Active Autonomous Open-Loop Technique for Static and Dynamic Current Balancing of Parallel-Connected Silicon Carbide MOSFETs
Abstract
:1. Introduction
2. Strategies of Static and Dynamic Current Balancing
2.1. Strategies of Dynamic Current Imbalance Suppresion
2.2. Strategy of Static Current Imbalance Suppression
3. Design of Active Current Balancing Technique
- Gate driver: For every semiconductor device, an active gate driver (AGD) is utilized, capable of controlling power devices, and actively variate VGS and RG;
- Digital controller: The PWM signals of the power devices are generated with the use of a digital controller. Additionally, the controller can control the parallel devices and eliminate the static and dynamic current imbalances by imposing the proper variations to several control parameters (VGS, RG, td,angle, and td,DC). Finally, the modification of the control parameters is realized manually through the digital controller.
3.1. Capabilities and Structure of the Proposed Active Gate Driver
3.1.1. Operation Principles of the Proposed Active Gate Driver
3.1.2. Design of an Active Gate Driver
3.1.3. Forward Converter Design Guidelines
3.2. Functions of the Digital Controller
Current Imbalance Suppression Methodology
4. Test Platform and Experimental Results
4.1. Test Platform
4.2. Current Sensing System Accuracy
4.3. Experimental Test Results
5. Design the Proposed Current Balancing Technique for Multiple-Device Operation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ke, J.; Zhao, Z.; Sun, P.; Huang, H.; Abuogo, J.; Cui, X. New Screening Method for Improving Transient Current sharing of Paralleled SiC MOSFETs. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 1125–1130. [Google Scholar]
- Xiao, Q.; Yan, Y.; Wu, X.; Ren, N.; Sheng, K. A 10 kV/200A SiC MOSFET module with series-parallel hybrid connection of 1200V/50A dies. In Proceedings of the 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hong Kong, China, 10–14 May 2015; pp. 349–352. [Google Scholar]
- Helong, L.; Munk-Nielsen, S.; Wang, X.; Maheshwari, R.; Bęczkowski, S.; Uhrenfeldt, C.; Franke, W.T. Influences of Device and Circuit Mismatches on Paralleling Silicon Carbide MOSFETs. IEEE Trans. Power Electron. 2016, 31, 621–634. [Google Scholar]
- Xue, Y.; Lu, J.; Wang, Z.; Tolbert, L.M.; Blalock, B.J.; Wang, F. Active current balancing for parallel-connected silicon carbide MOSFETs. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 1563–1569. [Google Scholar]
- Li, H.; Munk-Nielsen, S.; Pham, C.; Bęczkowski, S. Circuit mismatch influence on performance of paralleling silicon carbide MOSFETs. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland, 26–28 August 2014; pp. 1–8. [Google Scholar]
- Sadik, D.P.; Colmenares, J.; Peftitsis, D.; Lim, J.K.; Rabkowski, J.; Nee, H.P. Experimental investigations of static and transient current sharing of parallel-connected silicon carbide MOSFETs. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar]
- Ishikawa, S.; Isobe, T.; Tadano, H. Current imbalance of parallel connected SiC-MOSFET body diodes. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018; pp. 1–10. [Google Scholar]
- Zeng, Z.; Zhang, X.; Zhang, Z. Imbalance Current Analysis and Its Suppression Methodology for Parallel SiC MOSFETs with Aid of a Differential Mode Choke. IEEE Trans. Ind. Electron. 2020, 67, 1508–1519. [Google Scholar] [CrossRef]
- Mukunoki, Y.; Horiguchi, T.; Nishizawa, A.; Konno, K.; Matsuo, T.; Kuzumoto, M.; Hagiwara, M.; Akagi, H. Electro-Thermal Co-Simulation of two Parallel-Connected SiC-MOSFETs Under Thermally-Imbalanced Conditions. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2855–2860. [Google Scholar]
- La Mantia, S.; Abbatelli, L.; Brusca, C.; Melito, M.; Nania, M. Design Rules for Paralleling of Silicon Carbide Power MOSFETs. In Proceedings of the PCIM Europe 2017: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 16–18 May 2017; pp. 1–6. [Google Scholar]
- Mao, Y.; Miao, Z.; Ngo, K.D.T.; Wang, C.M. Balancing of Peak Currents between Paralleled SiC MOSFETs by Source Impedances. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 800–803. [Google Scholar]
- Yang, X.; Xu, S.; Heng, K.; Wu, X. Distributed Thermal modeling for Power Devices and Modules with Equivalent Heat Flow Path Extraction. IEEE J. Emerg. Sel. Top. Power Electron. 2023. Available online: https://ieeexplore.ieee.org/document/10268446 (accessed on 16 November 2023). [CrossRef]
- Puschkarsky, K.; Grasser, T.; Aichinger, T.; Gustin, W.; Reisinger, H. Review on SiC MOSFETs High-Voltage Device Reliability Focusing on Threshold Voltage Instability. IEEE Trans. Electron Devices 2019, 66, 4604–4616. [Google Scholar] [CrossRef]
- Haihong, Q.; Ying, Z.; Ziyue, Z.; Dan, W.; Dafeng, F.; Shishan, W.; Chaohui, Z. Influences of circuit mismatch on paralleling silicon carbide MOSFETs. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 556–561. [Google Scholar]
- Zhang, Y.; Song, Q.; Tang, X.; Zhang, Y. Gate driver for parallel connection SiC MOSFETs with over-current protection and dynamic current balancing scheme. J. Power Electron. 2020, 20, 319–328. [Google Scholar] [CrossRef]
- Xue, Y.; Lu, J.; Wang, Z.; Tolbert, L.M.; Blalock, B.J.; Wang, F. Active compensation of current unbalance in paralleled silicon carbide MOSFETs. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 1471–1477. [Google Scholar]
- Mao, Y.; Miao, Z.; Wang, C.M.; Ngo, K.D.T. Balancing of Peak Currents Between Paralleled SiC MOSFETs by Drive-Source Resistors and Coupled Power-Source Inductors. IEEE Trans. Ind. Electron. 2017, 64, 8334–8343. [Google Scholar] [CrossRef]
- Liu, P.; Yu, R.; Huang, A.Q.; Strydom, J. Turn-on Gate Resistor Optimization for Paralleled SiC MOSFETs. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2810–2814. [Google Scholar]
- Du, M.; Ding, X.; Guo, H.; Liang, J. Transient unbalanced current analysis and suppression for parallel-connected silicon carbide MOSFETs. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–4. [Google Scholar]
- Zeng, Z.; Shao, W.; Hu, B.; Kang, S.; Liao, X.; Li, H.; Ran, L. Active Current Sharing of Paralleled SiC MOSFETs by Coupling Inductors. Proc. Chin. Soc. Electr. Eng. 2017, 37, 2068–2080. [Google Scholar]
- Wu, Q.; Wang, M.; Zhou, W.; Wang, X. Current Balancing of Paralleled SiC MOSFETs for a Resonant Pulsed Power Converter. IEEE Trans. Power Electron. 2020, 35, 5557–5561. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, M.; Zhou, W.; Liu, G.; Wang, X. Applying Coupled Inductor to Voltage and Current Balanced Between Paralleled SiC MOSFETs for a Resonant Pulsed Power Converter. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 2192–2198. [Google Scholar]
- Ding, S.; Wang, P.; Wang, W.; Xu, D.; Blaabjerg, F. Current Sharing Behavior of Parallel Connected Silicon Carbide MOSFETs Influenced by Parasitic Inductance. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019—ECCE Asia), Busan, Republic of Korea, 27–30 May 2019. [Google Scholar]
- Sarfejo, M.D.; Allahyari, H.; Bahrami, H.; Afifi, A.; Zadeh, M.A.L.; Yavari, E.; Jalise, M.G. A Passive Compensator for Imbalances in Current Sharing of Parallel-SiC MOSFETs Based on Planar Transformer. IET Power Electron. 2021, 14, 2400–2412. [Google Scholar] [CrossRef]
- Ke, J.; Zhao, Z.; Sun, P.; Huang, H.; Abuogo, J.; Cui, X. Chips Classification for Suppressing Transient Current Imbalance of Parallel-Connected Silicon Carbide MOSFETs. IEEE Trans. Power Electron. 2020, 35, 3963–3972. [Google Scholar] [CrossRef]
- Ke, J.; Zhao, Z.; Zou, Q.; Peng, J.; Chen, Z.; Cui, X. Device Screening Strategy for Balancing Short-Circuit Behavior of Paralleling Silicon Carbide MOSFETs. IEEE Trans. Device Mater. Reliab. 2019, 19, 757–765. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.; Jiang, X.; Zeng, Z.; Qi, F.; Liu, Y.; Ke, P.; Wang, Y.; Wang, J. A New Screening Method for Alleviating Transient Current Imbalance of Paralleled SiC MOSFETs. In Proceedings of the 2020 IEEE 1st China International Youth Conference on Electrical Engineering (CIYCEE), Wuhan, China, 1–4 November 2020. [Google Scholar]
- Abuogo, J.O.; Zhao, Z. Machine learning approach for sorting SiC MOSFET devices for paralleling. J. Power Electron. 2020, 20, 329–340. [Google Scholar] [CrossRef]
- Abuogo, J.O.; Zao, Z.; Ke, J. Linear regression model for screening SiC MOSFETs for paralleling to minimize transient current imbalance. In Proceedings of the 5th International Conference on Electrical Engineering, Control and Robotics (EECR 2019), Guangzhou, China, 12–14 January 2019. [Google Scholar]
- Zhao, B.; Sun, P.; Yu, Q.; Cai, Y.; Cai, J.; Zhao, Z. Chip Screening Method for Suppressing Current Imbalance of Parallel-Connected SiC MOSFETs. In Proceedings of the 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing, China, 23–25 April 2021; pp. 19–25. [Google Scholar]
- Zhao, C.; Wang, L.; Zhang, F. Effect of Asymmetric Layout and Unequal Junction Temperature on Current Sharing of Paralleled SiC MOSFETs with Kevin-Source Connection. IEEE Trans. Power Electron. 2020, 35, 7392–7404. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Z. Switching Current Imbalance Mitigation for Paralleled SiC MOSFETs Using Common-mode Choke in Gate Loop. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 705–710. [Google Scholar]
- Wang, G.; Mookken, J.; Rice, J.; Schupbach, M. Dynamic and static behavior of packaged silicon carbide MOSFETs in paralleled applications. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 1478–1483. [Google Scholar]
- Luedecke, C.; Krichel, F.; Laumen, M.; De Doncker, R.W. Balancing the Switching Losses of Paralleled SiC MOSFETs Using an Intelligent Gate Driver. In Proceedings of the PCIM Asia 2020: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Shanghai, China, 16–18 November 2020. [Google Scholar]
- Lüdecke, C.; Aghdaei, A.; Laumen, M.; Doncker, R.W.D. Balancing the Switching Losses of Paralleled SiC MOSFETs Using a Stepwise Gate Driver. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 5400–5406. [Google Scholar]
- Wei, Y.; Sweeting, R.; Hossain, M.M.; Mhiesan, H.; Mantooth, A. Variable Gate Voltage Control for Paralleled SiC MOSFETs. In Proceedings of the 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Suita, Japan, 23–25 September 2020. [Google Scholar]
- Chen, Z.; Chen, C.; Huang, A.Q. Driver Integrated Online Rds-on Monitoring Method for SiC Power Converters. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Fu, J. Fundamentals of On-Resistance in Load Switches. TI., Application Report SLVA771. Available online: https://www.ti.com/lit/an/slva771/slva771.pdf?ts=1624372175829&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 22 June 2021).
- Choragudi, V.S.A.K. Analysis and Design of Pulse-Width Modulated Two-Switch Forward DC-DC Converter for Universal Laptop Adapter. Master’s Thesis, Wright State University, India, Ohio, 2011. [Google Scholar]
- Giannopoulos, N.; Ioannidis, G.C.; Psomopoulos, C.S. Active Auto-Suppression Current Unbalance Technique for Parallel-Connected Silicon Carbide MOSFETs. Electronics 2022, 11, 445. [Google Scholar] [CrossRef]
- Giannopoulos, N.; Ioannidis, G.; Vokas, G.; Psomopoulos, C. Autonomous Active Current Balancing Method for Parallel-Connected Silicon Carbide MOSFETs. In Proceedings of the AIP Conference, Tmrees20, Athens, Greece, 25–27 June 2020. [Google Scholar]
- Zhang, W. Current Sensor for Wide Bandgap Devices Dynamic Characterization. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2019. [Google Scholar]
- Zhang, W.; Zhang, Z.; Wang, F. Review and Bandwidth Measurement of Coaxial Shunt Resistors for Wide-Bandgap Devices Dynamic Characterization. In Proceedings of the 2019 IEEE Energy Conversion and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 3259–3264. [Google Scholar]
- Li, J.; Yang, X.; Xu, M.; Wang, X.; Heng, K. A novel inductively coupled RLC damping scheme for eliminating switching oscillations of SiC MOSFET. IET Power Electron. 2023, 16, 1486–1498. [Google Scholar] [CrossRef]
Equipment | Model | Bandwidth | Function |
---|---|---|---|
Digital oscilloscope | Keysight MSOX3014A | 100 MHz | Capture curves |
Current Sense Resistor | LTR10LEZPFLR100 | - | Measure ID |
BNC Coaxial cable | 141-12BM+ | 3 GHz | Measure ID and IG |
BNC Coaxial connector | CONBNC002 | 1 GHz | Measure ID and IG |
Voltage probe | Agilent N2862A | 150 MHz | Measure VGS and VDS |
Switch | Function |
---|---|
Drv Activation SW | Activation driving of SiC MOSFETs |
Duty Cycle Ctl SW | Duty cycle control of SiC MOSFETs |
Frequency Ctl SW | Switching frequency control of SiC MOSFETs |
FC Activation SW | Activation driving of forward converters |
VCC1 Ctl SW | VCC control of M1 |
VCC2 Ctl SW | VCC control of M2 |
ton1 Ctl SW | Turn-on delay control of M1 |
ton2 Ctl SW | Turn-on delay control of M2 |
toff1 Ctl SW | Turn-off delay control of M1 |
toff2 Ctl SW | Turn-off delay control of M2 |
Von1 Ctl SW | Control of Gate-Source voltage of Maux,on,1 |
Von2 Ctl SW | Control of Gate-Source voltage of Maux,on,2 |
Voff1 Ctl SW | Control of Gate-Source voltage of Maux,off,1 |
Voff2 Ctl SW | Control of Gate-Source voltage of Maux,off,2 |
a/a | VCC,1 (V) | VCC,2 (V) | tdl,on,1 (ns) | tdl,on,2 (ns) | tdl,off,1 (ns) | tdl,off,2 (ns) | Vctl-M,on,1 (V) | Vctl-M,on,2 (V) | Vctl-M,off,1 (V) | Vctl-M,off,2 (V) |
---|---|---|---|---|---|---|---|---|---|---|
(a) | 20 | 20 | 0 | 0 | 0 | 0 | 9 | 9 | 9 | 9 |
(b) | 12.5 | 23 | 0 | 22 | 0 | 6 | 9 | 9 | 9 | 9 |
a/a | VCC,1 (V) | VCC,2 (V) | tdl,on,1 (ns) | tdl,on,2 (ns) | tdl,off,1 (ns) | tdl,off,2 (ns) | Vctl-M,on,1 (V) | Vctl-M,on,2 (V) | Vctl-M,off,1 (V) | Vctl-M,off,2 (V) |
---|---|---|---|---|---|---|---|---|---|---|
(a) | 20 | 20 | 0 | 0 | 0 | 0 | 9 | 9 | 9 | 9 |
(b) | 20 | 17 | 11 | 0 | 4 | 0 | 6.5 | 9 | 4.8 | 9 |
Condition | Device | Turn-on | Steady-State | Turn-off | |||
---|---|---|---|---|---|---|---|
IDmax (A) | ΔID (A) | IDmax (A) | ΔID (A) | IDmax (A) | ΔID (A) | ||
Without solution | M1 | 6.2 | 3.8 | 4.55 | 0.9 | 4.7 | 1.1 |
M2 | 2.4 | 3.65 | 5.8 | ||||
With the proposed method | M1 | 4 | 0.1 | 4 | 0.1 | 4.2 | 0.1 |
M2 | 3.9 | 3.9 | 4.1 |
Condition | Device | Turn-on | Steady-State | Turn-off | |||
---|---|---|---|---|---|---|---|
IDmax (A) | ΔID (A) | IDmax (A) | ΔID (A) | IDmax (A) | ΔID (A) | ||
Without solution | M1 | 2.85 | 1.15 | 3.45 | 0.3 | 3.7 | 1.4 |
M2 | 4 | 3.75 | 5.1 | ||||
With the proposed method | M1 | 3.3 | 0.1 | 3.6 | 0.05 | 3.7 | 0.1 |
M2 | 3.4 | 3.65 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannopoulos, N.; Ioannidis, G.; Vokas, G.; Psomopoulos, C. Active Autonomous Open-Loop Technique for Static and Dynamic Current Balancing of Parallel-Connected Silicon Carbide MOSFETs. Energies 2023, 16, 7670. https://doi.org/10.3390/en16227670
Giannopoulos N, Ioannidis G, Vokas G, Psomopoulos C. Active Autonomous Open-Loop Technique for Static and Dynamic Current Balancing of Parallel-Connected Silicon Carbide MOSFETs. Energies. 2023; 16(22):7670. https://doi.org/10.3390/en16227670
Chicago/Turabian StyleGiannopoulos, Nektarios, Georgios Ioannidis, Georgios Vokas, and Constantinos Psomopoulos. 2023. "Active Autonomous Open-Loop Technique for Static and Dynamic Current Balancing of Parallel-Connected Silicon Carbide MOSFETs" Energies 16, no. 22: 7670. https://doi.org/10.3390/en16227670
APA StyleGiannopoulos, N., Ioannidis, G., Vokas, G., & Psomopoulos, C. (2023). Active Autonomous Open-Loop Technique for Static and Dynamic Current Balancing of Parallel-Connected Silicon Carbide MOSFETs. Energies, 16(22), 7670. https://doi.org/10.3390/en16227670