Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models
Abstract
:1. Introduction
Review Structure
2. Scope and Review Methodology
3. Methane Monetisation
3.1. Description of Chemical and Physical Monetisation of Natural Gas into Products
3.1.1. Liquefied Natural Gas (LNG)
3.1.2. Compressed Natural Gas (CNG)
3.1.3. Gas-to-Liquid (GTL)
3.1.4. Gas-to-Chemical (GTC)
Methanol
Hydrogen
3.2. Other Products Produced from Natural Gas
4. Selection of Natural Gas Monetisation Options under Deterministic and Stochastic Conditions
Natural Gas Monetisation under Uncertainty
5. Natural Gas Supply Chain Optimisation
Multistate Natural Gas Supply Chain Optimisation
6. Emergence of Hydrogen and the Future of Natural Gas Supply Chains
6.1. Hydrogen Supply Chain and Production Technologies
6.2. Hydrogen Supply Chain Optimisation
6.3. Integrating Hydrogen Production with Natural Gas Supply Chains
7. Moving Forward and the Need for Flexibility in Integrated H2-NGSCs
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EIA. EIA Projects Nearly 50% Increase in World Energy Usage by 2050, Led by Growth in Asia. EIA Proj Nearly 50% Increase World Energy Usage by 2050, Led by Growth Asia 2019. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41433# (accessed on 15 July 2023).
- Joseph, A.; Umeogu, O.; Ajienka, J.A.; Ikeh, L. Economics of monetisation of stranded gases in Nigeria. Soc. Pet. Eng. Niger. Annu. Int. Conf. Exhib. 2011, 2011, 252–265. [Google Scholar] [CrossRef]
- Guo, Y.; Hawkes, A. The impact of demand uncertainties and China-US natural gas tariff on global gas trade. Energy 2019, 175, 205–217. [Google Scholar] [CrossRef]
- McKinsey & Company. Global Energy Perspective 2021. 2021. Available online: https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Global%20Energy%20Perspective%202021/Global-Energy-Perspective-2021-final.pdf (accessed on 15 July 2023).
- Huang, M.-T.; Zhai, P.-M. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Adv. Clim. Change Res. 2021, 12, 281–286. [Google Scholar] [CrossRef]
- Pischke, E.C.; Solomon, B.; Wellstead, A.; Acevedo, A.; Eastmond, A.; De Oliveira, F.; Coelho, S.; Lucon, O. From Kyoto to Paris: Measuring renewable energy policy regimes in Argentina, Brazil, Canada, Mexico and the United States. Energy Res. Soc. Sci. 2019, 50, 82–91. [Google Scholar] [CrossRef]
- EPA. Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2009; US Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- EIA. Carbon Dioxide Emissions Coefficients by Fuel 2016; EIA: London, UK, 2016. [Google Scholar]
- Teixeira, A.C.R.; Machado, P.G.; Borges, R.R.; Brito, T.L.F.; dos Santos, E.M.; Mouette, D. The use of liquefied natural gas as an alternative fuel in freight transport–Evidence from a driver’s point of view. Energy Policy 2021, 149, 112106. [Google Scholar] [CrossRef]
- Skrúcaný, T.; Milojević, S.; Semanová, Š.; Čechovič, T.; Figlus, T.; Synák, F. The Energy Efficiency of Electric Energy as a Traction Used in Transport. Transp. Tech. Technol. 2018, 14, 9–14. [Google Scholar] [CrossRef]
- Milojević, S.T. Sustainable application of natural gas as engine fuel in city buses–Benefit and restrictions. J. Appl. Eng. Sci. 2017, 15, 81–88. [Google Scholar] [CrossRef]
- Xu, S.; Ge, J. Sustainable shifting from coal to gas in North China: An analysis of resident satisfaction. Energy Policy 2020, 138, 111296. [Google Scholar] [CrossRef]
- Al-Douri, A.; Sengupta, D.; El-Halwagi, M.M. Shale gas monetization—A review of downstream processing to chemicals and fuels. J. Nat. Gas Sci. Eng. 2017, 45, 436–455. [Google Scholar] [CrossRef]
- Liu, S.; Proudman, J.; Mitloehner, F.M. Rethinking methane from animal agriculture. CABI Agric. Biosci. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Vaghar Seyedin, S.M.; Zeidi, A.; Chamanehpour, E.; Nasri, M.H.F.; Vargas-Bello-Pérez, E. Methane Emission: Strategies to Reduce Global Warming in Relation to Animal Husbandry Units with Emphasis on Ruminants. Sustainability 2022, 14, 16897. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global warming and dairy cattle: How to control and reduce methane emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Quintino, F.M.; Nascimento, N.; Fernandes, E.C. Aspects of hydrogen and biomethane introduction in natural gas infrastructure and equipment. Hydrogen 2021, 2, 301–318. [Google Scholar] [CrossRef]
- Hoo, P.Y.; Hashim, H.; Ho, W.S. Opportunities and challenges: Landfill gas to biomethane injection into natural gas distribution grid through pipeline. J. Clean. Prod. 2018, 175, 409–419. [Google Scholar] [CrossRef]
- O’Shea, R.; Wall, D.M.; Kilgallon, I.; Browne, J.D.; Murphy, J.D. Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region. Appl. Energy 2017, 188, 237–256. [Google Scholar] [CrossRef]
- Yusuf, N.; Almomani, F. Recent advances in biogas purifying technologies: Process design and economic considerations. Energy 2022, 265, 126163. [Google Scholar] [CrossRef]
- Wood, D.; Mokhatab, S. Gas monetization technologies remain tantalizingly on the brink. World Oil 2008, 229, 103–108. [Google Scholar]
- Khalilpour, R.; Karimi, I.A. Investment portfolios under uncertainty for utilizing natural gas resources. Comput. Chem. Eng. 2011, 35, 1827–1837. [Google Scholar] [CrossRef]
- Al-Haidous, S.; Al-Ansari, T. Sustainable Liquefied Natural Gas Supply Chain Management: A Review of Quantitative Models. Sustainability 2020, 12, 243. [Google Scholar] [CrossRef]
- Al-Haidous, S.; Govindan, R.; Elomri, A.; Al-Ansari, T. An optimization approach to increasing sustainability and enhancing resilience against environmental constraints in LNG supply chains: A Qatar case study. Energy Rep. 2022, 8, 9742–9756. [Google Scholar] [CrossRef]
- Ren, D.; Zhang, X.; Lei, S.; Bi, Z. Research on flexibility of production system based on hybrid modeling and simulation. Math. Biosci. Eng. 2021, 18, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.; Fröhlich, T.; Huth, T.; Vietor, T. Design for flexibility–evaluation interactions between product properties and production processes. Procedia CIRP 2020, 91, 814–818. [Google Scholar] [CrossRef]
- Yusuf, N.; Govindan, R.; Al-Ansari, T. Techno-economic analysis of flexible AP-X LNG production process under risks and uncertainties. Comput. Aided Chem. Eng. 2022, 51, 367–372. [Google Scholar]
- Yusuf, N.; AlNouss, A.; Al-Ansari, T. State of the Art Flexibility Analysis for Natural Gas Monetization Production Processes Under Uncertainties. Comput. Aided Chem. Eng. 2023, 52, 1615–1621. [Google Scholar]
- Shekarian, M.; Mellat Parast, M. An Integrative approach to supply chain disruption risk and resilience management: A literature review. Int. J. Logist. Res. Appl. 2021, 24, 427–455. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Lu, W.; Su, M.; Fath, B.D.; Zhang, M.; Hao, Y. A systematic method of evaluation of the Chinese natural gas supply security. Appl. Energy 2016, 165, 858–867. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Peng, J.K. Automotive hydrogen storage system using cryo-adsorption on activated carbon. Int. J. Hydrogen Energy 2009, 34, 5476–5487. [Google Scholar] [CrossRef]
- Mac Dowell, N.; Fennell, P.S.; Shah, N.; Maitland, G.C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 2017, 7, 243–249. [Google Scholar] [CrossRef]
- Quarton, C.J.; Samsatli, S. The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation. Appl. Energy 2020, 257, 113936. [Google Scholar] [CrossRef]
- Al-Mamoori, A.; Krishnamurthy, A.; Rownaghi, A.A.; Rezaei, F. Carbon capture and utilization update. Energy Technol. 2017, 5, 834–849. [Google Scholar] [CrossRef]
- Herzog, H.J. Scaling up carbon dioxide capture and storage: From megatons to gigatons. Energy Econ. 2011, 33, 597–604. [Google Scholar] [CrossRef]
- Yusuf, N.; Almomani, F.; Qiblawey, H. Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel 2023, 345, 128178. [Google Scholar] [CrossRef]
- Hendriks, C.; Noothout, P.; Zakkour, P.; Cook, G. Implications of the Reuse of Captured CO2 for European Climate Action Policies; ECOFYS Netherlabds BV: Utrecht, The Netherlands, 2013. [Google Scholar]
- Wu, X.; Li, C.; He, Y.; Jia, W. Operation Optimization of Natural Gas Transmission Pipelines Based on Stochastic Optimization Algorithms: A Review. Math. Probl. Eng. 2018, 2018, 1267045. [Google Scholar] [CrossRef]
- Khan, T.; Yu, M.; Waseem, M. Review on recent optimization strategies for hybrid renewable energy system with hydrogen technologies: State of the art, trends and future directions. Int. J. Hydrogen Energy 2022, 47, 25155–25201. [Google Scholar] [CrossRef]
- Li, L.; Manier, H.; Manier, M.A. Hydrogen supply chain network design: An optimization-oriented review. Renew. Sustain. Energy Rev. 2019, 103, 342–360. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J. A review of models and methods for hydrogen supply chain system planning. CSEE J. Power Energy Syst. 2020, 1–12. [Google Scholar] [CrossRef]
- Riera, J.A.; Lima, R.M.; Knio, O.M. A review of hydrogen production and supply chain modeling and optimization. Int. J. Hydrogen Energy 2023, 48, 13731–13755. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Abdin, Z.; Al Khafaf, N.; McGrath, B.; Catchpole, K.; Gray, E. A review of renewable hydrogen hybrid energy systems towards a sustainable energy value chain. Sustain. Energy Fuels 2023, 7, 2042–2062. [Google Scholar] [CrossRef]
- Pleshivtseva, Y.; Derevyanov, M.; Pimenov, A.; Rapoport, A. Comparative analysis of global trends in low carbon hydrogen production towards the decarbonization pathway. Int. J. Hydrogen Energy 2023, 48, 32191–32240. [Google Scholar] [CrossRef]
- Sazali, N. Emerging technologies by hydrogen: A review. Int. J. Hydrogen Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Ofélia de Queiroz, F.A.; Morte, I.B.B.; Borges, C.L.T.; Morgado, C.R.V.; de Medeiros, J.L. Beyond clean and affordable transition pathways: A review of issues and strategies to sustainable energy supply. Int. J. Electr. Power Energy Syst. 2024, 155, 109544. [Google Scholar]
- Cherepovitsyn, A.; Kazanin, A.; Rutenko, E. Strategic Priorities for Green Diversification of Oil and Gas Companies. Energies 2023, 16, 4985. [Google Scholar] [CrossRef]
- Khorasani, M.; Sarker, S.; Kabir, G.; Ali, S.M. Evaluating strategies to decarbonize oil and gas supply chain: Implications for energy policies in emerging economies. Energy 2022, 258, 124805. [Google Scholar] [CrossRef]
- Naderifar, M.; Goli, H.; Ghaljaie, F. Snowball sampling: A purposeful method of sampling in qualitative research. Strides Dev. Med. Educ. 2017, 14, e67670. [Google Scholar] [CrossRef]
- Khalilpour, R.; Karimi, I.A. Evaluation of utilization alternatives for stranded natural gas. Energy 2012, 40, 317–328. [Google Scholar] [CrossRef]
- Burel, F.; Taccani, R.; Zuliani, N. Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy 2013, 57, 412–420. [Google Scholar] [CrossRef]
- Thomas, S.; Dawe, R.A. Review of ways to transport natural gas energy from countries which do not need the gas for domestic use. Energy 2003, 28, 1461–1477. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D.A. Handbook of Liquefied Natural Gas; Gulf Professional Publishing: Houston, TX, USA, 2013. [Google Scholar]
- Thackeray, F.; Leckie, G. Stranded gas: A vital resource. Pet. Econ. 2002, 69, 10–12. [Google Scholar]
- Hasle, G.; Tomasgard, A.; Romo, F.; Fodstad, M.; Midthun, K. Optimization models for the natural gas value chain. In Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF; Springer: Berlin/Heidelberg, Germany, 2007; pp. 521–558. [Google Scholar] [CrossRef]
- Li, X.; Barton, P.I. Optimal design and operation of energy systems under uncertainty. J. Process Control 2015, 30, 1–9. [Google Scholar] [CrossRef]
- Abu, R.; Patchigolla, K.; Simms, N. A Review on Qualitative Assessment of Natural Gas Utilisation Options for Eliminating Routine Nigerian Gas Flaring. Gases 2023, 3, 1–24. [Google Scholar] [CrossRef]
- Hönig, V.; Prochazka, P.; Obergruber, M.; Smutka, L.; Kucerová, V. Economic and technological analysis of commercial LNG production in the EU. Energies 2019, 12, 1565. [Google Scholar] [CrossRef]
- Yusuf, N.; Almomani, F.; Al-Sobhi, S.A.S. Onshore hydrogen production from boil-off gas (BOG) via natural gas steam reforming process: Process simulation and techno-economic analysis. Int. J. Hydrogen Energy 2023, in press. [Google Scholar] [CrossRef]
- Zhang, J.; Meerman, H.; Benders, R.; Faaij, A. Comprehensive review of current natural gas liquefaction processes on technical and economic performance. Appl.Therm. Eng. 2019, 166, 114736. [Google Scholar] [CrossRef]
- Al-Mutaz, I.S.; Liu, X.; Mazza, G. Natural Gas Liquefaction Technologies-An Overview. Oil Gas-Eur. Mag. 2016, 42, 213–218. [Google Scholar]
- Hakam, D.F.; Asekomeh, A.O. Gas monetisation intricacies: Evidence from indonesia. Int. J. Energy Econ. Policy 2018, 8, 174–181. [Google Scholar]
- Stenning, D.G.; Fitzpatrick, J.P.; Trebble, M.A. Floating CNG, a simpler way to monetise offshore gas. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2012; p. OTC-23615. [Google Scholar]
- Alsudani, F.T.; Saeed, A.N.; Ali, N.S.; Majdi, H.S.; Salih, H.G.; Albayati, T.M.; Saady, N.M.C.; Shakor, Z.M. Fisher–Tropsch Synthesis for Conversion of Methane into Liquid Hydrocarbons through Gas-to-Liquids (GTL) Process: A Review. Methane 2023, 2, 24–43. [Google Scholar] [CrossRef]
- Santos, G.R.S.; Basha, O.M.; Wang, R.; Ashkanani, H.; Morsi, B. Techno-economic assessment of Fischer-Tropsch synthesis and direct methane-to-methanol processes in modular GTL reactors. Catal. Today 2021, 371, 93–112. [Google Scholar] [CrossRef]
- Buchanan, A. Reaching New Energy Frontiers through Competitive GTL Technology; Sasol Synfuels International: Johannesburg, South Africa, 2006. [Google Scholar]
- Wood, D.A.; Nwaoha, C.; Towler, B.F. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 2012, 9, 196–208. [Google Scholar] [CrossRef]
- Corke, M. Securing a Market. Fundam Gas to Liq Second Ed Pet Econ London 2005, 36–38. Available online: https://link.springer.com/chapter/10.1007/978-981-16-0931-2_4 (accessed on 26 July 2023).
- Mansoor, R.; Tahir, M. Recent developments in natural gas flaring reduction and reformation to energy-efficient fuels: A review. Energy Fuels 2021, 35, 3675–3714. [Google Scholar] [CrossRef]
- Yusuf, N.; Almomani, F. Highly effective hydrogenation of CO2 to methanol over Cu/ZnO/Al2O3 catalyst: A process economy & environmental aspects. Fuel 2023, 332, 126027. [Google Scholar]
- Zincir, B.; Deniz, C. Methanol as a fuel for marine diesel engines. In Alcohol as an Alternative Fuel for Internal Combustion Engines; Springer: Berlin/Heidelberg, Germany, 2021; pp. 45–85. [Google Scholar]
- Cui, X.; Kær, S.K. A comparative study on three reactor types for methanol synthesis from syngas and CO2. Chem. Eng. J. 2020, 393, 124632. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, Y.; Feng, Y.; Yang, J.; Xia, C. A prompt decarbonization pathway for shipping: Green hydrogen, ammonia, and methanol production and utilization in marine engines. Atmosphere 2023, 14, 584. [Google Scholar] [CrossRef]
- Snyder, J. Annual Global Methanol Production to Grow Fivefold by 2050. 2021. Available online: https://www.rivieramm.com/news-content-hub/news-content-hub/annual-global-methanol-production-to-grow-fivefold-by-2050-64246 (accessed on 15 July 2023).
- IRENA. Innovation Outlook: Renewable Methanol; IRENA: Masdar City, United Arab Emirates, 2021. [Google Scholar]
- Zhang, T.; Uratani, J.; Huang, Y.; Xu, L.; Griffiths, S.; Ding, Y. Hydrogen liquefaction and storage: Recent progress and perspectives. Renew. Sustain. Energy Rev. 2023, 176, 113204. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; He, Z.-H.; Li, L.-Y.; Yang, S.-Y.; He, M.-X.; Sun, Y.-C.; Wang, K.; Chen, J.-G.; Liu, Z.-T. Research progress of CO2 oxidative dehydrogenation of propane to propylene over Cr-free metal catalysts. Rare Met. 2022, 41, 2129–2152. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Li, P.; Yuan, X. Process optimization, exergy efficiency, and life cycle energy consumption-GHG emissions of the propane-to-propylene with/without hydrogen production process. J. Clean. Prod. 2022, 367, 133024. [Google Scholar] [CrossRef]
- Hampstead, J. Single-Use Plastics Bans: A Risk for the Petchem Industry. 2019. Available online: https://finance.yahoo.com/news/single-plastics-bans-risk-petchem-142814320.html (accessed on 15 July 2023).
- Zhang, D.; Shi, M.; Shi, X. Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade. Energy Econ. 2018, 69, 33–41. [Google Scholar] [CrossRef]
- Da Silva Alves, F.; de Souza, J.N.M.; Costa, A.L.H. Multi-objective design optimization of natural gas transmission networks. Comput. Chem. Eng. 2016, 93, 212–220. [Google Scholar] [CrossRef]
- Baccanelli, M.; Langé, S.; Rocco, M.V.; Pellegrini, L.A.; Colombo, E. Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis. Appl. Energy 2016, 180, 546–559. [Google Scholar] [CrossRef]
- Khalilpour, R.; Karimi, I.A. Evaluation of LNG, CNG, GTL and NGH for monetization of stranded associated gas with the incentive of carbon credit. In Proceedings of the International Petroleum Technology Conference, Doha, Qatar, 7–9 December 2009; Volume 5, pp. 3568–3572. [Google Scholar] [CrossRef]
- Ward, E.G.; Wolford, A.J.; Mick, M.B.; Hauser, W.; Verret, A.J.; Tapia, L. Alternatives for transporting associated gas from deepwater Gulf of Mexico developments. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2005. [Google Scholar]
- Sapkota, K.; Oni, A.O.; Kumar, A. Techno-economic and life cycle assessments of the natural gas supply chain from production sites in Canada to north and southwest Europe. J. Nat. Gas Sci. Eng. 2018, 52, 401–409. [Google Scholar] [CrossRef]
- Najibi, H.; Rezaei, R.; Javanmardi, J.; Nasrifar, K.; Moshfeghian, M. Economic evaluation of natural gas transportation from Iran’s South-Pars gas field to market. Appl. Therm. Eng. 2009, 29, 2009–2015. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Bello, A.A.; Idris, M.N. Natural gas utilization and the Nigerian gas-to-liquid project; an opportunity to end gas flaring. Int. J. Emerg. Trends Eng. Dev. 2012, 2, 1–17. [Google Scholar]
- Marongiu-Porcu, M.; Wang, X.; Economides, M.J. The Economics of Compressed Natural Gas Sea Transport (Russian). In Proceedings of the SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, 28–30 October 2008. [Google Scholar]
- Shaibu, R.; Sambo, C.; Guo, B.; Dudun, A. An assessment of methane gas production from natural gas hydrates: Challenges, technology and market outlook. Adv. Geo-Energy Res. 2021, 5, 318–332. [Google Scholar] [CrossRef]
- Taheri, Z.; Shabani, M.R.; Nazari, K.; Mehdizaheh, A. Natural gas transportation and storage by hydrate technology: Iran case study. J. Nat. Gas Sci. Eng. 2014, 21, 846–849. [Google Scholar] [CrossRef]
- Pedchenko, M.; Pedchenko, L.; Nesterenko, T.; Dyczko, A. Technological solutions for the realization of NGH-technology for gas transportation and storage in gas hydrate form. Solid State Phenom. 2018, 277, 123–136. [Google Scholar] [CrossRef]
- Vedachalam, N.; Ramesh, S.; Jyothi, V.B.N.; Ramadass, G.A.; Atmanand, M.A.; Manivannan, P. Techno-economic viability studies on methane gas production from gas hydrates reservoir in the Krishna-Godavari basin, east coast of India. J. Nat. Gas Sci. Eng. 2020, 77, 103253. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Xu, N.; Liu, W.; Zhao, Y.; Zhao, J.; Jiang, L.; Zheng, J.-N. Quantitative analysis of methane hydrate formation in size-varied porous media for gas storage and transportation application. Fuel 2021, 301, 121021. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, T.; Zhang, H.; Sui, Y.; Yu, X.; Miao, M. Economic evaluation of production capacity for natural gas hydrate industrial exploitation in the South China Sea. Front. Earth Sci. 2022, 10, 990562. [Google Scholar] [CrossRef]
- Yusuf, N.; Govindan, R.; Al-Fagih, L.; Al-Ansari, T. Strategic and flexible LNG production under uncertain future demand and natural gas prices. Heliyon 2023, 9, e16358. [Google Scholar] [CrossRef]
- Achakulwisut, P.; Erickson, P.; Koplow, D. Effect of subsidies and regulatory exemptions on 2020–2030 oil and gas production and profits in the United States. Environ. Res. Lett. 2021, 16, 84023. [Google Scholar] [CrossRef]
- Ahmadi, M.; Manera, M.; Sadeghzadeh, M. The investment-uncertainty relationship in the oil and gas industry. Resour. Policy 2019, 63, 101439. [Google Scholar] [CrossRef]
- Alabsi, M.H.; Wang, X.; Zheng, P.; Ramirez, A.; Duan, A.; Xu, C.; Huang, K.-W. Screening and design of active metals on dendritic mesoporous Ce0. 3Zr0. 7O2 for efficient CO2 hydrogenation to methanol. Fuel 2022, 317, 123471. [Google Scholar] [CrossRef]
- Dong, X.-J.; Shen, J.-N.; Ma, Z.-F.; He, Y.-J. Robust optimal operation of continuous catalytic reforming process under feedstock uncertainty. Int. J. Hydrogen Energy 2022, 47, 35641–35654. [Google Scholar] [CrossRef]
- Hernández-Pérez, L.G.; Alsuhaibani, A.S.; Ponce-Ortega, J.M.; El-Halwagi, M.M. Multi-objective optimization of ammonia and methanol production processes considering uncertain feedstock compositions of shale/natural gas. Chem. Eng. Res. Des. 2022, 187, 27–40. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, L.; Ye, X.; Zhang, Y. Dynamic asymmetric impact of equity market uncertainty on energy markets: A time-varying causality analysis. Renew. Energy 2022, 196, 535–546. [Google Scholar] [CrossRef]
- Jebabli, I.; Kouaissah, N.; Arouri, M. Volatility spillovers between stock and energy markets during crises: A comparative assessment between the 2008 global financial crisis and the COVID-19 pandemic crisis. Financ. Res. Lett. 2022, 46, 102363. [Google Scholar] [CrossRef]
- Ren, X.; Li, J.; He, F.; Lucey, B. Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests. Renew. Sustain. Energy Rev. 2023, 173, 113058. [Google Scholar] [CrossRef]
- De Weck, O.; Eckert, C.; Clarkson, J. A classification of uncertainty for early product and system design. In Proceedings of the 16th International Conference on Engineering Design, Paris, France, 28–31 July 2007; pp. 1–12. [Google Scholar]
- Caunhye, A.M.; Cardin, M.-A.; Rahmat, M. Flexibility and real options analysis in power system generation expansion planning under uncertainty. IISE Trans. 2022, 54, 832–844. [Google Scholar] [CrossRef]
- Nur, G.N.; MacKenzie, C.A.; Min, K.J. A Real Options Analysis model for generation expansion planning under uncertain demand. Decis. Anal. J. 2023, 8, 100263. [Google Scholar] [CrossRef]
- Ahmadian Behrooz, H.; Boozarjomehry, R.B. Dynamic optimization of natural gas networks under customer demand uncertainties. Energy 2017, 134, 968–983. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, C.; Zuo, L.; Mehrtash, M.; Wang, Y.; Bu, Y.; Sadiq, R.; Cao, Y. Multi-objective transient peak shaving optimization of a gas pipeline system under demand uncertainty. Comput. Chem. Eng. 2021, 147, 107260. [Google Scholar] [CrossRef]
- Shvetsova, O.A.; Rodionova, E.A.; Epstein, M.Z. Evaluation of investment projects under uncertainty: Multi-criteria approach using interval data. Entrep. Sustain. Issues 2018, 5, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, C.; Zhang, B.J.; Chen, Q. Monetizing Shale Gas to Chemicals Under Mixed Uncertainty. In Energy Systems and Processes: Recent Advances in Design and Control; AIP Publishing LLC.: Melville, NY, USA, 2023; p. 1. [Google Scholar]
- Lessard, D. Uncertainty and risk in global supply chains. In Global Value Chains in a Changing World; WTO iLibrary: Geneva, Switzerland, 2013; pp. 195–220. [Google Scholar]
- Liu, H.; Xie, Q.; Pan, M.; He, C. Strategic design and analysis of large-scale shale gas monetizing projects under mixed uncertainty. Comput. Aided Chem. Eng. 2018, 44, 1495–1500. [Google Scholar] [CrossRef]
- Tan, S.H.; Barton, P.I. Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, Part I: Bakken shale play case study. Energy 2015, 93, 1581–1594. [Google Scholar] [CrossRef]
- Tan, S.H.; Barton, P.I. Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: Dealing with uncertainty. Energy 2016, 96, 461–467. [Google Scholar] [CrossRef]
- Mukherjee, R.; Asani, R.R.; Boppana, N.; El-Halwagi, M.M. Performance evaluation of shale gas processing and NGL recovery plant under uncertainty of the feed composition. J. Nat. Gas Sci. Eng. 2020, 83, 103517. [Google Scholar] [CrossRef]
- Asani, R.R.; Mukherjee, R.; El-Halwagi, M.M. Optimal selection of shale gas processing and NGL recovery plant from multiperiod simulation. Process Integr. Optim. Sustain. 2021, 5, 123–138. [Google Scholar] [CrossRef]
- Jahani, H.; Jain, R.; Ivanov, D. Data science and big data analytics: A systematic review of methodologies used in the supply chain and logistics research. Ann. Oper. Res. 2023, 1–58. [Google Scholar] [CrossRef]
- Aryal, A.; Liao, Y.; Nattuthurai, P.; Li, B. The emerging big data analytics and IoT in supply chain management: A systematic review. Supply Chain Manag. An. Int. J. 2020, 25, 141–156. [Google Scholar] [CrossRef]
- Faramarzi-Oghani, S.; Dolati Neghabadi, P.; Talbi, E.-G.; Tavakkoli-Moghaddam, R. Meta-heuristics for sustainable supply chain management: A review. Int. J. Prod. Res. 2023, 61, 1979–2009. [Google Scholar] [CrossRef]
- Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. [Google Scholar] [CrossRef]
- Pournader, M.; Ghaderi, H.; Hassanzadegan, A.; Fahimnia, B. Artificial intelligence applications in supply chain management. Int. J. Prod. Econ. 2021, 241, 108250. [Google Scholar] [CrossRef]
- Chen, F.; Wu, C. A novel methodology for forecasting gas supply reliability of natural gas pipeline systems. Front. Energy 2020, 14, 213–223. [Google Scholar] [CrossRef]
- Hong, B.; Li, X.; Song, S.; Chen, S.; Zhao, C.; Gong, J. Optimal planning and modular infrastructure dynamic allocation for shale gas production. Appl. Energy 2020, 261, 114439. [Google Scholar] [CrossRef]
- Chebouba, A.; Yalaoui, F.; Smati, A.; Amodeo, L.; Younsi, K.; Tairi, A. Optimization of natural gas pipeline transportation using ant colony optimization. Comput. Oper. Res. 2009, 36, 1916–1923. [Google Scholar] [CrossRef]
- Martin, A.; Möller, M.; Moritz, S. Mixed integer models for the stationary case of gas network optimization. Math. Program. 2006, 105, 563–582. [Google Scholar] [CrossRef]
- Mikolajková, M.; Saxén, H.; Pettersson, F. Mixed integer linear programming optimization of gas supply to a local market. Ind. Eng. Chem. Res. 2018, 57, 5951–5965. [Google Scholar] [CrossRef]
- Turan, M.O.; Flamand, T. Optimizing investment and transportation decisions for the European natural gas supply chain. Appl. Energy 2023, 337, 120859. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, M.; Zhang, H.; Zhao, W.; Liang, Y. An MILP model for optimal design of multi-period natural gas transmission network. Chem. Eng. Res. Des. 2018, 129, 122–131. [Google Scholar] [CrossRef]
- Zarei, J.; Amin-Naseri, M.R. An integrated optimization model for natural gas supply chain. Energy 2019, 185, 1114–1130. [Google Scholar] [CrossRef]
- Wen, K.; Qiao, D.; Nie, C.; Lu, Y.; Wen, F.; Zhang, J.; Miao, Q.; Gong, J.; Li, C.; Hong, B. Multi-period supply and demand balance of large-scale and complex natural gas pipeline network: Economy and environment. Energy 2023, 264, 126104. [Google Scholar] [CrossRef]
- Kanes, R.; Basha, A.; Véchot, L.N.; Castier, M. Simulation of venting and leaks from pressure vessels. J. Loss Prev. Process. Ind. 2016, 40, 563–577. [Google Scholar] [CrossRef]
- Li, C.J.; Jia, W.L.; Liu, E.B.; Wu, X. A multi-hierarchy grey relational analysis model for natural gas pipeline operation schemes comprehensive evaluation. Int. J. Ind. Eng. 2012, 19, 241–251. [Google Scholar]
- Hamedi, M.; Zanjirani Farahani, R.; Husseini, M.M.; Esmaeilian, G.R. A distribution planning model for natural gas supply chain: A case study. Energy Policy 2009, 37, 799–812. [Google Scholar] [CrossRef]
- Demissie, A.; Zhu, W.; Belachew, C.T. A multi-objective optimization model for gas pipeline operations. Comput. Chem. Eng. 2017, 100, 94–103. [Google Scholar] [CrossRef]
- Bittante, A.; Pettersson, F.; Saxén, H. Optimization of a small-scale LNG supply chain. Energy 2018, 148, 79–89. [Google Scholar] [CrossRef]
- Bittante, A.; Pettersson, F.; Saxén, H. A multi-period optimization model for the design of new LNG supply chains. In Proceedings of the 58th Conference on Simulation and Modelling, Reykjavik, Iceland, 25–27 September 2017; Linköping University Electronic Press: Linköping, Sweden, 2017; pp. 332–342. [Google Scholar]
- Bittante, A.; Saxén, H. Design of Small LNG Supply Chain by Multi-Period Optimization. Energies 2020, 13, 6704. [Google Scholar] [CrossRef]
- Utku, D.H.; Soyöz, B. A mathematical model on liquefied natural gas supply chain with uncertain demand. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Liao, Q.; Yan, X.; Shen, Y.; Zhao, Y. A three-stage stochastic programming method for LNG supply system infrastructure development and inventory routing in demanding countries. Energy 2017, 133, 424–442. [Google Scholar] [CrossRef]
- Li, X.; Tomasgard, A.; Barton, P.I. Natural gas production network infrastructure development under uncertainty. Optim. Eng. 2017, 18, 35–62. [Google Scholar] [CrossRef]
- Elia, J.A.; Baliban, R.C.; Floudas, C.A. Nationwide, regional, and statewide energy supply chain optimization for natural gas to liquid transportation fuel (GTL) systems. Ind. Eng. Chem. Res. 2014, 53, 5366–5397. [Google Scholar] [CrossRef]
- Elia, J.A.; Li, J.; Floudas, C.A. Strategic planning optimization for natural gas to liquid transportation fuel (GTL) systems. Comput. Chem. Eng. 2015, 72, 109–125. [Google Scholar] [CrossRef]
- Bittante, A.; Jokinen, R.; Krooks, J.; Pettersson, F.; Saxén, H. Optimal design of a small-scale LNG supply chain combining sea and land transports. Ind. Eng. Chem. Res. 2017, 56, 13434–13443. [Google Scholar] [CrossRef]
- Souza, T.E.G.; Secchi, A.R.; dos Santos, L.C. Modeling and economic optimization of an industrial site for natural gas processing: A nonlinear optimization approach. Digit. Chem. Eng. 2023, 6, 100070. [Google Scholar] [CrossRef]
- Al-Sobhi, S.A.; Elkamel, A. Simulation and optimization of natural gas processing and production network consisting of LNG, GTL, and methanol facilities. J. Nat. Gas Sci. Eng. 2015, 23, 500–508. [Google Scholar] [CrossRef]
- Al-Sobhi, S.A.; Shaik, M.A.; Elkamel, A.; Erenay, F.S. Integrating simulation in optimal synthesis and design of natural gas upstream processing networks. Ind. Eng. Chem. Res. 2017, 57, 5792–5804. [Google Scholar] [CrossRef]
- Al-Sobhi, S.A.; Elkamel, A.; Erenay, F.S.; Shaik, M.A. Simulation-optimization framework for synthesis and design of natural gas downstream utilization networks. Energies 2018, 11, 362. [Google Scholar] [CrossRef]
- Zarei, J.; Amin-Naseri, M.R.; Fakehi Khorasani, A.H.; Kashan, A.H. A sustainable multi-objective framework for designing and planning the supply chain of natural gas components. J. Clean. Prod. 2020, 259, 120649. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Liao, Q.; Chen, J.; Zhang, W.; Long, Y.; Qian, C. Optimal design and operation for supply chain system of multi-state natural gas under uncertainties of demand and purchase price. Comput. Ind. Eng. 2019, 131, 115–130. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Long, Y.; Fang, K.; Xu, N.; Li, Z.; Liang, Y. Economic and environmental co-benefit of natural gas supply chain considering the risk attitude of designers. J. Clean. Prod. 2020, 272, 122681. [Google Scholar] [CrossRef]
- Mikolajková-Alifov, M.; Pettersson, F.; Björklund-Sänkiaho, M.; Saxén, H. A model of optimal gas supply to a set of distributed consumers. Energies 2019, 12, 351. [Google Scholar] [CrossRef]
- Azadeh, A.; Shafiee, F.; Yazdanparast, R.; Heydari, J.; Fathabad, A.M. Evolutionary multi-objective optimization of environmental indicators of integrated crude oil supply chain under uncertainty. J. Clean. Prod. 2017, 152, 295–311. [Google Scholar] [CrossRef]
- Ribas, G.P.; Hamacher, S.; Street, A. Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming. Int. Trans. Oper. Res. 2010, 17, 777–796. [Google Scholar] [CrossRef]
- Jindal, A.; Sangwan, K.S.; Saxena, S. Network design and optimization for multi-product, multi-time, multi-echelon closed-loop supply chain under uncertainty. Procedia CIRP 2015, 29, 656–661. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Amiri, M.; Olfat, L.; Khatami Firouzabadi, S.M.A. Designing a multi-product multi-period supply chain network with reverse logistics and multiple objectives under uncertainty. Technol. Econ. Dev. Econ. 2017, 23, 520–548. [Google Scholar] [CrossRef]
- Sampat, A.M.; Martin, E.; Martin, M.; Zavala, V.M. Optimization formulations for multi-product supply chain networks. Comput. Chem. Eng. 2017, 104, 296–310. [Google Scholar] [CrossRef]
- Oliveira, F.; Gupta, V.; Hamacher, S.; Grossmann, I.E. A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations. Comput. Chem. Eng. 2013, 50, 184–195. [Google Scholar] [CrossRef]
- Maamoun, N.; Kennedy, R.; Jin, X.; Urpelainen, J. Identifying coal-fired power plants for early retirement. Renew Sustain Energy Rev. 2020, 126, 109833. [Google Scholar] [CrossRef]
- European Commission. Carbon Border Adjustment Mechanism. Carbon Bord Adjust Mech n.d. Available online: https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en (accessed on 8 August 2023).
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Razi, F.; Dincer, I. Renewable energy development and hydrogen economy in MENA region: A review. Renew. Sustain. Energy Rev. 2022, 168, 112763. [Google Scholar] [CrossRef]
- Alsaba, W.; Al-Sobhi, S.A.; Qyyum, M.A. Recent advancements in the hydrogen value chain: Opportunities, challenges, and the way Forward–Middle East perspectives. Int. J. Hydrogen Energy 2023, 48, 26408–26435. [Google Scholar] [CrossRef]
- Kazi, M.-K.; Eljack, F.; El-Halwagi, M.M.; Haouari, M. Green hydrogen for industrial sector decarbonization: Costs and impacts on hydrogen economy in qatar. Comput. Chem. Eng. 2021, 145, 107144. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen storage methods: Review and current status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Berstad, D.; Gardarsdottir, S.; Roussanaly, S.; Voldsund, M.; Ishimoto, Y.; Nekså, P. Liquid hydrogen as prospective energy carrier: A brief review and discussion of underlying assumptions applied in value chain analysis. Renew. Sustain. Energy Rev. 2022, 154, 111772. [Google Scholar] [CrossRef]
- Hassan, I.A.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Nagpal, M.; Kakkar, R. An evolving energy solution: Intermediate hydrogen storage. Int. J. Hydrogen Energy 2018, 43, 12168–12188. [Google Scholar] [CrossRef]
- Niaz, S.; Manzoor, T.; Pandith, A.H. Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 457–469. [Google Scholar] [CrossRef]
- George, J.F.; Müller, V.P.; Winkler, J.; Ragwitz, M. Is blue hydrogen a bridging technology?-The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany. Energy Policy 2022, 167, 113072. [Google Scholar] [CrossRef]
- Durakovic, G.; del Granado, P.C.; Tomasgard, A. Are green and blue hydrogen competitive or complementary? Insights from a decarbonized European power system analysis. Energy 2023, 282, 128282. [Google Scholar] [CrossRef]
- IEA. Putting CO2 to Use; IEA: Paris, France, 2019. [Google Scholar]
- Ji, M.; Wang, J. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrogen Energy 2021, 46, 38612–38635. [Google Scholar] [CrossRef]
- Kho, E.T.; Scott, J.; Amal, R. Ni/TiO2 for low temperature steam reforming of methane. Chem. Eng. Sci. 2016, 140, 161–170. [Google Scholar] [CrossRef]
- Shahed, G.V.; Taherian, Z.; Khataee, A.; Meshkani, F.; Orooji, Y. Samarium-impregnated nickel catalysts over SBA-15 in steam reforming of CH4 process. J. Ind. Eng. Chem. 2020, 86, 73–80. [Google Scholar] [CrossRef]
- García, L. Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 83–107. [Google Scholar]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Turpeinen, E.; Raudaskoski, R.; Pongrácz, E.; Keiski, R.L. Thermodynamic analysis of conversion of alternative hydrocarbon-based feedstocks to hydrogen. Int. J. Hydrogen Energy 2008, 33, 6635–6643. [Google Scholar] [CrossRef]
- Pinsky, R.; Sabharwall, P.; Hartvigsen, J.; O’Brien, J. Comparative review of hydrogen production technologies for nuclear hybrid energy systems. Prog. Nucl. Energy 2020, 123, 103317. [Google Scholar] [CrossRef]
- Khatun, R.; Bhandari, S.; Poddar, M.K.; Samanta, C.; Khan, T.S.; Khurana, D.; Bal, R. Partial oxidation of methane over high coke-resistant bimetallic Pt-Ni/CeO2 catalyst: Profound influence of Pt addition on stability. Int. J. Hydrogen Energy 2022, 47, 38895–38909. [Google Scholar] [CrossRef]
- Khoja, A.H.; Javed, A.H.; Naqvi, S.R.; Shakir, S.; Ud Din, I.; Arshad, Z.; Rashid, U.; Qazi, U.Y.; Naeem, N. Partial Oxidation of Methane over CaO Decorated TiO2 Nanocatalyst for Syngas Production in a Fixed Bed Reactor. Catalysts 2022, 12, 1089. [Google Scholar] [CrossRef]
- Osman, A.I. Catalytic hydrogen production from methane partial oxidation: Mechanism and kinetic study. Chem. Eng. Technol. 2020, 43, 641–648. [Google Scholar] [CrossRef]
- Seo, S.K.; Yun, D.Y.; Lee, C.J. Design and optimization of a hydrogen supply chain using a centralized storage model. Appl. Energy 2020, 262, 114452. [Google Scholar] [CrossRef]
- Almansoori, A.; Shah, N. Design and operation of a future hydrogen supply chain: Multi-period model. Int. J. Hydrogen Energy 2009, 34, 7883–7897. [Google Scholar] [CrossRef]
- Almansoori, A.; Shah, N. Design and operation of a future hydrogen supply chain: Snapshot model. Chem. Eng. Res. Des. 2006, 84, 423–438. [Google Scholar] [CrossRef]
- Almansoori, A.; Shah, N. Design and operation of a stochastic hydrogen supply chain network under demand uncertainty. Int. J. Hydrogen Energy 2012, 37, 3965–3977. [Google Scholar] [CrossRef]
- Dayhim, M.; Jafari, M.A.; Mazurek, M. Planning sustainable hydrogen supply chain infrastructure with uncertain demand. Int. J. Hydrogen Energy 2014, 39, 6789–6801. [Google Scholar] [CrossRef]
- De-León Almaraz, S.; Azzaro-Pantel, C.; Montastruc, L.; Domenech, S. Hydrogen supply chain optimization for deployment scenarios in the Midi-Pyrénées region, France. Int. J. Hydrogen Energy 2014, 39, 11831–11845. [Google Scholar] [CrossRef]
- Kim, J.; Moon, I. Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization. Int. J. Hydrogen Energy 2008, 33, 5887–5896. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Moon, I. Optimization of a hydrogen supply chain under demand uncertainty. Int. J. Hydrogen Energy 2008, 33, 4715–4729. [Google Scholar] [CrossRef]
- Almansoori, A.; Betancourt-Torcat, A. Design of optimization model for a hydrogen supply chain under emission constraints—A case study of Germany. Energy 2016, 111, 414–429. [Google Scholar] [CrossRef]
- Nunes, P.; Oliveira, F.; Hamacher, S.; Almansoori, A. Design of a hydrogen supply chain with uncertainty. Int. J. Hydrogen Energy 2015, 40, 16408–16418. [Google Scholar] [CrossRef]
- Moreno-Benito, M.; Agnolucci, P.; Papageorgiou, L.G. Towards a sustainable hydrogen economy: Optimisation-based framework for hydrogen infrastructure development. Comput. Chem. Eng. 2017, 102, 110–127. [Google Scholar] [CrossRef]
- Agnolucci, P.; Akgul, O.; McDowall, W.; Papageorgiou, L.G. The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: An exploration with SHIPMod (Spatial hydrogen infrastructure planning model). Int. J. Hydrogen Energy 2013, 38, 11189–11201. [Google Scholar] [CrossRef]
- Sun, P.; Elgowainy, A. Updates of Hydrogen Production from SMR Process in GREET® 2019; Argonne National Laboratory: Lemont, IL, USA, 2019; p. 7. [Google Scholar]
- Wickham, D.; Hawkes, A.; Jalil-Vega, F. Hydrogen supply chain optimisation for the transport sector–Focus on hydrogen purity and purification requirements. Appl. Energy 2022, 305, 117740. [Google Scholar] [CrossRef]
- Erdoğan, A.; Geçici, E.; Güler, M.G. Design of a future hydrogen supply chain: A multi-objective model for Turkey. Int. J. Hydrogen Energy 2023, 48, 11775–11789. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Al-Mohannadi, D.M. Optimization of low-carbon hydrogen supply chain networks in industrial clusters. Int. J. Hydrogen Energy 2023, 48, 13325–13342. [Google Scholar] [CrossRef]
- Güler, M.G.; Geçici, E.; Erdoğan, A. Design of a future hydrogen supply chain: A multi period model for Turkey. Int. J. Hydrogen Energy 2021, 46, 16279–16298. [Google Scholar] [CrossRef]
- Forghani, K.; Kia, R.; Nejatbakhsh, Y. A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman. Renew. Sustain. Energy Rev. 2023, 173, 113051. [Google Scholar] [CrossRef]
- Cantú, V.H.; Ponsich, A.; Azzaro-Pantel, C.; Carrera, E. Capturing spatial, time-wise and technological detail in hydrogen supply chains: A bi-level multi-objective optimization approach. Appl. Energy 2023, 344, 121159. [Google Scholar] [CrossRef]
- Erdoğan, A.; Güler, M.G. Optimization and analysis of a hydrogen supply chain in terms of cost, CO2 emissions, and risk: The case of Turkey. Int. J. Hydrogen Energy 2023, 48, 22752–22765. [Google Scholar] [CrossRef]
- Li, M.; Ming, P.; Huo, R.; Mu, H.; Zhang, C. Optimizing design and performance assessment of a sustainability hydrogen supply chain network: A multi-period model for China. Sustain. Cities Soc. 2023, 92, 104444. [Google Scholar] [CrossRef]
- Robles, J.O.; Azzaro-Pantel, C.; Aguilar-Lasserre, A. Optimization of a hydrogen supply chain network design under demand uncertainty by multi-objective genetic algorithms. Comput. Chem. Eng. 2020, 140, 106853. [Google Scholar] [CrossRef]
- Sharma, G.D.; Verma, M.; Taheri, B.; Chopra, R.; Parihar, J.S. Socio-economic aspects of hydrogen energy: An integrative review. Technol. Forecast. Soc. Change 2023, 192, 122574. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Li, Y. Consumer willingness to purchase hydrogen fuel cell vehicles: A meta-analysis of the literature. Int. J. Hydrogen Energy 2023, in press. [Google Scholar] [CrossRef]
- Fazli-Khalaf, M.; Naderi, B.; Mohammadi, M.; Pishvaee, M.S. Design of a sustainable and reliable hydrogen supply chain network under mixed uncertainties: A case study. Int. J. Hydrogen Energy 2020, 45, 34503–34531. [Google Scholar] [CrossRef]
- Uyar, T.S.; Beşikci, D. Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. Int. J. Hydrogen Energy 2017, 42, 2453–2456. [Google Scholar] [CrossRef]
- Hwangbo, S.; Lee, I.B.; Han, J. Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty. Appl. Energy 2017, 195, 257–267. [Google Scholar] [CrossRef]
- Samsatli, S.; Samsatli, N.J. A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies. Appl. Energy 2018, 220, 893–920. [Google Scholar] [CrossRef]
- Al-Kuwari, O.; Schönfisch, M. The emerging hydrogen economy and its impact on LNG. Int. J. Hydrogen Energy 2022, 47, 2080–2092. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.; Hou, B. A hybrid algorithm for mixed integer nonlinear programming in residential energy management. J. Clean. Prod. 2019, 226, 940–948. [Google Scholar] [CrossRef]
- Vahid-Pakdel, M.J.; Nojavan, S.; Mohammadi-Ivatloo, B.; Zare, K. Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Convers. Manag. 2017, 145, 117–128. [Google Scholar] [CrossRef]
- Zhang, L.; Kuang, J.; Sun, B.; Li, F.; Zhang, C. A two-stage operation optimization method of integrated energy systems with demand response and energy storage. Energy 2020, 208, 118423. [Google Scholar] [CrossRef]
- Yoon, H.-J.; Seo, S.-K.; Lee, C.-J. Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen. Renew. Sustain. Energy Rev. 2022, 157, 112083. [Google Scholar] [CrossRef]
- Babonneau, F.; Benlahrech, M.; Haurie, A. Transition to zero-net emissions for Qatar: A policy based on Hydrogen and CO2 capture & storage development. Energy Policy 2022, 170, 113256. [Google Scholar]
- Okonkwo, E.C.; Al-Breiki, M.; Bicer, Y.; Al-Ansari, T. Sustainable hydrogen roadmap: A holistic review and decision-making methodology for production, utilisation and exportation using Qatar as a case study. Int. J. Hydrogen Energy 2021, 46, 35525–35549. [Google Scholar] [CrossRef]
- Hjeij, D.; Biçer, Y.; Koç, M. Hydrogen strategy as an energy transition and economic transformation avenue for natural gas exporting countries: Qatar as a case study. Int. J. Hydrogen Energy 2022, 47, 4977–5009. [Google Scholar] [CrossRef]
- Malik, A.I.; Sarkar, B. Coordination supply chain management under flexible manufacturing, stochastic leadtime demand, and mixture of inventory. Mathematics 2020, 8, 911. [Google Scholar] [CrossRef]
- Fazli-Khalaf, M.; Khalilpourazari, S.; Mohammadi, M. Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Ann. Oper. Res. 2019, 283, 1079–1109. [Google Scholar] [CrossRef]
- Cardin, M.; Ranjbar-Bourani, M.; De Neufville, R. Improving the lifecycle performance of engineering projects with flexible strategies: Example of on-shore LNG production design. Syst. Eng. 2015, 18, 253–268. [Google Scholar] [CrossRef]
- Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Appl. Energy 2017, 200, 290–302. [Google Scholar] [CrossRef]
- He, G.; Mallapragada, D.S.; Bose, A.; Heuberger, C.F.; Gençer, E. Hydrogen supply chain planning with flexible transmission and storage scheduling. IEEE Trans. Sustain. Energy 2021, 12, 1730–1740. [Google Scholar] [CrossRef]
Reference | Decision Problem | Supply Chain Type | Deterministic/Stochastic | Modelling Approach | Planning Level | Region |
---|---|---|---|---|---|---|
Hasle et al. [58] | Portfolio optimisation model for the natural gas value chain | Natural gas pipeline network (transportation, storage, and markets) | Stochastic | Two-stage MILP | Strategic/tactical | Norway and import terminals in the UK, France, Belgium, and Germany |
Alves et al. [84] | Design optimisation of natural gas transmission network | Natural gas pipeline network (single source and sink) | Deterministic | Multi-objective NLP | Tactical | Not applicable |
Chebouba [127] | Optimisation of power consumed in a natural gas supply chain | Natural gas pipeline network | Stochastic | Dynamic optimisation | Operational | Hassi R’ mell-Arzew gas pipeline, Algeria |
Martin et al. [128] | Optimising the flow of natural gas | Natural gas pipeline network | Deterministic | MINLP | Operational | Ruhrgas network, Germany |
Mikolajková et al. [129] | Design optimisation of natural gas pipeline network | Natural gas pipeline network | Deterministic | MILP | Strategic | Pori in Southwest Finland |
Turan and Falmand [130] | Design and planning optimisation of natural gas supply chain with producers and mid-streamers with respect to new infrastructure investment decisions | Natural gas pipeline network (regasification, storage, and distribution) | Deterministic | MILP | Strategic | EU |
Wang et al. [131] | Design optimisation of natural gas pipeline network | Natural gas pipeline network | Deterministic | Multi-period MILP | Strategic | Shanxi Province in China |
Zarei and Amin-Naseri [132] | Design and planning optimisation of the overall natural gas supply chain | Natural gas supply chain | Deterministic | MILP | Strategic | Iran |
Wen et al. [133] | Allocation and optimisation of the natural gas transmission network subject to changes in downstream users’ demand | Natural gas pipeline network | Stochastic | Multi-period MINLP | Tactical | China |
Hamedi et al. [136] | Distribution planning of the natural gas network | Natural gas pipeline network | Deterministic | Multi-period MILP | Operational | Not applicable |
Demissie et al. [137] | Distribution planning of natural gas pipeline network | Natural gas pipeline network | Deterministic | Multi-objective NLP | Operational | Not applicable |
Reference | Decision Problem | Supply Chain Type | Deterministic/ Stochastic | Modelling Approach | Planning Level | Region |
---|---|---|---|---|---|---|
Bittante et al. [138] | Optimisation of the supply chain from the point of view of shipping | LNG supply chain | Stochastic | MILP | Strategic | Gulf of Bothnia |
Bittante et al. [139] | Design and multi-period planning optimisation of an LNG supply chain with sea and land transportation | LNG supply chain | Deterministic | Multi-period MILP | Strategic/ tactical | Gulf of Bothnia |
Bittante and Saxén [140] | Design and multi-period planning optimisation of a small-scale supply chain with sea and land transportation | LNG supply chain | Deterministic | Multi-period MILP | Strategic/ tactical | Gulf of Bothnia |
Utku and Soyöz [141] | Design and planning of the supply chain subject to demand uncertainty | NG/LNG supply chain | Stochastic | LP | Strategic/tactical | Not applicable |
Zhang et al. [142] | Planning for developing infrastructure and inventory routing | LNG supply chain | Stochastic | Three-stage MINLP | Operational | China |
Elia et al. [144,145] | Design and planning optimisation of the supply chain | GTL supply chain | Deterministic | MILP | Strategic/ tactical | The U.S. |
Bittante et al. [146] | Design and planning optimisation of a small-scale supply chain with sea and land transportation | LNG supply chain | Deterministic | MILP | Strategic/ tactical | Gulf of Bothnia |
Li et al. [143] | Planning of natural gas infrastructure development under uncertainty | LNG supply chain | Stochastic | Two-stage MINLP | Tactical | Malaysia |
Reference | Decision Problem | Supply Chain Type | Deterministic/Stochastic | Model | Planning Level | Region |
---|---|---|---|---|---|---|
Al-Sobhi and Elkamel [148] | Simulation and optimisation of a natural gas production network consisting of LNG, GTL, and methanol facilities | Natural gas processing units: LNG, GTL, and methanol, with byproducts | Deterministic | LP | Strategic | Not applicable |
Al-Sobhi et al. [149] | Simulation and optimisation of a natural gas production network consisting of LNG, GTL, and methanol facilities | Natural gas processing units: LNG, GTL, and methanol, with byproducts | Deterministic | MILP | Strategic | Not applicable |
Zarei and Amin-Naseri [151] | Enviro-economic design and planning optimisation of the overall natural gas supply chain | Multi-product natural gas supply chain | Deterministic | Multi-objective MILP | Strategic/tactical | Iran |
Zhang et al. [152] | Design and operational optimisation of the natural gas supply chain subject to demand and purchase price uncertainties | Natural gas supply chain: gaseous, LNG, and CNG | Stochastic | MILP | Strategic/ tactical | China |
Zhang et al. [153] | Enviro-economic design and operation optimisation under three risk attitude scenarios caused by uncertain gas demand | Natural gas supply chain: gaseous, LNG, and CNG | Stochastic-Scenario based | Risk neutral: MILP Risk aversion: MIQP Risk-taking: MINLP | Strategic/ tactical | China |
Mikolajková-Alifov et al. [154] | Design optimisation of gas supply to customers | Natural gas supply chain: LNG, GTL, and upgraded biogas | Deterministic | MILP | Strategic | Western Finland |
External Heating | Catalyst | Oxidation | Temperature (°C) | Efficiency (%) | CO2 Capture | |
---|---|---|---|---|---|---|
Steam methane reforming (SMR) | Required | Required | N/A | 800–1100 | 70–85 | Pre- and post-combustion |
Partial oxidation of methane (POM) | N/A | N/A | Required | 950–1500 | 55–75 | Post-combustion |
Autothermal reforming (ATR) | N/A | Required | Required | 700–1000 | 60–75 | Post-combustion |
Reference | Planning Level | Model | Objective Functions | Demand Uncertainty | Region |
---|---|---|---|---|---|
Seo et al. [186] | Strategic | Spatially explicit MILP |
| No | South Korea |
Almansoori and Shah [187] | Strategic | Multi-period MILP |
| No | Great Britain |
Almansoori and Shah [188] | Strategic | MILP |
| No | Great Britain |
Almansoori and Shah [189] | Strategic | Multi-period multistage MILP |
| Yes | Great Britain |
Dayhim et al. [190] | Strategic | Multi-period two-stage MILP |
| Yes | New Jersey, USA |
Almaraz et al. [191] | Strategic | Multi-period MILP |
| Yes | Midi-Pyrénées region, France |
Kim and Moon [192] | Strategic | Two-stage MILP |
| Yes | South Korea |
Kim et al. [193] | Strategic | Steady-state two-stage MILP |
| Yes | South Korea |
Almansoori and Betancourt-Torcat [194] | Strategic | MILP |
| No | Germany |
Nunes et al. [195] | Strategic | Two-stage MILP |
| Yes | Great Britain |
Moreno-Benito et al. [196] | Strategic | Multi-period spatially explicit MILP |
| No | The UK |
Wickham et al. [199] | Strategic | LP |
| No | Great Britain |
Erdoğan et al. [200] | Strategic | Multi-period MILP |
| No | Turkey |
Ibrahim and Al-Mohannadi [201] | Strategic | Spatial MILP |
| No | Qatar |
Güler et al. [202] | Strategic | Multi-period MIP |
| No | Turkey |
Forghani et al. [203] | Strategic | Two-stage Multi-period MIP |
| No | Oman |
Cantú et al. [204] | Strategic | Multi-period spatial MINLP |
| No | Midi-Pyrénées region, France |
Erdoğan and Güler [205] | Strategic | Multi-period MILP |
| Yes | Turkey |
Li et al. [206] | Strategic | Spatiotemporal MILP |
| No | Dalian, China |
Robles et al. [207] | Strategic | Multi-period MILP |
| Yes | Midi-Pyrénées region, France |
Fazli-Khalaf et al. [210] | Strategic/Tactical | MILP |
| Yes | Iran |
Reference | Planning Level | Model | Objective Functions | Supply Chain Products/Services | Demand Uncertainty | Region |
---|---|---|---|---|---|---|
Quarton and Samsatli [35] | Strategic/tactical | Spatiotemporal MILP (value web model) |
| Heat, electricity, liquid fuels, hydrogen, CO2, and/or methanol | Yes | Great Britain |
Hwangbo et al. [212] | Strategic | Multi-period spatially explicit two-stage MILP |
| Natural gas and utilities, including water and steam | Yes | South Korea |
Samsatli and Samsatli [213] | Strategic/tactical | Spatiotemporal MILP (value web model) |
| Heat, electricity, and hydrogen for mobility | No | Great Britain |
Yoon et al. [218] | Strategic | Multi-period spatially explicit MILP |
| Hydrogen | Yes | South Korea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yusuf, N.; Al-Ansari, T. Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models. Energies 2023, 16, 7672. https://doi.org/10.3390/en16227672
Yusuf N, Al-Ansari T. Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models. Energies. 2023; 16(22):7672. https://doi.org/10.3390/en16227672
Chicago/Turabian StyleYusuf, Noor, and Tareq Al-Ansari. 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models" Energies 16, no. 22: 7672. https://doi.org/10.3390/en16227672
APA StyleYusuf, N., & Al-Ansari, T. (2023). Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models. Energies, 16(22), 7672. https://doi.org/10.3390/en16227672