Optimizing Well Completion for Polymer Flooding in Conjunction with Waterflood Flow Control Valves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parameters That Influence the Mechanical Degradation of Polymer Solution
2.2. Laboratory Study
2.2.1. Equipment
- Lab digital scale. To weigh the raw materials required in the preparation of polymer solutions;
- Beakers. Transparent glass containers were used for the storage of the samples during the process;
- Mixer. Main equipment for agitation during sample preparation;
- Brookfield Viscometer. Used for recording the viscosity of samples before and after shearing through the FRV;
- Mechanical degradation equipment.
2.2.2. Preparation of the Stock Polymeric Solution from Dried Polyacrylamide Products
2.2.3. Preparation of Dilute Polymeric Solutions from the Polyacrylamide Stock Solution
2.2.4. Viscosity Measurement Procedures Using a Low-Viscosity-Adapted Digital Viscometer
2.2.5. Evaluation of the Mechanical Degradation of Polymer Solutions with VRF
2.3. Determination of Mechanical Degradation
2.4. Recommendation of the Configuration of the Mechanical State for Optimal Well Completion
3. Results and Discussion
3.1. Laboratory Study
3.1.1. Preparation of Polymer Solutions
3.1.2. Viscosity Measurements of the Polymer Solutions
3.1.3. Mechanical Degradation Test
3.1.4. Determination of Mechanical Degradation
3.2. Configuration Proposal
3.2.1. Determination of Mechanical Degradation
Mandrel
Flow Regulator Valve
3.3. Well Completion Proposal
3.4. Proposed Injection Parameters
3.5. The Application of the Regulating Valve in Unconventional Reservoir Polymer Injection Processes
4. Conclusions
- The flow rate of the polymer solution is directly proportional to its mechanical degradation. The stability of the polymer solution depends on the shear rate, type of polymer, water source, surface, and subsurface facilities through which the polymer circulates and the operative conditions of the injection process.
- It is proposed to implement a selective injection polymer flooding process with flow regulators, which helps by restricting the rate of polymer injected into each layer independently and improving the vertical efficiency in the reservoir by using a configuration of inverted mandrels, which decreases the fluid velocity, improving the injection profile.
- The flow regulator valve recommended is 4 mm to the injection flow required in the field of study. Pressure drop inter FRV and reservoir must be 100 psi or less; for higher drop pressure, the mechanical degradation will be higher.
- It is recommended to evaluate in the laboratory and in the field other types of flow regulator valves and devices that have been designed in recent years, especially for polymer injection.
- Completion control valves play an essential role in polymer injection in tight oil reservoirs. They enable precise control of the flow and pressure of injected fluids, which helps maximize sweep efficiency and oil recovery in low-permeability formations. They also ensure safe and reliable operation of injection operations, which is essential in the oil industry.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamas, L.F.; Botechia, V.E.; Schiozer, D.J.; Rocha, M.L.; Delshad, M. Application of polymer flooding in the revitalization of a mature heavy oil field. J. Pet. Sci. Eng. 2021, 204, 108695. [Google Scholar] [CrossRef]
- Manrique, E.; Thomas, C.; Ravikiran, R.; Izadi, M.; Lantz, M.; Romero, J.; Alvarado, V. EOR: Current status and opportunities. In SPE Improved Oil Recovery Conference? SPE: Richardson, TX, USA, 2010; p. SPE-130113. [Google Scholar]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef]
- Rosa, A.J.; Carvalho, R.S.; Xavier, J.A.D. Engenharia de Reservatórios de Petróleo; Interciência: Caracas, Venezuela, 2006. [Google Scholar]
- Bai, Y.; Li, J.; Li, Q. Sensitivity analysis of the dimensionless parameters in scaling a polymer flooding reservoir. Transp. Porous Med. 2008, 73, 21. [Google Scholar] [CrossRef]
- Bello-Angulo, D.; Mantilla-Duarte, C.; Montes-Paez, E.; Guerrero-Martin, C. Box–Jenkins Methodology Application to Improve Crude Oil Production Forecasting: Case Study in a Colombian Field. Arab. J. Sci. Eng. 2021, 47, 11269–11278. [Google Scholar] [CrossRef]
- Castro, M.V. Escoamento de Polímeros em Meios Porosos. Ph.D. Thesis, Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO), Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Firozjaii, A.M.; Saghafi, H.R. Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation. Petroleum 2020, 6, 115–122. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Ali, M.; Alajmi, M.; Akhondzadeh, H.; Khaksar Manshad, A.; Kalantariasl, A.; Iglauer, S.; Keshavarz, A. Synergistic effect of nanoparticles and polymers on the rheological properties of injection fluids: Implications for enhanced oil recovery. Energy Fuels 2021, 35, 6125–6135. [Google Scholar] [CrossRef]
- Bera, A.; Shah, S.; Shah, M.; Agarwal, J.; Vij, R.K. Mechanistic study on silica nanoparticles-assisted guar gum polymer flooding for enhanced oil recovery in sandstone reservoirs. Colloids Surf. A Physicochem. Eng. Asp. 2020, 598, 124833. [Google Scholar] [CrossRef]
- Guerrero-Martin, C.A.; Montes-Pinzon, D.; da Silva, M.M.M.; Montes-Paez, E.; Guerrero-Martin, L.E.; Salinas-Silva, R.; Camacho-Galindo, S.; Szklo, A. Asphaltene Precipitation/Deposition Estimation and Inhibition through Nanotechnology: A Comprehensive Review. Energies 2023, 16, 4859. [Google Scholar] [CrossRef]
- Uranta, K.G.; Rezaei Gomari, S.; Russell, P.; Hamad, F. Application of polymer integration technique for enhancing polyacrylamide (PAM) performance in high temperature and high salinity reservoirs. Heliyon 2019, 5, e02113. [Google Scholar] [CrossRef]
- Afolabi, F.; Mahmood, S.M.; Yekeen, N.; Akbari, S.; Sharifigaliuk, H. Polymeric surfactants for enhanced oil recovery: A review of recent progress. J. Pet. Sci. Eng. 2022, 208, 109358. [Google Scholar] [CrossRef]
- Sun, F.; Lin, M.; Dong, Z.; Zhang, G. Delayed-crosslink hydrogel for improving oil recovery in differential heterogeneous reservoirs. ACS Omega 2019, 5, 228–235. [Google Scholar] [CrossRef]
- Taber, J.J.; Martin, F.D. Technical screening guides for enhanced oil recovery. In Proceedings of the 58th Annual Technical Conference and Exhibition, San Francisco, CA, USA, 5–8 October 1983. [Google Scholar]
- Muhammed, N.S.; Haq, M.B.; Al-Shehri, D.; Rahaman, M.M.; Keshavarz, A.; Hossain, S.Z. Comparative study of green and synthetic polymers for enhanced oil recovery. Polymers 2020, 12, 2429. [Google Scholar] [CrossRef]
- Ferreira, M.Z. Injeção Contínua e Alternada de Água e de Polímeros para a recu-Peração de Petróleo. Master’s Thesis, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil, 2012. [Google Scholar]
- Zhong, H.; He, Y.; Yang, E.; Bi, Y.; Yang, T. Modeling of microflow during viscoelastic polymer flooding in heterogenous reservoirs of Daqing Oilfield. J. Pet. Sci. Eng. 2022, 210, 110091. [Google Scholar] [CrossRef]
- Rosenkilde, C.; Brakstad, K.; Smith, J.B. Degradation of synthetic polymers during radial injection in a sandstone. In Proceedings of the 78th EAGE Conference and Exhibition 2016: Efficient Use of Technology—Unlocking Potential, Vienna, Austria, 29–30 May 2016. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Liu, G. Review on polymer flooding technology. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 675, p. 012199. [Google Scholar]
- Daza, J.; Castro, R. Evaluación Técnico-Financiera de los Pilotos IOR/EOR Ejecutados en Colombia con Tecnología de Inyección de Polímero HPAM; Acipet: Cartagena, Colombia, 2022. [Google Scholar]
- Lake, L. Polymer Methods. In Enhanced Oil Recovery; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1989; pp. 314–353. Available online: https://biblos.uamerica.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=29170 (accessed on 10 June 2023).
- Davarpanah, A. Parametric study of polymer-nanoparticles-assisted injectivity performance for axisymmetric two-phase flow in EOR processes. Nanomaterials 2020, 10, 1818. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Liu, T.; Yang, D. Modeling tracer flowback behaviour for a multifractured horizontal well in a tight oil reservoir using the embedded discrete fracture model. J. Pet. Sci. Eng. 2022, 212, 110347. [Google Scholar] [CrossRef]
- Buitrago-Rincon, D.L.; Sadtler, V.; Mercado, R.A.; Roques-Carmes, T.; Marchal, P.; Muñoz-Navarro, S.F.; Sandoval, M.; Pedraza-Avella, J.A.; Lemaitre, C. Silica Nanoparticles in Xanthan Gum Solutions: Oil Recovery Efficiency in Core Flooding Tests. Nanomaterials 2023, 13, 925. [Google Scholar] [CrossRef]
- Sorbie, K. Polymer stability. In Polymer-Improved Oil Recovery; Springer: Berlin/Heidelberg, Germany, 1991; pp. 83–125. [Google Scholar] [CrossRef]
- Poveda, I.D.; Guerrero-Martin, C.A.; Espinosa, C.; Castro, R.H. Simulación Numérica Estocástica de Tratamientos de Conformance Profundo Usando Polímero de Activación Térmica. 2023. Available online: https://revistas.uis.edu.co/index.php/revistafuentes/article/view/14379 (accessed on 2 June 2023).
- Weisman, I.; Thomann, M.; Gamboa, M.; Godino, G.; Gandi, S. Polymer Flooding from Day One: Reservoir Modelling Challenges and Development Strategy Definition. In SPE Latin America and Caribbean Petroleum Engineering Conference; SPE: Richardson, TX, USA, 2023; p. D021S012R001. [Google Scholar]
- Shiran, B.S.; Skauge, A. Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding. Energy Fuels 2013, 27, 1223–1235. [Google Scholar] [CrossRef]
- Pogaku, R.; Fuat, N.H.M.; Sakar, S.; Cha, Z.W.; Musa, N.; Tajudin, D.N.A.A.; Morris, L.O. Polymer flooding and its combinations with other chemical injection methods in enhanced oil recovery. Polym. Bull. 2018, 75, 1753–1774. [Google Scholar] [CrossRef]
- Ding, L.; Wu, Q.; Zhang, L.; Guérillot, D. Application of fractional flow theory for analytical modeling of surfactant flooding, polymer flooding, and surfactant/polymer flooding for chemical enhanced oil recovery. Water 2020, 12, 2195. [Google Scholar] [CrossRef]
- Jouenne, S.; Chakibi, H.; Levitt, D. Polymer stability after successive mechanical-degradation events. SPE J. 2018, 23, 18–33. [Google Scholar] [CrossRef]
- Corredor, L.M.; Husein, M.M.; Maini, B.B. A review of polymer nanohybrids for oil recovery. Adv. Colloid Interface Sci. 2019, 272, 102018. [Google Scholar] [CrossRef]
- Morel, D.C.; Vert, M.; Jouenne, S.; Gauchet, R.; Bouger, Y. First polymer injection in deep offshore field Angola: Recent advances in the Dalia/Camelia field case. Oil Gas Facil. 2012, 1, 43–52. [Google Scholar] [CrossRef]
- Saboorian-Jooybari, H.; Dejam, M.; Chen, Z. Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: Half-century studies. J. Pet. Sci. Eng. 2016, 142, 85–100. [Google Scholar] [CrossRef]
- Sheng, J.J. Polymer Viscoelastic Behavior and Its Effect on Field Facilities and Operations. In Modern Chemical Enhanced Oil Recovery: Theory and Practice; Gulf Professional Publishing: Oxford, UK, 2011; pp. 207–238. [Google Scholar] [CrossRef]
- Jouenne, S.; Anfray, J.; Cordelier, P.R.; Mateen, K.; Levitt, D.; Souilem, I.; Marchal, P.; Lemaitre, C.; Choplin, L.; Nesvik, J.; et al. Degradation (or Lack Thereof) and Drag Reduction of HPAM Solutions During Transport in Turbulent Flow in Pipelines. Oil Gas Facil. 2015, 4, 80–92. [Google Scholar] [CrossRef]
- Herrera, J.J.; Prada, L.C.; Maya, G.A.; Gomez-Vergel, J.L.; Castro, R.H.; Quintero, H.I.; Diaz, R.; Perez, E.E. CFD simulation of HPAM EOR solutions mechanical degradation by restrictions in turbulent flow. CTF Cienc. Tecnol. Futuro 2020, 10, 115–129. [Google Scholar] [CrossRef]
- Vanegas, P.A.V.; Ruiz, T.Y.Z.; Macualo, F.H.E.; Martin, C.A.G. Metodología para la formulación de proyectos de recuperación química mediante analogías. Rev. Fuentes Reventón Energético 2019, 17, 29–35. [Google Scholar]
- Lu, X.G.; Sun, S.Q.; Shan, G.J.; Lin, L.H. Improved Waterflood Recovery for a Mature Oilfield with Challenging Reservoir Conditions and Complex Development Status. In Abu Dhabi International Petroleum Exhibition and Conference 2023; SPE: Richardson, TX, USA, 2023; p. D021S033R006. [Google Scholar]
- API Production Department. Recommended Practices for Evaluation of Polymers Used in Enhanced Oil Recovery Operations, 1st ed.; American Petroleum Institute: Washington, DC, USA, 1990. [Google Scholar]
- Herrera, J.J.; Pérez, E.E.; Prada, L.C.; Quintero, H.I.; Gutierrez, M.; Maya, G.A.; Maldonado, L.Y.; Castro, R. Análisis, diseño e implementación de válvulas reguladoras de flujo-VRF para yacimientos multicapas sometidos a procesos de recuperación química de petróleo. In Proceedings of the Congreso Colombiano de Petróleo y Gas Natural, Cartagena, Colombia, 16–18 August 2022; Acipet: Bogota, Colombia, 2022. [Google Scholar]
- Solórzano, P.; Ahmedt, D.; Jaimes, C.; Henao, W.; Vega, S.; Guerrero, C.; Meza, E.; León, J.; Dueñas, D. Selectivizing a Singled Bed Reservoir, A Successfully Application to Increase the Vertical Displacement Efficiency in a Heavy Oil Waterflooding Project. In Proceedings of the SPE Trinidad and Tobago Section Energy Resources Conference, Port of Spain, Trinidad and Tobago, 25–27 June 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Julia, H.; Prada, L.; Henderson, Q.; Gustavo, M.; Laura, M.; José, G.-V.; Mauricio, G.; Rubén, C.; Pérez, E. Fluid dynamics simulations of pressure and flow control devices in polymer flooding selective use in enhanced oil recovery. Geoenergy Sci. Eng. 2023, 227, 211907. [Google Scholar] [CrossRef]
- Gheneim, T.; Azancot, A.; Acosta, T.; Zapata, J.F.; Chaparro, C.; Lobo, A.; Jimenez, A.M.; Perez, G. Enhanced Oil Recovery in a High Stratigraphic Complex Reservoir: Casabe Project Case Study. In Abu Dhabi International Petroleum Exhibition and Conference; SPE: Richardson, TX, USA, 2017; p. D041S115R002. [Google Scholar]
- Syed, F.I.; Dahaghi, A.K.; Muther, T. Laboratory to field scale assessment for EOR applicability in tight oil reservoirs. Pet. Sci. 2022, 19, 2131–2149. [Google Scholar] [CrossRef]
- Al-Hajri, S.; Mahmood, S.M.; Abdulelah, H.; Akbari, S. An overview on polymer retention in porous media. Energies 2018, 11, 2751. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, W.; Fu, J.; Lu, J.; Yin, H. The performance of polymer flooding in heterogeneous type II reservoirs—An experimental and field investigation. Energies 2017, 10, 454. [Google Scholar] [CrossRef]
- Zhou, N.; Lu, S.; Wang, M.; Huang, W.; Xiao, D.; Jiao, C.; Wang, J.; Tian, W.; Zhou, L.; Chen, F.; et al. Limits and grading evaluation criteria of tight oil reservoirs in typical continental basins of China. Pet. Explor. Dev. 2021, 48, 1089–1100. [Google Scholar] [CrossRef]
- Alhotan, M.M.; Fernandes, B.R.B.; Delshad, M.; Sepehrnoori, K. A Systemic Comparison of Physical Models for Simulating Surfactant–Polymer Flooding. Energies 2023, 16, 5702. [Google Scholar] [CrossRef]
- Fani, M.; Pourafshary, P.; Mostaghimi, P.; Mosavat, N. Application of microfluidics in chemical enhanced oil recovery: A review. Fuel 2022, 315, 123225. [Google Scholar] [CrossRef]
Elements of Polymer Injection | Parameters Influencing Mechanical Degradation | Relationship with Degradation | Modifiable/ Not Modifiable |
---|---|---|---|
Polymer solution (Sheng, 2011) [36], (K. S. Sorbie, 1991) [26] | Polymer type (synthesis) | The degree of resistance to shear rate depends on this. | Not modifiable |
Critical shear rate | It is associated with the type of polymer and its own design. | Not modifiable | |
Polymer concentration | It presents a behavior directly proportional to the degradation. | Modifiable | |
Flow lines and mechanical condition (Jouenne et al., 2018) [32] | Pipe diameters | It is directly proportional to the critical velocity and inversely proportional to the degradation. | Not modifiable |
Pressure drops (accessories) | They generate a sudden increase in the flow velocity of the polymer, so they will be considered as critical points. | Modifiable, main parameter of evaluation in the FRV | |
Injection process (Jouenne et al., 2015) [37] | Flow rates | Directly proportional to pressure drops and polymer degradation. | Not modifiable |
Injection temperature | It does not represent a significant mechanical degradation factor. | Not modifiable |
Concentration (ppm) | Diameters (mm) | Initial Viscosity (Cp) | Final Viscosity (Cp) | Deg (%) |
---|---|---|---|---|
300 | 2 | 15.6 | 13.4 | 14.8 |
3 | 15.55 | 14.45 | 7.43 | |
4 | 15.25 | 14.7 | 3.79 | |
6 | 15.9 | 15.5 | 2.64 | |
9 | 13.35 | 13.05 | 2.38 | |
10 (full open) | 13.15 | 12.95 | 1.61 | |
500 | 2 | 28.8 | 23.4 | 19.24 |
3 | 30.8 | 26.8 | 13.31 | |
4 | 27 | 25.1 | 7.24 | |
6 | 30.6 | 27.45 | 10.55 | |
9 | 27.8 | 26 | 6.65 | |
10 (full open) | 26.7 | 25.1 | 6.16 | |
1000 | 2 | 83.5 | 65.7 | 21.51 |
3 | 85.9 | 73.8 | 14.21 | |
4 | 84.9 | 73.05 | 14.08 | |
6 | 85.45 | 75.65 | 11.57 | |
9 | 81.7 | 76 | 7.04 | |
10 (full open) | 78.5 | 76.2 | 2.96 |
Average Inlet Viscosity (cP) | Average Shear Viscosity (cP) | Average Overall Viscosity Loss (%) | Average Mechanical Degradation | Number of Tests |
---|---|---|---|---|
300 ppm | 12 | |||
2 mm | 2 | |||
15.6 | 13.4 | 14.10% | 15.07% | 2 |
3 mm | 2 | |||
15.55 | 14.45 | 7.06% | 7.54% | 2 |
4 mm | 2 | |||
15.25 | 14.7 | 3.59% | 3.84% | 2 |
6 mm | 2 | |||
15.9 | 15.5 | 2.52% | 2.68% | 2 |
9 mm | 2 | |||
13.35 | 13.05 | 2.22% | 2.40% | 2 |
10 mm full open | 2 | |||
13.15 | 12.95 | 1.52% | 1.65% | 2 |
500 ppm | 11 | |||
2 mm | 1 | |||
28.8 | 23.4 | 18.75% | 19.42% | 1 |
3 mm | 2 | |||
30.8 | 26.8 | 13.00% | 13.44% | 2 |
4 mm | 2 | |||
29.8 | 28.7 | 3.69% | 3.81% | 2 |
6 mm | 2 | |||
30.6 | 27.45 | 10.21% | 10.55% | 2 |
9 mm | 2 | |||
27.75 | 26.9 | 3.06% | 3.17% | 2 |
10 mm full open | 2 | |||
26.35 | 25.9 | 1.65% | 1.71% | 2 |
1000 ppm | 12 | |||
2 mm | 2 | |||
83.5 | 65.7 | 21.32% | 21.58% | 2 |
3 mm | 2 | |||
85.9 | 73.8 | 14.09% | 14.25% | 2 |
4 mm | 2 | |||
84.9 | 73.05 | 13.95% | 14.12% | 2 |
6 mm | 2 | |||
85.45 | 75.65 | 11.46% | 11.59% | 2 |
9 mm | 2 | |||
79.7 | 78.85 | 0.91% | 0.92–4.13% | 2 |
10 mm full open | 2 | |||
78.25 | 77.35 | 1.14% | 1.16% | 2 |
Diameter of the FRV (mm) | Deg (%) Laboratory | Shear Rate Evaluated (s−1) | Regulated Flow Spring Low Flow (+/−10%) (BPD) | Regulated Flow Spring High Flow (+/−10%) (BPD) |
---|---|---|---|---|
2 | 19.24% | 702,878 | 57 | 138 |
3 | 13.31% | 208,260 | 151 | 258 |
4 | 7.24% | 87,859 | 245 | 421 |
6 | 10.55% | 26,033 | 616 | 1170 |
9 | 6.65% | 7713 | 1063 | 1918 |
10 | 6.16% | 5623 | No Reg. | No Reg. |
I T EM | O.D (IN) | I.D (IN) | Length (Ft) | Depth from (ft) | Depth to (ft) | Quantity | Description |
---|---|---|---|---|---|---|---|
10 | 2.875 | 2.441 | 3110.32 | - | 3093.90 | 136 | Tubing Joint 2-7/8″ Pin × Box 22 Ft |
9 | 2.875 | 2.441 | 6.1 | 3093.90 | 3100.00 | Pup Joint 2-7/8″ Pin × Box × 6 ft. | |
2 | Rubber Top | ||||||
8 | 6.063 | 2.438 | 0 | 3100.00 | 3100.00 | 1 | Hydraulic Packer 7″ × 2-7/8” |
2 | Rubbers Down | ||||||
7 | 2.875 | 2.441 | 30.53 | 3100.00 | 3130.53 | 1 | Tubing Joint 2-7/8″ Pin × Box 30 Ft |
6 | 5.187 | 2.441 | 8.82 | 3130.53 | 3139.35 | 1 | Water Mandril Injection 2-7/8” |
5 | 2.875 | 2.441 | 91.48 | 3139.35 | 3230.83 | 4 | Tubing Joint 2-7/8″ Pin × Box 22 Ft |
2 | Rubber Top | ||||||
4 | 6.063 | 2.438 | 0 | 3230.83 | 3230.83 | 1 | Hydraulic Packer 7″ × 2-7/8” |
2 | Rubbers Down | ||||||
3 | 2.875 | 2.441 | 22.87 | 3230.83 | 3253.70 | 1 | Tubing Joint 2-7/8″ Pin × Box 22 Ft |
2 | 2.875 | 2.441 | 22.87 | 3253.70 | 3276.57 | 1 | 2 7/8″ Wireline Entry Guide Shoe |
1 | 2.875 | 2.441 | 22.87 | 3276.57 | 3299.44 | 1 | 2 7/8” Blind Nipple |
Injection Parameter | Value | Unit |
---|---|---|
Maximum pressure | 2000 | Psi |
Solution concentration | 320 | Ppm |
Maximum injection capacity | 3000 | STBPD |
Maximum average injection flow rate per well | 300 | STBPD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Martin, C.A.; López, M.Á.M.; Vargas Vargas, L.I.; Lucas, E.F.; Silva, W.K.L.e.; Gomes, V.J.C.; Freitas, P.P.d.; Salinas-Silva, R.; Camacho-Galindo, S.; Guerrero-Martin, L.E.; et al. Optimizing Well Completion for Polymer Flooding in Conjunction with Waterflood Flow Control Valves. Energies 2023, 16, 7565. https://doi.org/10.3390/en16227565
Guerrero-Martin CA, López MÁM, Vargas Vargas LI, Lucas EF, Silva WKLe, Gomes VJC, Freitas PPd, Salinas-Silva R, Camacho-Galindo S, Guerrero-Martin LE, et al. Optimizing Well Completion for Polymer Flooding in Conjunction with Waterflood Flow Control Valves. Energies. 2023; 16(22):7565. https://doi.org/10.3390/en16227565
Chicago/Turabian StyleGuerrero-Martin, Camilo Andrés, Miguel Ángel Moreno López, Laura Isabel Vargas Vargas, Elizabete F. Lucas, Wanessa K. Lima e Silva, Vando J. Costa Gomes, Pedro Paulo de Freitas, Raúl Salinas-Silva, Stefanny Camacho-Galindo, Laura Estefanía Guerrero-Martin, and et al. 2023. "Optimizing Well Completion for Polymer Flooding in Conjunction with Waterflood Flow Control Valves" Energies 16, no. 22: 7565. https://doi.org/10.3390/en16227565
APA StyleGuerrero-Martin, C. A., López, M. Á. M., Vargas Vargas, L. I., Lucas, E. F., Silva, W. K. L. e., Gomes, V. J. C., Freitas, P. P. d., Salinas-Silva, R., Camacho-Galindo, S., Guerrero-Martin, L. E., & Castro, R. H. (2023). Optimizing Well Completion for Polymer Flooding in Conjunction with Waterflood Flow Control Valves. Energies, 16(22), 7565. https://doi.org/10.3390/en16227565