffic calming schemes using traffic simulation and microscopic emission modeling. Transportation 2014, 41, 633–649. [Google Scholar] [CrossRef]
- Ahac, S.; Ahac, M.; Domitrović, J.; Dragčević, V. Modeling the influence of roundabout deflection on its efficiency as a noise abatement measure. Sustainability 2021, 13, 5407. [Google Scholar] [CrossRef]
- Džambas, T.; Dragčević, V.; Lakušić, J. Impact of vertical traffic calming devices on environmental noise. Građevinar 2020, 12, 1131–1143. [Google Scholar]
- El-Bardisy, N.; Elshater, A.; Afifi, S.; Alfiky, A. Predicting traffic sound levels in Cairo before, during, and after the COVID-19 lockdown using Predictor-LimA software. Ain Shams Eng. J. 2023, 14, 102088. [Google Scholar] [CrossRef]
- Ariën, C.; Brijs, K.; Brijs, T.; Ceulemans, W.; Vanroelen, G.; Jongen, E.M.M.; Daniels, S.; Wets, G. Does the effect of traffic calming measures endure over time? A simulator study on the influence of gates. Transp. Res. Part F Traffic Psychol. Behav. 2014, 22, 63–75. [Google Scholar] [CrossRef]
- Mauro, R. Calculation of Roundabouts. Capacity, Waiting Phenomena and Reliability; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Rahman, M.M.; Thill, J.C. Impacts of Connected and Autonomous Vehicles on Urban Transportation and Environment: A Comprehensive Review. Sustain. Cities Soc. 2023, 96, 104649. [Google Scholar] [CrossRef]
- Brost, M.; Deniz, Ö.; Österle, I.; Ulrich, C.; Senzeybek, M.; Hahn, R.; Schmid, S. Energy Consumption of Connected and Automated Vehicles. In Electric, Hybrid, and Fuel Cell Vehicles, Encyclopedia of Sustainability Science and Technology, 2nd ed.; Elgowainy, A., Ed.; Springer: New York, NY, USA, 2021; pp. 216–224. [Google Scholar]
- Karbasi, A.; O’Hern, S. Investigating the impact of connected and automated vehicles on signalized and unsignalized intersections safety in mixed traffic. Future Transp. 2022, 2, 24–40. [Google Scholar] [CrossRef]
- Elawady, A.; Abuzwidah, M.; Zeiada, W. The Benefits of Using Connected Vehicles System on Traffic Delay and Safety at Urban Signalized Intersections. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Mavromatis, I.; Tassi, A.; Piechocki, R.J.; Sooriyabandara, M. On Urban Traffic Flow Benefits of Connected and Automated Vehicles. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Ye, L.; Yamamoto, T. Evaluating the impact of connected and autonomous vehicles on traffic safety. Phys. A Stat. Mech. Its Appl. 2019, 526, 121009. [Google Scholar] [CrossRef]
- Chehri, A.; Mouftah, H.T. Autonomous vehicles in the sustainable cities, the beginning of a green adventure. Sustain. Cities Soc. 2019, 51, 101751. [Google Scholar] [CrossRef]
- Italian Minister of Infrastructure and Transport. Functional and Geometric Standards for Road Intersections; Italian Minister of Infrastructure and Transport: Rome, Italy, 2006.
- National Academies of Sciences, Engineering, and Medicine. Highway Capacity Manual 7th Edition: A Guide for Multimodal Mobility Analysis; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- Barceló, J. Fundamentals of Traffic Simulation; Springer: London, UK, 2010. [Google Scholar]
- Gipps, P.G. A Behavioural Car-Following Model for Computer Simulation. Transp. Res. Part B 1981, 15, 105–111. [Google Scholar] [CrossRef]
- Abedian, S.; Mirsanjari, M.M.; Salmanmahiny, A. Investigating the effect of suburban buses on traffic flow and carbon monoxide emission by Aimsun simulation software. J. Indian Soc. Remote Sens. 2021, 49, 1319–1330. [Google Scholar] [CrossRef]
- Giuffrè, O.; Granà, A.; Tumminello, M.L.; Giuffrè, T.; Trubia, S.; Sferlazza, A.; Rencelj, M. Evaluation of roundabout safety performance through surrogate safety measures from microsimulation. J. Adv. Transp. 2018, 2018, 4915970. [Google Scholar] [CrossRef]
- Saleem, T.; Persaud, B.; Shalaby, A.; Ariza, A. Can Microsimulation Be Used to Estimate Intersection Safety?: Case Studies Using VISSIM and Paramics. Transp. Res. Rec. J. Transp. Res. Board 2014, 2432, 142–148. [Google Scholar] [CrossRef]
- Oikonomou, M.G.; Ziakopoulos, A.; Chaudhry, A.; Thomas, P.; Yannis, G. From conflicts to crashes: Simulating macroscopic connected and automated driving vehicle safety. Accid. Anal. Prev. 2023, 187, 107087. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ying, J.; Jiang, S. An Adaptive Traffic-Calming Measure and Effectiveness Evaluation in a Large Urban Complex of Shanghai, China. Sustainability 2022, 14, 13023. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Ziolkowski, R.; Gonzalo-Orden, H. Evaluation of the Radar Speed Cameras and Panels Indicating the Vehicles’ Speed as Traffic Calming Measures (TCM) in Short Length Urban Areas Located along Rural Roads. Energies 2021, 14, 8146. [Google Scholar] [CrossRef]
- Solowczuk, A. Effect of Traffic Calming in a Downtown District of Szczecin, Poland. Energies 2021, 14, 5838. [Google Scholar] [CrossRef]
- Dong, C.; Wang, H.; Li, Y.; Liu, Y.; Chen, Q. Economic comparison between vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) at freeway on ramps based on microscopic simulations. IET Intell. Transp. Syst. 2019, 13, 1726–1735. [Google Scholar]
- Shahariar, G.H.; Sajjad, M.; Suara, K.A.; Jahirul, M.I.; Chu-Van, T.; Ristovski, Z.; Bodisco, T.A. On-road CO2 and NOx emissions of a diesel vehicle in urban traffic. Transp. Res. Part D Transp. Environ. 2022, 107, 103326. [Google Scholar] [CrossRef]
- Mądziel, M. Vehicle Emission Models and Traffic Simulators: A Review. Energies 2023, 16, 3941. [Google Scholar] [CrossRef]
- Belkacem, I.; Helali, A.; Khardi, S.; Slimi, K. Investigations on vehicle non-exhaust particle emissions: Real-time measurements. Int. J. Environ. Sci. Technol. 2022, 19, 11749–11762. [Google Scholar] [CrossRef]
- Jazcilevich, A.; Mares Vázquez, J.M.; Ramírez, P.L.; Pérez, I.R. Economic-environmental analysis of traffic-calming devices. Transp. Res. Part D Transp. Environ. 2015, 36, 86–95. [Google Scholar] [CrossRef]
- Alogdianakis, F.; Dimitriou, L. In-Depth Appraisal of Bus Transport Services for Sustainability Performance: A Cost–Benefit Analysis Approach. Transp. Res. Rec. 2023. [Google Scholar] [CrossRef]
Project Solution 1 (PS1) | |
Traffic Scenario A (TSA) | Traffic Scenario B (TSB) |
Time Slot 1 (9:00 a.m.–1:00 p.m.) | Time Slot 1 (9:00 p.m.–1:00 p.m.) |
Time Slot 2 (1:00 p.m.–4:00 p.m.) | Time Slot 2 (1:00 p.m.–4:00 p.m.) |
Time Slot 3 (4:00 p.m.–7:00 p.m.) | Time Slot 3 (4:00 p.m.–7:00 p.m.) |
Project Solution 2 (PS2) | |
Traffic Scenario A (TSA) | Traffic Scenario B (TSB) |
Time Slot 1 (9:00 a.m.–1:00 p.m.) | Time Slot 1 (9:00 a.m.–1:00 p.m.) |
Time Slot 2 (1:00 p.m.–4:00 p.m.) | Time Slot 2 (1:00 p.m.–4:00 p.m.) |
Time Slot 3 (4:00 p.m.–7:00 p.m.) | Time Slot 3 (4:00 p.m.–7:00 p.m.) |
Project Solution 3 (PS3) | |
Traffic Scenario A (TSA) | Traffic Scenario B (TSB) |
Time Slot 1 (9:00 a.m.–1:00 p.m.) | Time Slot 1 (9:00 a.m.–1:00 p.m.) |
Time Slot 2 (1:00 p.m.–4:00 p.m.) | Time Slot 2 (1:00 p.m.–4:00 p.m.) |
Time Slot 3 (4:00 p.m.–7:00 p.m.) | Time Slot 3 (4:00 p.m.–7:00 p.m.) |
Base Layout (BL) | |
Baseline Traffic Scenario A (BTSA) | Baseline Traffic Scenario B (BTSB) |
Traffic Scenario A (TSA) | ||
---|---|---|
Time Slot 1 | Time Slot 2 | Time Slot 3 |
Bike: 80/120/160/200 bike/h | Bike: 120 bike/h | Bike: 140/160/180 bike/h |
Shuttle bus (CAV) frequency: 15′ | Shuttle bus (CAV) frequency: 15′ | Shuttle bus (CAV) frequency: 15′ |
HOVs: no vehicle | HOVs: 750/600/750 veh/h | HOVs: no vehicle |
Pedestrian flow: 200 ped/h | Pedestrian flow: 150 ped/h | Pedestrian flow: 220 ped/h |
Traffic Scenario B (TSB) | ||
Time Slot 1 | Time Slot 2 | Time Slot 3 |
Bike: 120/160/200/240 bike/h | Bike: 160 bike/h | Bike: 160/180/200 bike/h |
Shuttle bus (CAV) frequency: 10′ | Shuttle bus (CAV) frequency: 10′ | Shuttle bus (CAV) frequency: 10′ |
HOVs: no vehicle | HOVs: 1000/850/1000 veh/h | HOVs: no vehicle |
Pedestrian flow: 220 ped/h | Pedestrian flow: 200 ped/h | Pedestrian flow: 220 ped/h |
Baseline Traffic Scenario A (BTSA) | Baseline Traffic Scenario B (BTSB) |
---|---|
Bike: 120 bike/h | Bike: 160 bike/h |
HOVs: 750/600/750 veh/h | HOVs: 1000/850/1000 veh/h |
Pedestrian flow: 150 ped/h | Pedestrian flow: 200 ped/h |
Parameter | Default Value | Calibrated Value |
---|---|---|
HOVs | ||
Reaction time 1 (s) | 0.80 | 0.86 |
Speed limit acceptance | 1.10 | 1.00 |
Gap (s) | 0.00 | 1.58 |
CAVs | ||
Reaction time 1 (s) | 0.80 | 0.63 |
Maximum acceleration (m/s2) | 3.00 | 4.00 |
Safety margin factor | 1.00 | 0.50 |
Market Penetration Rate of CAVs (%) | ||||||
---|---|---|---|---|---|---|
0 | 20 | 40 | 60 | 80 | 100 | |
0.12 | 0.11 | 0.08 | 0.07 | 0.09 | 0.11 | |
0.04 | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | |
93.00 | 93.00 | 100.00 | 100.00 | 96.00 | 93.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumminello, M.L.; Macioszek, E.; Granà, A.; Giuffrè, T. Evaluating Traffic-Calming-Based Urban Road Design Solutions Featuring Cooperative Driving Technologies in Energy Efficiency Transition for Smart Cities. Energies 2023, 16, 7325. https://doi.org/10.3390/en16217325
Tumminello ML, Macioszek E, Granà A, Giuffrè T. Evaluating Traffic-Calming-Based Urban Road Design Solutions Featuring Cooperative Driving Technologies in Energy Efficiency Transition for Smart Cities. Energies. 2023; 16(21):7325. https://doi.org/10.3390/en16217325
Chicago/Turabian StyleTumminello, Maria Luisa, Elżbieta Macioszek, Anna Granà, and Tullio Giuffrè. 2023. "Evaluating Traffic-Calming-Based Urban Road Design Solutions Featuring Cooperative Driving Technologies in Energy Efficiency Transition for Smart Cities" Energies 16, no. 21: 7325. https://doi.org/10.3390/en16217325
APA StyleTumminello, M. L., Macioszek, E., Granà, A., & Giuffrè, T. (2023). Evaluating Traffic-Calming-Based Urban Road Design Solutions Featuring Cooperative Driving Technologies in Energy Efficiency Transition for Smart Cities. Energies, 16(21), 7325. https://doi.org/10.3390/en16217325