Are Most Polluted Regions Most Active in Energy Transition Processes? A Case Study of Polish Regions Acquiring EU Funds for Local Investments in Renewable Energy Sources
Abstract
:1. Introduction
2. Towards Green Energy Transition
3. Materials and Methods
4. Results of Empirical Studies
4.1. Consumption of Electricity and CO2 Emissions Depending on the Regions of Poland
4.2. Local Investments in Renewable Energy Sources Co-Financed from EU Funds in Individual Regions of Poland
4.3. Multivariate Analysis of Renewable Energy Investment Activity Co-Financed from EU Funds of Local Government Units and Its Environmental and Socio-Economic Conditions
5. Discussion and Practical Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BECCS | Bioenergy with Carbon Capture and Storage |
CO2 | Carbon Dioxide |
CRF | Common Reporting Format |
GDP | Gross domestic product |
EKC | Environmental Kuznets Curve |
EU | European Union |
IPCC | Intergovernmental Panel on Climate Change |
km2 | Square kilometer |
kt | Thousands of tons |
NCEM | National Centre for Emissions Management |
NOx | Nitrogen Oxide |
PLN | Polish zloty |
PM | Particulate matter |
ROP | Regional Operational Programmes |
SO2 | Sulphur dioxide |
t | Ton |
References
- United Nations. Kyoto Protocol on the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998. [Google Scholar]
- European Parliament, News, Parlament Europejski, Aktualności. Available online: https://www.europarl.europa.eu/news/pl/headlines/society (accessed on 27 August 2023).
- Gradziuk, P.; Gradziuk, B. Próba Oceny Efektów Absorpcji Środków Z Funduszy Europejskich Na Rozwój Wykorzystania Odnawialnych Źródeł Energii W Województwie Lubelskim. Rocz. Nauk. Ekon. Rol. Rozw. Obsz. Wiej. 2017, 104, 95–105. [Google Scholar] [CrossRef]
- Kawecka-Wyrzykowska, E. Wyzwania dekarbonizacji polskiej gospodarki: Rola węgla. Społecz. Polit. 2022, 4, 67–90. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Kasyno Klimatyczne. Ryzyko, Niepewność i Ekonomia Globalnego Ocieplenia; Polskie Towarzystwo Ekonomiczne: Warszawa, Poland, 2021. [Google Scholar]
- Kozera, A.; Satoła, Ł.; Standar, A.; Dworakowska-Raj, M. Regional Diversity of Low-Carbon Investment Support from EU Funds in the 2014–2020 Financial Perspective Based on the Example of Polish Municipalities. Renew. Sustain. Energy Rev. 2022, 168, 112863. [Google Scholar] [CrossRef]
- Centrum Analiz Klimatyczno-Energetycznych. Polska Net-Zero 2050. In Podręcznik Transformacji Energetycznej dla Samorządów; Centrum Analiz Klimatyczno-Energetycznych: Warszawa, Poland, 2021. [Google Scholar]
- The Act of 10 April, 1997 the Energy Law, the Journal of Laws Dziennik Ustaw of 2006, no. 89, item 625 Ustawa z dnia 10 kwietnia 1997 r. Prawo energetyczne, Dz. U. z 2006 r., Nr 89, poz. 625 z późn. zm. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU19970540348/U/D19970348Lj.pdf (accessed on 27 August 2023).
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of Renewable Energy Sources in Environmental Protection: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- European Commission. Energy Roadmap 2050, Impact Assessment and Scenario Analysis; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Banaszewska, M.; Bischoff, I. The Political Economy of EU-Funds: Evidence from Poland. Jahrb. Natl. Stat. 2017, 237, 191–224. [Google Scholar] [CrossRef]
- Standar, A.; Kozera, A.; Satoła, Ł. The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland. Energies 2021, 14, 450. [Google Scholar] [CrossRef]
- Soubbotina, T.P. Beyond Economic Growth: An Introduction to Sustainable Development; World Bank Publications: Washington, DC, USA, 2004. [Google Scholar]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Marin, G.; Mazzanti, M. The Evolution of Environmental and Labor Productivity Dynamics. J. Evol. Econ. 2010, 23, 357–399. [Google Scholar] [CrossRef]
- López-Menéndez, A.J.; Pérez, R.; Moreno, B. Environmental Costs and Renewable Energy: Re-Visiting the Environmental Kuznets Curve. J. Environ. Manag. 2014, 145, 368–373. [Google Scholar] [CrossRef]
- Ahmed, K.; Long, W. An Empirical Analysis of CO2 emission in Pakistan Using EKC Hypothesis. J. Int. Trade Law Policy 2013, 12, 188–200. [Google Scholar] [CrossRef]
- Cherniwchan, J. Economic Growth, Industrialization, and the Environment. Resour. Energy Econ. 2012, 34, 442–467. [Google Scholar] [CrossRef]
- Smelser, N.J.; Baltes, P.B. (Eds.) International Encyclopedia of the Social & Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 94–98. [Google Scholar] [CrossRef]
- Soleimani Dahaj, A.; Cozzarin, B.P. Government Venture Capital and Cross-Border Investment. Glob. Financ. J. 2019, 41, 113–127. [Google Scholar] [CrossRef]
- Yani-de-Soriano, M.; Slater, S. Revisiting Drucker’s Theory. J. Manag. Hist. 2009, 15, 452–466. [Google Scholar] [CrossRef]
- Loayza, N.V.; Olaberría, E.; Rigolini, J.; Christiaensen, L. Natural Disasters and Growth: Going beyond the Averages. World Dev. 2012, 40, 1317–1336. [Google Scholar] [CrossRef]
- Donmez-Turan, A.; Kiliclar, I.E. The Analysis of Pro-Environmental Behaviour Based on Ecological Worldviews, Environmental Training/ Knowledge and Goal Frames. J. Clean. Prod. 2021, 279, 123518. [Google Scholar] [CrossRef]
- Ivanova, D.; Stadler, K.; Steen-Olsen, K.; Wood, R.; Vita, G.; Tukker, A.; Hertwich, E.G. Environmental Impact Assessment of Household Consumption. J. Ind. Ecol. 2015, 20, 526–536. [Google Scholar] [CrossRef]
- Reisch, L.A.; Sunstein, C.R.; Andor, M.A.; Doebbe, F.C.; Meier, J.; Haddaway, N.R. Mitigating Climate Change via Food Consumption and Food Waste: A Systematic Map of Behavioral Interventions. J. Clean. Prod. 2021, 279, 123717. [Google Scholar] [CrossRef]
- Yu, D.; Wenhui, X.; Anser, M.K.; Nassani, A.A.; Imran, M.; Zaman, K.; Haffar, M. Navigating the Global Mineral Market: A Study of Resource Wealth and the Energy Transition. Resour. Policy 2023, 82, 103500. [Google Scholar] [CrossRef]
- Gustafsson, B. Scope and Limits of the Market Mechanism in Environmental Management. Ecol. Econ. 1998, 24, 259–274. [Google Scholar] [CrossRef]
- Howarth, R.B.; Farber, S. Accounting for the Value of Ecosystem Services. Ecol. Econ. 2002, 41, 421–429. [Google Scholar] [CrossRef]
- Engel, S.; Pagiola, S.; Wunder, S. Designing Payments for Environmental Services in Theory and Practice: An Overview of the Issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- Pagiola, S. Payments for Environmental Services in Costa Rica. Ecol. Econ. 2008, 65, 712–724. [Google Scholar] [CrossRef]
- Antheaume, N. Valuing External Costs—From Theory to Practice: Implications for Full Cost Environmental Accounting. Eur. Account. Rev. 2004, 13, 443–464. [Google Scholar] [CrossRef]
- Kober, T.; Schiffer, H.-W.; Densing, M.; Panos, E. Global Energy Perspectives to 2060—WEC’s World Energy Scenarios 2019. Energy Strategy Rev. 2020, 31, 100523. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Solarin, S.A.; Ozturk, I. Investigating the Presence of the Environmental Kuznets Curve (EKC) Hypothesis in Kenya: An Autoregressive Distributed Lag (ARDL) Approach. Nat. Hazards 2015, 80, 1729–1747. [Google Scholar] [CrossRef]
- Sener, C.; Fthenakis, V. Energy Policy and Financing Options to Achieve Solar Energy Grid Penetration Targets: Accounting for External Costs. Renew. Sustain. Energy Rev. 2014, 32, 854–868. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.H.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Kosugi, T.; Tokimatsu, K.; Kurosawa, A.; Itsubo, N.; Yagita, H.; Sakagami, M. Internalization of the External Costs of Global Environmental Damage in an Integrated Assessment Model. Energy Policy 2009, 37, 2664–2678. [Google Scholar] [CrossRef]
- Stern, N.; Stern, N.H. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Field, C.B.; Barros, V.R.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.A.; Adger, W.N.; Anokhin, Y.A.; Anisimov, O.A.; Arent, D.J.; Barnett, J.; et al. IPCC Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Mrówczyńska-Kamińska, A.; Bajan, B.; Pawłowski, K.P.; Genstwa, N.; Zmyślona, J. Greenhouse Gas Emissions Intensity of Food Production Systems and Its Determinants. PLoS ONE 2021, 16, e0250995. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Coy, D.; Malekpour, S.; Saeri, A.K. From Little Things, Big Things Grow: Facilitating Community Empowerment in the Energy Transformation. Energy Res. Soc. Sci. 2022, 84, 102353. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Popp, J.; Máté, D.; Kovács, S. Energy Security and Energy Transition to Achieve Carbon Neutrality. Energies 2022, 15, 8126. [Google Scholar] [CrossRef]
- Chu, L.K.; Ghosh, S.; Doğan, B.; Nguyen, N.H.; Shahbaz, M. Energy Security as New Determinant of Renewable Energy: The Role of Economic Complexity in Top Energy Users. Energy 2023, 263, 125799. [Google Scholar] [CrossRef]
- Azam, W.; Khan, I.; Ali, S.A. Alternative Energy and Natural Resources in Determining Environmental Sustainability: A Look at the Role of Government Final Consumption Expenditures in France. Environ. Sci. Pollut. Res. 2022, 30, 1949–1965. [Google Scholar] [CrossRef] [PubMed]
- Slakaityte, V.; Surwillo, I.; Berling, T.V. A New Cooperation Agenda for European Energy Security. Nat. Energy 2023, 8, 1051–1053. [Google Scholar] [CrossRef]
- Sokołowski, M.M.; Taylor, M. Just Energy Business Needed! How to Achieve a Just Energy Transition by Engaging Energy Companies in Reaching Climate Neutrality: (Re) Conceptualising Energy Law for Energy Corporations. J. Energy Nat. Resour. Law 2023, 41, 157–174. [Google Scholar] [CrossRef]
- Ivanov, D. Blackout and Supply Chains: Cross-Structural Ripple Effect, Performance, Resilience and Viability Impact Analysis. Ann. Oper. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Zahoor, Z.; Khan, I.; Hou, F. Clean Energy Investment and Financial Development as Determinants of Environment and Sustainable Economic Growth: Evidence from China. Environ. Sci. Pollut. Res. 2021, 29, 16006–16016. [Google Scholar] [CrossRef]
- Arslan, H.M.; Khan, I.; Latif, M.I.; Komal, B.; Chen, S. Understanding the dynamics of natural resources rents, environmental sustainability, and sustainable economic growth: New insights from China. Environ. Sci. Pollut. Res. 2022, 29, 58746–58761. [Google Scholar] [CrossRef]
- Galeotti, M.; Lanza, A.; Pauli, F. Reassessing the Environmental Kuznets Curve for CO2 Emissions: A Robustness Exercise. Ecol. Econ. 2006, 57, 152–163. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 Emissions, Renewable Energy and the Environmental Kuznets Curve, a Panel Cointegration Approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Allard, A.; Takman, J.; Uddin, G.S.; Ahmed, A. The N-Shaped Environmental Kuznets Curve: An Empirical Evaluation Using a Panel Quantile Regression Approach. Environ. Sci. Pollut. Res. 2017, 25, 5848–5861. [Google Scholar] [CrossRef]
- Brooks, H. Sustainability and technology. In Science and Sustainability: Selected Papers on IIASA’s 25th Anniversary; IIASA: Laxenburg, Austria, 1992; pp. 29–60. [Google Scholar]
- Workman, M.; Dooley, K.; Lomax, G.; Maltby, J.; Darch, G. Decision Making in Contexts of Deep Uncertainty—An Alternative Approach for Long-Term Climate Policy. Environ. Sci. Policy 2020, 103, 77–84. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Minx, J.C. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, M.; Montini, A. Embedding the Drivers of Emission Efficiency at Regional Level—Analyses of NAMEA Data. Ecol. Econ. 2010, 69, 2457–2467. [Google Scholar] [CrossRef]
- Szyrski, M. Rola Samorządu Terytorialnego w Rozwoju Odnawialnych Źródeł Energii (OZE). Analiza Administracyjnoprawna; Wolters Kluwer: Warszawa, Poland, 2017. [Google Scholar]
- Swora, M. Organy właściwe w sprawach energetyki (charakter, zadania i kompetencje). In System Prawa Administracyjnego; t. 8B, Publiczne Prawo Gospodarcze; Hausner, H., Niewiadomski, Z., Wróbel, A., Beck, C.H., Eds.; System Prawa Administracyjnego: Warszawa, Poland, 2013. [Google Scholar]
- Yildiz, Ö.; Rommel, J.; Debor, S.; Holstenkamp, L.; Mey, F.; Müller, J.R.; Radtke, J.; Rognli, J. Renewable Energy Cooperatives as Gatekeepers or Facilitators? Recent Developments in Germany and a Multidisciplinary Research Agenda. Energy Res. Soc. Sci. 2015, 6, 59–73. [Google Scholar] [CrossRef]
- Wierling, A.; Schwanitz, V.; Zeiß, J.; Bout, C.; Candelise, C.; Gilcrease, W.; Gregg, J. Statistical Evidence on the Role of Energy Cooperatives for the Energy Transition in European Countries. Sustainability 2018, 10, 3339. [Google Scholar] [CrossRef]
- Delicado, A.; Pallarès-Blanch, M.; García-Marín, R.; del Valle, C.; Prados, M.-J. David against Goliath? Challenges and Opportunities for Energy Cooperatives in Southern Europe. Energy Res. Soc. Sci. 2023, 103, 103220. [Google Scholar] [CrossRef]
- EU Funds. Available online: https://commission.europa.eu/funding-tenders/find-funding_pl (accessed on 7 September 2023).
- Investments (Projects—Ministry of Development Funds and Regional Policy, Ministerstwo Rozwoju i Inwestycji (Projekty—Ministerstwo Funduszy i Polityki Regionalnej. Available online: https://www.funduszeeuropejskie.gov.pl/strony/o-funduszach/zasady-dzialania-funduszy/poprzednie-perspektywy-fe/fundusze-europejskie-2007-2013/#Projekty (accessed on 2 July 2023).
- Lista projektów realizowanych z Funduszy Europejskich w Polsce w latach 2014–2020. Available online: https://www.funduszeeuropejskie.gov.pl/strony/o-funduszach/projekty/lista-projektow/lista-projektow-realizowanych-z-funduszy-europejskich-w-polsce-w-latach-2014-2020/ (accessed on 2 July 2023).
- Local Data Bank of the Central Statistical Office. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 10 June 2023).
- Average Rates of the National Bank of Poland. Available online: https://nbp.pl/statystyka-i-sprawozdawczosc/ (accessed on 8 September 2023).
- Genstwa, N. Rozwój Gospodarczy Regionów Polski a Zmiany Emisji Gazów Cieplarnianych (Badanie w Kontekście Środowiskowej Krzywej Kuznetsa). Ph.D. Thesis, Uniwersytet Przyrodniczy w Poznaniu, Poznań, Poland, 2022. Available online: https://wes.up.poznan.pl/sites/default/files/u90/Natalia%20Genstwa_doktorat.pdf (accessed on 10 September 2023).
- KOBiZE. Poland’s National Inventory Report 2021: Greenhouse Gas Inventory for 1988–2019, Submission under the UN Framework Convention on Climate Change and its Kyoto Protocol. 2021. Available online: https://www.kobize.pl/pl/fileCategory/id/16/krajowa-inwentaryzacja-emisji (accessed on 20 November 2021).
- Wilcoxon Signed-Rank Test—Handbook of Biological Statistics. Available online: www.biostathandbook.com (accessed on 8 November 2023).
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2010. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained (accessed on 10 September 2023).
- Directive of the European Parliament and Council (EU) 2018/2001 of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources), Dyrektywa Parlamentu Europejskiego i Rady (UE) 2018/2001 z Dnia 11 Grudnia 2018 r. w Sprawie Promowania Stosowania Energii ze Źródeł Odnawialnych. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:32018L2001 (accessed on 10 September 2023).
- EU Energy in Figures, Statistical Pocketbook 2021, Directorate-General for Energy (European Commission), European Union. Available online: https://data.europa.eu/doi/10.2833/511498 (accessed on 18 September 2023).
- Czykier-Wierzba, D. Finansowanie z budżetu Unii Europejskiej polityki strukturalnej w Polsce w latach 2007–2013. Wieś Rol. 2008, 140, 49–66. [Google Scholar]
- Harasimowicz, A. Fundusze pomocowe Unii Europejskiej—Fundusze Strukturalne I Fundusz Spójności; Oficyna Wydawnicza Politechniki Białostockiej: Białystok, Poland, 2022. [Google Scholar]
- Gorzelak, G. Terytorialne efekty polityk Unii Europejskiej w Polsce; Wydawnictwo Naukowe Scholar: Warszawa, Poland, 2023. [Google Scholar]
- Available online: : https://www.forum-energii.eu/ue-jest-gotowa-wspolfinansowac-nasza-transformacje-energetyczna-co-na-to-polski-rzad (accessed on 18 September 2023).
- Środki EU Gwarantujące Bezpieczną i Zieloną Energię|Aktualności|Parlament Europejski. Available online: https://www.europarl.europa.eu/news/pl/headlines/economy/20210930STO13911/srodki-ue-gwarantujace-bezpieczna-i-zielona-energie (accessed on 18 September 2023).
- Principles of Operation of Funds. Available online: https://www.funduszeeuropejskie.gov.pl/strony/o-funduszach/zasady-dzialania-funduszy/czym-sa-fundusze-europejskie (accessed on 18 September 2023).
- Rozwój Obszarów Wiejskich. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/rural-development_pl (accessed on 18 September 2023).
- Standar, A. Zastosowanie środków polityki regionalnej Unii Europejskiej przez gminy wiejskie województwa wielkopolskiego. Polityki Eur. Finans. Mark. 2009, 1, 242–244. [Google Scholar]
- Standar, A. Determinants influencing obtaining of the EU funds by communes of the Wielkopolska Province. J. Agribussinnes Rural. Dev. 2010, 18, 97–105. [Google Scholar]
- Gradziuk, P.; Gradziuk, B. Gospodarka Niskoemisyjna—Nowe Wyzwanie dla Gmin Wiejskich. Wieś Rol. 2016, 1, 105–126. [Google Scholar] [CrossRef] [PubMed]
- Tymiński, J. Wykorzystanie Odnawialnych Źródeł Energii w Polsce do 2030 Roku. Aspekt Energetyczny i Ekologiczny; Instytut Budownictwa, Mechanizacji i Elektryfikacji Rolnictwa: Warsow, Poland, 1997. [Google Scholar]
- Szul, T. Spatial Diversity in the Share of Local Sources of Biomass in Meeting Heating Needs in the Rural Areas of Lubelskie Voivodship. Barom. Reg. Anal. Prognozy 2015, 12, 77–83. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B.; Trocewicz, A.; Jendrzejewski, B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies 2020, 13, 5054. [Google Scholar] [CrossRef]
- Mulvaney, K.K.; Woodson, P.; Prokopy, L.S. A Tale of Three Counties: Understanding Wind Development in the Rural Midwestern United States. Energy Policy 2013, 56, 322–330. [Google Scholar] [CrossRef]
- Morrison, C.; Ramsey, E. Power to the People: Developing Networks through Rural Community Energy Schemes. J. Rural. Stud. 2018, 70, 169–178. [Google Scholar] [CrossRef]
- Johnson, B.H.; Poulsen, T.G.; Hansen, J.A.; Lehmann, M. Cities as Development Drivers: From Waste Problems to Energy Recovery and Climate Change Mitigation. Waste Manag. Res. 2011, 29, 1008–1017. [Google Scholar] [CrossRef]
- Kammen, D.M.; Sunter, D.A. City-Integrated Renewable Energy for Urban Sustainability. Science 2016, 352, 922–928. [Google Scholar] [CrossRef]
- Thellufsen, J.Z.; Lund, H.; Sorknæs, P.; Østergaard, P.A.; Chang, M.; Drysdale, D.; Nielsen, S.; Djørup, S.R.; Sperling, K. Smart Energy Cities in a 100% Renewable Energy Context. Renew. Sustain. Energy Rev. 2020, 129, 109922. [Google Scholar] [CrossRef]
- Czempas, J. Tendency of Local Government Units to Invest: A Quantitative Approach on the Example of Cities with Poviat Rights in the Śląskie Voivodeship; Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach: Katowice, Poland, 2013. [Google Scholar]
- Standar, A. Ocena Kondycji Finansowej Gmin Oraz Jej Wybranych Uwarunkowań Na Przykładzie Województwa Wielkopolskiego Przy Wykorzystaniu Metody TOPSIS. Wieś Rol. 2017, 2, 69–92. [Google Scholar] [CrossRef]
- Kozera, A.; Dworakowska-Raj, M.; Standar, A. Role of Local Investments in Creating Rural Development in Poland. Energies 2021, 14, 1748. [Google Scholar] [CrossRef]
- Juszczak, A.; Maj, M. Rozwój i Potencjał Energetyki Odnawialnej w Polsce; Instytut Ekonomiczny: Warsow, Poland, 2020. [Google Scholar]
- Standar, A.; Kozera, A.; Jabkowski, D. The Role of Large Cities in the Development of Low-Carbon Economy—The Example of Poland. Energies 2022, 15, 595. [Google Scholar] [CrossRef]
- PWC. Raport o Stanie Polskich Metropolii; PWC: Warszawa, Poland, 2019; Available online: https://www.pwc.pl/pl/publikacje/2019/raport-o-polskich-metropoliach-2019.html (accessed on 18 September 2023).
- Negro, S.O.; Alkemade, F.; Hekkert, M.P. Why Does Renewable Energy Diffuse so Slowly? A Review of Innovation System Problems. Renew. Sustain. Energy Rev. 2012, 16, 3836–3846. [Google Scholar] [CrossRef]
- Ossowska, L.; Janiszewska, D.; Bartkowiak-Bakun, N.; Kwiatkowski, G. Energy Consumption versus Greenhouse Gas Emissions in EU. Eur. Res. Stud. J. 2020, 23, 185–198. [Google Scholar] [CrossRef]
- Fiedor, B. Przyczynek do Ekonomicznej Teorii Zanieczyszczenia i Ochrony Środowiska; PAN: Wrocław, Poland, 1990; pp. 8–9. [Google Scholar]
- Christensen, J.; Olhoff, A. Lessons from a Decade of Emissions Gap Assessments; United Nations Environment Programme: Nairobi, Kenya, 2019; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/30022/EGR10.pdf?sequence=1&isAllowed=y (accessed on 18 September 2023).
- Rakowska, J.; Ozimek, I. Renewable Energy Attitudes and Behaviour of Local Governments in Poland. Energies 2021, 14, 2765. [Google Scholar] [CrossRef]
- Kata, R.; Cyran, K.; Dybka, S.; Lechwar, M.; Pitera, R. The Role of Local Government in Implementing Renewable Energy Sources in Households (Podkarpacie Case Study). Energies 2022, 15, 3163. [Google Scholar] [CrossRef]
- Klepacki, B.; Kusto, B.; Bórawski, P.; Bełdycka-Bórawska, A.; Michalski, K.; Perkowska, A.; Rokicki, T. Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas. Energies 2021, 14, 3170. [Google Scholar] [CrossRef]
- Mey, F.; Diesendorf, M.; MacGill, I. Can Local Government Play a Greater Role for Community Renewable Energy? A Case Study from Australia. Energy Res. Soc. Sci. 2016, 21, 33–43. [Google Scholar] [CrossRef]
- Fouché, E.; Brent, A. Journey towards Renewable Energy for Sustainable Development at the Local Government Level: The Case of Hessequa Municipality in South Africa. Sustainability 2019, 11, 755. [Google Scholar] [CrossRef]
- Chai, S.; Liu, Q.; Yang, J. Renewable Power Generation Policies in China: Policy Instrument Choices and Influencing Factors from the Central and Local Government Perspectives. Renew. Sustain. Energy Rev. 2023, 174, 113126. [Google Scholar] [CrossRef]
- Melica, G.; Bertoldi, P.; Kona, A.; Iancu, A.; Rivas, S.; Zancanella, P. Multilevel Governance of Sustainable Energy Policies: The Role of Regions and Provinces to Support the Participation of Small Local Authorities in the Covenant of Mayors. Sustain. Cities Soc. 2018, 39, 729–739. [Google Scholar] [CrossRef]
- Van Staden, M. Sustainable Energy Transition: Local Governments as Key Actors. Springer Proc. Energy 2017, 33, 17–25. [Google Scholar] [CrossRef]
- Cormio, C.; Dicorato, M.; Minoia, A.; Trovato, M. A Regional Energy Planning Methodology Including Renewable Energy Sources and Environmental Constraints. Renew. Sustain. Energy Rev. 2003, 7, 99–130. [Google Scholar] [CrossRef]
- Mirakyan, A.; De Guio, R. Integrated Energy Planning in Cities and Territories: A Review of Methods and Tools. Renew. Sustain. Energy Rev. 2013, 22, 289–297. [Google Scholar] [CrossRef]
- Cheung, G.; Davies, P.J.; Trück, S. Transforming Urban Energy Systems: The Role of Local Governments’ Regional Energy Master Plan. J. Clean. Prod. 2019, 220, 655–667. [Google Scholar] [CrossRef]
- Bulkeley, H.; Kern, K. Local Government and the Governing of Climate Change in Germany and the UK. Urban Stud. 2006, 43, 2237–2259. [Google Scholar] [CrossRef]
- Burgess, P.J.; Rivas Casado, M.; Gavu, J.; Mead, A.; Cockerill, T.; Lord, R.; van der Horst, D.; Howard, D.C. A Framework for Reviewing the Trade-Offs between, Renewable Energy, Food, Feed and Wood Production at a Local Level. Renew. Sustain. Energy Rev. 2012, 16, 129–142. [Google Scholar] [CrossRef]
- Schmid, B.; Meister, T.; Klagge, B.; Seidl, I. Energy Cooperatives and Municipalities in Local Energy Governance Arrangements in Switzerland and Germany. J. Environ. Dev. 2019, 29, 123–146. [Google Scholar] [CrossRef]
- Ropuszyńska-Surma, E. Bariery Rozwoju Rozproszonej Energetyki Odnawialnej W Świetle Badań Ankietowych. Prz. Elektrotek. 2017, 1, 92–96. [Google Scholar] [CrossRef]
- Yaqoot, M.; Diwan, P.; Kandpal, T.C. Review of Barriers to the Dissemination of Decentralized Renewable Energy Systems. Renew. Sustain. Energy Rev. 2016, 58, 477–490. [Google Scholar] [CrossRef]
- Su, W.; Liu, M.; Zeng, S.; Štreimikienė, D.; Baležentis, T.; Ališauskaitė-Šeškienė, I. Valuating renewable microgeneration technologies in Lithuanian households: A study on willingness to pay. J. Clean Prod. 2018, 191, 318–329. [Google Scholar] [CrossRef]
- Hoppe, T.; van den Berg, M.M.; Coenen, F.H. Reflections on the Uptake of Climate Change Policies by Local Governments: Facing the Challenges of Mitigation and Adaptation. Energy Sustain. Soc. 2014, 4, 1–16. [Google Scholar] [CrossRef]
- Palm, J. Household Installation of Solar Panels—Motives and Barriers in a 10-Year Perspective. Energy Policy 2018, 113, 1–8. [Google Scholar] [CrossRef]
- Lackowska, M.; Swianiewicz, P. Czynniki Warunkujące Preferencje I Działania Samorządów Gminnych W Polsce W Zakresie Łagodzenia I Adaptacji Do Zmian Klimatycznych. Pr. Geogr. 2017, 149, 6926. [Google Scholar] [CrossRef]
- Zahran, S.; Brody, S.D.; Vedlitz, A.; Grover, H.; Miller, C. Vulnerability and Capacity: Explaining Local Commitment to Climate-Change Policy. Environ. Plan. C Gov. Policy 2008, 26, 544–562. [Google Scholar] [CrossRef]
- Ogunrinde, O.; Shittu, E.; Dhanda, K.K. Investing in Renewable Energy: Reconciling Regional Policy with Renewable Energy Growth. IEEE Eng. Manag. Rev. 2018, 46, 103–111. [Google Scholar] [CrossRef]
- Jankiewicz, S. Gospodarka Niskoemisyjna Jako Podstawa Rozwoju Regionu. Nierówności Społecz. Wzrost Gospod. 2017, 49, 160–167. [Google Scholar] [CrossRef]
- Pomoc dla Gmin w Przygotowaniu, Aktualizacji, Wdrożeniu Planów Gospodarki Nis-koemisyjnej|Wojewódzki Fundusz Ochrony Środowiska i Gospodarki Wodnej w Warszawie. Available online: https://wfosigw.pl/pomoc-dla-gmin-w-przygotowaniu-aktualizacji-wdrozeniu-pgn/ (accessed on 13 September 2023).
Parameter | Consumption of Electricity Per Capita (in kWh) | Total Consumption of Electricity Per GDP in Relation to the Mean for Poland (Poland = 100%) | Share of Renewable Energy in Total Production of Electricity (%) | |||
---|---|---|---|---|---|---|
2007 | 2020 | 2007 | 2020 | 2007 | 2020 | |
CO2 emissions per capita (in t) | 0.70 * | 0.66 * | 0.75 * | 0.71 * | −0.35 | −0.46 |
CO2 emissions per 100 km2 (in kt) | 0.83 * | 0.77 * | 0.70 * | 0.55 * | −0.31 | −0.59 * |
List | 2007–2013 | 2014–2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Value of Project (in Thousand PLN) | Number of Projects | Total Value of Projects (in Thousand PLN) | Investments in Renewable Energy Sources per 10 Thousand Inhabitants (in Thousand PLN) | Investments in Renewable Energy Sources per 100 km2 (in Thousand PLN) | % Communes Acquiring Funds in the Region | Mean Value of Project (in Thousand PLN) | Number of Projects | Total Value of Projects (in Thousand PLN) | Investments in Renewable Energy Sources per 10 Thousand Inhabitants (in Thousand PLN) | Investments in Renewable Energy Sources per 100 km2 (in Thousand PLN) | % of Communes Acquiring Funds | |
Dolnośląskie | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 3358.3 | 9 | 30,224.3 | 103.9 | 151.5 | 4.1 |
Kujawsko-Pomorskie | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 1075.9 | 69 | 74,236.1 | 365.4 | 413.1 | 34.7 |
Lubelskie | 4105.4 | 93 | 381,802.9 | 1770.8 | 1519.8 | 28.6 | 3817.9 | 291 | 1,110,996.2 | 5401.3 | 4422.2 | 88.3 |
Lubuskie | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 545.0 | 3 | 1634.9 | 16.5 | 11.7 | 3.7 |
Łódzkie | 9378.8 | 6 | 56,272.5 | 223.9 | 308.9 | 4.0 | 3237.8 | 64 | 207,221.6 | 857.8 | 1137.4 | 32.8 |
Małopolskie | 1744.7 | 9 | 15,702.7 | 46.7 | 103.4 | 4.4 | 52,743.0 | 3 | 158,229.1 | 460.9 | 1042.1 | 1.6 |
Mazowieckie | 3349.4 | 25 | 83,735.9 | 157.5 | 235.5 | 5.1 | 8846.0 | 32 | 283,070.8 | 513.0 | 796.1 | 10.2 |
Opolskie | 1402.5 | 7 | 9,817.6 | 97.7 | 104.3 | 8.5 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 |
Podkarpackie | 2852.7 | 18 | 51,348.5 | 241.2 | 287.7 | 10.6 | 8028.0 | 71 | 569,988.6 | 2719.2 | 3193.9 | 36.3 |
Podlaskie | 2100.3 | 51 | 107,115.3 | 896.4 | 530.6 | 37.3 | 1039.5 | 123 | 127,864.6 | 1105.5 | 633.4 | 71.2 |
Pomorskie | 2024.9 | 18 | 36,448.1 | 158.8 | 199.1 | 13.0 | 6960.6 | 18 | 125,290.6 | 531.3 | 683.8 | 14.6 |
Śląskie | 4964.8 | 10 | 49,647.9 | 107.9 | 402.6 | 5.4 | 3555.7 | 144 | 512,015.6 | 1160.5 | 4151.6 | 50.3 |
Świętokrzyskie | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 4590.2 | 27 | 123,935.3 | 1033.2 | 1058.4 | 25.5 |
Warmińsko-mazurskie | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 677.7 | 38 | 25,751.3 | 185.8 | 106.5 | 28.2 |
Wielkopolskie | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 7195.8 | 23 | 165,502.9 | 471.9 | 554.9 | 10.2 |
Zachodniopomorskie | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 1638.5 | 11 | 18,023.5 | 108.5 | 78.7 | 5.3 |
Poland | 3341.3 | 237 | 791,891.4 | 205.7 | 253.3 | 7.4 | 3816.4 | 926 | 3,533,985.4 | 927.8 | 1130.1 | 27.2 |
Pair of Variables | Test Result | p-Value |
---|---|---|
Number of renewable energy projects in 2007–2013 and number of renewable energy projects in 2014–2020 | 17.3434 | 0.00 |
Investments in renewable energy sources in 2007–2013 and investments in renewable energy sources in 2014–2020 | 16.7059 | 0.00 |
List | Typological Class | Total | |||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | ||
Podlaskie | Podkarpackie, Śląskie | Lubelskie | Kujawsko-Pomorskie, Łódzkie, Pomorskie, Świętokrzyskie, Warmińsko-Mazurskie | Małopolskie, Mazowieckie, Wielkopolskie | Dolnośląskie, Lubuskie, Opolskie, Zachodniopomorskie | ||
Indexes illustrating renewable energy investment activity co-financed from EU funds in the years 2007–2020 | |||||||
Investments in renewable energy sources per 10 thousand inhabitants (in thousand PLN) | 2001.9 | 2114.4 | 7172.1 | 690.0 | 507.7 | 100.8 | 1133.5 |
Investments in renewable energy sources per 100 km2 (in thousand PLN) | 1164.0 | 4017.9 | 5942.0 | 882.8 | 1031.6 | 91.5 | 1383.4 |
Percentage of the number of projects realised in the region (%, total in Poland = 100%) | 15.0 | 10.4 | 33.0 | 3.3 | 2.0 | 0.7 | 100 |
Percentage of total value of realised projects in the region (%, total in Poland = 100%) | 5.4 | 13.7 | 34.5 | 2.9 | 4.0 | 0.3 | 100 |
Percentage of communes acquiring renewable energy projects co-financed from EU funds in the region (%) | 79.7 | 47.6 | 89.7 | 28.2 | 10.2 | 4.7 | 29.9 |
Indexes illustrating the level, dynamics of changes and structure of CO2 emissions | |||||||
CO2 emissions in tonnes per capita (2019) | 5.9 | 6.7 | 6.1 | 8.0 | 6.4 | 6.6 | 8.2 |
Dynamics of changes in CO2 emissions in tonnes per capita in 2019 in relation to 2007 (in %) | 20.6 | −10.6 | 18.4 | 20.0 | −21.5 | −8.9 | 14.6 |
CO2 emissions per 100 km2 (in kt) (2019) | 36.5 | 210.9 | 53.8 | 94.2 | 126.0 | 76.2 | 100.2 |
Dynamics of changes in CO2 emissions per 100 km2 in 2019 in relation to 2007 (w %) | 22.7 | −7.7 | 22.8 | 25.0 | −15.2 | −1.9 | 14.5 |
Share of the province in CO2 emissions (%, 2019) | 2.2 | 8.1 | 4.1 | 5.3 | 7.1 | 4.5 | 5.3 |
Change in the share of provinces in CO2 emissions in 2019 in relation to 2007 (in p.p.) | 0.4 | −1.9 | 0.6 | 0.8 | −1.6 | −0.5 | 0.4 |
Indexes illustrating the socio-economic situation of regions in 2020 and its changes in relation to 2007 | |||||||
GDP per capita in PLN | 45,345.0 | 52,071.0 | 42,370.0 | 50,246.0 | 66,499.0 | 50,999.5 | 31,155.0 |
Dynamics of changes in GDP per capita in 2020 in relation to 2007 (in %) | 196.2 | 190.6 | 194.7 | 187.8 | 200.4 | 187.4 | 196.5 |
Economic entities per 10 thousand inhabitants | 947.0 | 1009.5 | 937.0 | 1032.0 | 1315.0 | 1289.5 | 967.0 |
Dynamics of changes in the number of enterprises in 2020 in relation to 2007 | 127.5 | 127.4 | 134.0 | 119.5 | 133.0 | 118.1 | 126.6 |
Population density (persons per 1 km2) | 57.3 | 237.6 | 81.9 | 113.0 | 155.2 | 87.1 | 121.8 |
Population density in developed and urbanised areas (persons per 1 km2) | 1471.0 | 2515.0 | 2054.0 | 2104.0 | 2566.0 | 1613.5 | 217.0 |
Change in population per 1000 inhabitants for 2007–2020 (total) | −19.3 | −13.7 | −36.2 | −7.1 | 41.9 | −2.0 | 3.6 |
Own income per person (in PLN) | 2728.6 | 2891.2 | 2277.5 | 2793.4 | 3060.8 | 3151.7 | 3187.5 |
Dynamics of changes in own income per capita in 2020 in relation to 2007 (in %) | 260.7 | 240.3 | 256.5 | 228.6 | 220.9 | 224.9 | 211.9 |
Share of own income in total income (in %) | 42.6 | 45.2 | 37.3 | 44.4 | 48.6 | 50.1 | 48.8 |
Share of developed and urbanised land (%) | 3.9 | 9.2 | 4.0 | 5.4 | 6.0 | 5.5 | 5.6 |
Share of renewable energy in total production of electricity (%) | 79.8 | 15.2 | 21.9 | 45.4 | 14.6 | 16.4 | 17.9 |
Change in the share of renewable energy in total production of electricity in 2020 in relation to 2007 (in p.p.) | 78.0 | 11.5 | 20.7 | 23.3 | 8.1 | 12.0 | 14.5 |
Total consumption of electricity per capita (in kWh) | 2824.7 | 4149.3 | 2936.5 | 3973.0 | 3750.4 | 4423.9 | 4235.3 |
Dynamics of changes in consumption of electricity in 2020 in relation to 2007 (2007 = 100%) | 133.8 | 110.6 | 120.2 | 115.0 | 102.6 | 126.4 | 115.7 |
Total consumption of electricity per GDP in relation to national mean (Poland = 100%) | 90.9 | 111.4 | 100.0 | 117.7 | 79.0 | 110.9 | 100.0 |
Cars per 1000 people | 576.5 | 617.6 | 655.8 | 638.7 | 714.6 | 693.7 | 659.4 |
Share of agriculture and forestry in gross value added (%) | 3.6 | 0.6 | 2.9 | 1.9 | 1.4 | 1.4 | 1.3 |
Share of industry and construction sector in gross value added (%) | 14.9 | 17.3 | 13.6 | 16.6 | 14.4 | 17.8 | 15.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozera, A.; Standar, A.; Genstwa, N. Are Most Polluted Regions Most Active in Energy Transition Processes? A Case Study of Polish Regions Acquiring EU Funds for Local Investments in Renewable Energy Sources. Energies 2023, 16, 7655. https://doi.org/10.3390/en16227655
Kozera A, Standar A, Genstwa N. Are Most Polluted Regions Most Active in Energy Transition Processes? A Case Study of Polish Regions Acquiring EU Funds for Local Investments in Renewable Energy Sources. Energies. 2023; 16(22):7655. https://doi.org/10.3390/en16227655
Chicago/Turabian StyleKozera, Agnieszka, Aldona Standar, and Natalia Genstwa. 2023. "Are Most Polluted Regions Most Active in Energy Transition Processes? A Case Study of Polish Regions Acquiring EU Funds for Local Investments in Renewable Energy Sources" Energies 16, no. 22: 7655. https://doi.org/10.3390/en16227655
APA StyleKozera, A., Standar, A., & Genstwa, N. (2023). Are Most Polluted Regions Most Active in Energy Transition Processes? A Case Study of Polish Regions Acquiring EU Funds for Local Investments in Renewable Energy Sources. Energies, 16(22), 7655. https://doi.org/10.3390/en16227655