The Effects of Using a Trombe Wall Modified with a Phase Change Material, from the Perspective of a Building’s Life Cycle
Abstract
:1. Introduction
1.1. Application of PCM in Thermal Storage Wall
1.2. Energetic and Environmental Costs of Thermal Energy Storage
2. Methods
2.1. The Subject of the Study
- V1 with a traditional southern wall made of clay brick and rock wool with no modification, U = 0.2 W/(m2K);
- V2 with a PCM-modified southern wall made of light clay brick and paraffin located in the middle layer, U = 0.401 W/(m2K).
2.2. Real Data Collection
2.3. Laboratory Tests of Paraffin
2.4. Modeling of Building Energy Balance in TMY
2.5. LCA Specifications
3. Results
3.1. Material and Energy Balance of the Analyzed TSW
3.1.1. Material Balance
3.1.2. Energy Balance and Stability of Properties
- Scenario 1: with no deterioration in thermal properties (constant efficiency of the TSW);
- Scenario 2: with a linear change in efficiency resulting from a 17% latent heat increase and assumed 4% decrease caused by the temperature interval, resulting in a 2% yearly increase in the efficiency of the TSW in the first 6 years of operation (tested period).
3.2. Life Cycle Impact Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S.A. Comprehensive review of solar facades. Opaque solar facades. Renew. Sustain. Energy Rev. 2012, 16, 2820–2832. [Google Scholar] [CrossRef]
- Marani, A.; Nehdi, M.L. Integrating phase change materials in construction materials: Critical review. Constr. Build. Mater. 2019, 217, 36–49. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Ismail, A.; Wang, J.; Salami, B.A.; Oyedele, L.O.; Otukogbe, G.K. Microencapsulated phase change materials for enhanced thermal energy storage performance in construction materials: A critical review. Constr. Build. Mater. 2023, 401, 132877. [Google Scholar] [CrossRef]
- Zalewski, L.; Joulin, A.; Lassue, S.; Dutil, Y.; Rousse, D. Experimental study of small-scale solar wall integrating phase. Sol. Energy 2012, 86, 208–219. [Google Scholar] [CrossRef]
- Knowles, T.R. Proportioning composites for efficient thermal storage walls. Sol. Energy 1983, 31, 319–326. [Google Scholar] [CrossRef]
- Bénard, C.; Body, Y.; Zanoli, A. Experimental comparison of latent and sensible heat thermal walls. Sol. Energy 1985, 34, 475–487. [Google Scholar] [CrossRef]
- Bourdeau, L. Utilisation d’un matériau changement de phase dans un mur Trombe sans thermocirculation. Rev. Phys. Appl. 1982, 17, 633–642. [Google Scholar] [CrossRef]
- Leang, E.; Tittelein, P.; Zalewski, L.; Lassue, S. Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. Energy Procedia 2017, 122, 1009–1014. [Google Scholar] [CrossRef]
- Leang, E.; Tittelein, P.; Zalewski, L.; Lassue, S. Design Optimization of a Composite SolarWall Integrating a PCM in an Individual House: Heating Demand and Thermal Comfort Considerations. Energies 2020, 13, 5640. [Google Scholar] [CrossRef]
- Xiong, Q.; Alshehri, H.M.; Monfaredi, R.; Tayebi, T.; Majdoub, F.; Hajjar, A.; Delpisheh, M.; Izadi, M. Application of phase change material in improving Trombe wall efficiency: An up-to-date and comprehensive overview. Energy Build. 2022, 258, 111824. [Google Scholar] [CrossRef]
- Zhu, Q.; Ong, P.J.; Goh, S.H.A.; Yeo, R.J.; Wang, S.; Liu, Z.; Loh, X.J. Recent advances in graphene-based phase change composites for thermal energy storage and management. Nano Mater. Sci. 2023, in press, corrected proof. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Xu, Q.; Luo, Q.; Xuan, Y. MXene reconciles concurrent enhancement of thermal conductivity and mechanical robustness of SiC-based thermal energy storage composites. DeCarbon 2023, 1, 100005. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Li, Y.; Gao, Y.; Wang, G. Integrating multiple energy storage in 1D–2D bridged array carbon-based phase change materials. SusMat 2023, 3, 510–521. [Google Scholar] [CrossRef]
- Khalifa, A.J.N.; Abbas, E.F. A comparative performance study of some thermal storage materials used for solar space heating. Energy Build. 2009, 41, 407–415. [Google Scholar] [CrossRef]
- De Gracia, A.; Navarro, L.; Castell, A.; Ruíz-Pardo, Á.; Álvarez, D.S.; Cabeza, L.F. Experimental study of a ventilated facade with PCM during winter period. Energy Build. 2013, 58, 324–332. [Google Scholar] [CrossRef]
- Zhou, G.; Pang, M. Experimental investigations on the performance of a collector–storage wall system using phase change materials. Energy Convers. Manag. 2015, 105, 178–188. [Google Scholar] [CrossRef]
- Souayfane, F.; Biwole, P.H.; Fardoun, F. Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime. Appl. Energy 2018, 217, 390–408. [Google Scholar] [CrossRef]
- Szyszka, J. Experimental Evaluation of the Heat Balance of an Interactive GlassWall in A Heating Season. Energies 2020, 13, 632. [Google Scholar] [CrossRef]
- Krasoń, J.; Lichołai, L. Thermal efficiency of a modified thermal storage wall containing phase change material in comparative test periods. E3S Web Conf. 2018, 49, 59. [Google Scholar] [CrossRef]
- Necib, H.; Settou, N.; Saifi, N.; Damene, D. Experimental and Numerical Study of a Usual Brick Filled with PCM to Improve the Thermal Inertia of Buildings. Energy Procedia 2013, 36, 766–775. [Google Scholar] [CrossRef]
- Gao, Y.; He, F.; Meng, X.; Wang, Z.; Zhang, M.; Yu, H.; Gao, W. Thermal behavior analysis of hollow bricks filled with phase-change material (PCM). J. Build. Eng. 2020, 31, 101447. [Google Scholar] [CrossRef]
- Mahdaoui, M.; Hamdaoui, S.; Ait Msaad, A.; Kousksou, T.; El Rhafiki, T.; Jamil, A.; Ahachad, M. Building bricks with phase change material (PCM): Thermal performances. Constr. Build. Mater. 2021, 269, 121315. [Google Scholar] [CrossRef]
- Abbas, H.M.; Jalil, J.M.; Ahmed, S.T. Experimental and numerical investigation of PCM capsules as insulation materials inserted into a hollow brick wall. Energy Build. 2021, 246, 111127. [Google Scholar] [CrossRef]
- Krasoń, J.; Miąsik, P.; Lichołai, L.; Dębska, B.; Starakiewicz, A. Analysis of the Thermal Characteristics of a Composite Ceramic Product Filled with Phase Change Material. Buildings 2019, 9, 217. [Google Scholar] [CrossRef]
- Nwodo, M.N.; Anumba, C.J. A review of life cycle assessment of buildings using a systematic approach. Build. Environ. 2019, 162, 106290. [Google Scholar] [CrossRef]
- Żelazna, A.; Gołebiowska, J.; Zdyb, A.; Pawłowski, A. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 2020, 13, 3978. [Google Scholar] [CrossRef]
- Toosi, H.A.; Lavagna, M.; Leonforte, F.; Del Pero, C.; Aste, A. Building decarbonization: Assessing the potential of building-integrated photovoltaics and thermal energy storage systems. Energy Rep. 2022, 8, 574–581. [Google Scholar] [CrossRef]
- David, B.D.; Spencer, S.; Miller, J.; Almahmoud, S.; Jouhara, H. Comparative environmental life cycle assessment of conventional energy storage system and innovative thermal energy storage system. Int. J. Thermofluids 2021, 12, 100116. [Google Scholar] [CrossRef]
- Bari, R.D.; Horn, R.; Nienborg, B.; Klinker, F.; Kieseritzky, E.; Pawelz, F. The Environmental Potential of Phase Change Materials in Building Applications. A Multiple Case Investigation Based on Life Cycle Assessment and Building Simulation. Energies 2020, 13, 3045. [Google Scholar] [CrossRef]
- Nöel, J.A.; Allred, P.M.; White, M.A. Life cycle assessment of two biologically produced phase change materials and their related products. Int. J. LCA 2015, 20, 367–376. [Google Scholar] [CrossRef]
- Boer, D.; Segarra, M.; Fernández, A.I.; Vallès, M.; Mateu, C.; Cabeza, L.F. Approach for the analysis of TES technologies aiming towards a circular economy: Case study of building-like cubicles. Renew. Energy 2019, 150, 589–597. [Google Scholar] [CrossRef]
- Sobolciak, P.; Abdelrazeq, H.; Özerkan, N.G.; Ouederni, M.; Nógellová, Z.; AlMaadeed, M.A.; Karkri, M.; Krupa, I. Heat transfer performance of paraffin wax based phase change materials applicable in building industry. Appl. Therm. Eng. 2016, 107, 1313–1323. [Google Scholar] [CrossRef]
- Horn, R.; Burr, M.; Fröhlich, D.; Gschwander, S.; Held, M.; Lindner, J.P.; Munz, G.; Nienborg, B.; Schossig, P. Life cycle assessment of innovative materials for thermal energy storage in buildings. Procedia CIRP 2018, 69, 206–211. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-obaidi, M.A.; Dulaimi, A.; Mahmood, D.M.N. A Review of Recent Improvements, Developments, and Effects of Using Phase-Change Materials in Buildings to Store Thermal Energy. Designs 2023, 7, 90. [Google Scholar] [CrossRef]
- Firman, L.O.M.; Ismail; Rahmalina, D.; Rahman, R.A. The impact of thermal aging on the degradation of technical parameter of a dynamic latent thermal storage system. Int. J. Thermofluids 2023, 19, 100401. [Google Scholar] [CrossRef]
- Vasu, A.; Hagos, F.Y.; Mamat, R.; Kaur, J.; Noor, M.M. The effect of thermal cyclic variation on the thermophysical property degradation of paraffin as a phase changing energy storage material. Appl. Therm. Eng. 2019, 149, 22–33. [Google Scholar] [CrossRef]
- Shukla, D.; Buddhi, R.S. Thermal cycling test of few selected inorganic and organic phase change materials. Renew. Energy 2008, 33, 2606–2614. [Google Scholar] [CrossRef]
- Jachura, A.; Sekret, R. Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector. Energies 2021, 14, 4146. [Google Scholar] [CrossRef]
- Sustainable Production of Industrial Recovered Energy Using Energy Dissipative and Storage Technologies. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5cc6a74d4&appId=PPGMS (accessed on 20 September 2023).
- ISO/FDIS 13790:2007(E); Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling. ISO: Geneva, Switzerland, 2007.
- Grudzińska, M. The influence of sunspaces on the heating demand in living spaces—Comparison of calculation methods according to ISO 13790. Bud. I Archit. 2021, 20, 69–82. (In Polish) [Google Scholar] [CrossRef]
- Corrado, V.; Mechri, H.E.; Fabrizio, E. Building energy performance assessment through simplified models: Application of the ISO 13790 quasi-steady state method. In Proceedings of the Building Simulation 2007, Beijing, China, 3–6 September 2007; pp. 79–86. [Google Scholar]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- US EPA. Available online: https://www.epa.gov (accessed on 5 October 2023).
- Olczak, P.; Żelazna, A.; Matuszewska, D.; Olek, M. The “My Electricity” Program as One of the Ways to Reduce CO2 Emissions in Poland. Energies 2021, 14, 7679. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. LCA 2003, 8, 324–330. [Google Scholar] [CrossRef]
- Sovetova, M.; Memon, S.A.; Kim, J. Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Sol. Energy 2019, 189, 357–371. [Google Scholar] [CrossRef]
- Qu, Y.; Zhou, D.; Xue, F.; Cui, L. Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer. Energy Build. 2021, 241, 110966. [Google Scholar] [CrossRef]
- Rahmalina, D.; Rahman, R.A.; Ismail. Increasing the rating performance of paraffin up to 5000 cycles for active latent heat storage by adding high-density polyethylene to form shape-stabilized phase change material. J. Energy Storage 2022, 46, 103762. [Google Scholar] [CrossRef]
- Soto, J.; Jadal, M.; Guyenro, d.N.; Delaunay, D. Thermal cycling aging of encapsulated phase change material—Compressed expanded natural graphite composite. Therm. Sci. Eng. Prog. 2021, 22, 100836. [Google Scholar] [CrossRef]
- Zhang, L.; Jiankai, D. Experimental study on the thermal stability of a paraffin mixture with up to 10,000 thermal cycles. Therm. Sci. Eng. Prog. 2017, 1, 78–87. [Google Scholar] [CrossRef]
- Lee, E.J.; Park, Y.K.; Lee, Y.-S.; Lim, K.-H. Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend. Korean J. Chem. Eng. 2010, 27, 524–530. [Google Scholar] [CrossRef]
- Shamseddine, I.; Pennec, F.; Biwole, P.; Fardoun, F. Supercooling of phase change materials: A review. Renew. Sust. Energ. Rev. 2022, 158, 112172. [Google Scholar] [CrossRef]
- Saxena, R.; Rakshit, D.; Kaushik, S.C. Phase change material (PCM) incorporated bricks for energy conservation in composite climate: A sustainable building solution. Sol. Energy 2019, 183, 276–284. [Google Scholar] [CrossRef]
- Vega, M.; Llantoy, N.; Chafer, M.; Ushak, S.; Cabeza, L.F. Life cycle assessment of the inclusion of phase change materials in lightweight buildings. J. Energy Storage 2022, 56, 105903. [Google Scholar] [CrossRef]
- De Gracia, A.; Rincón, L.; Castell, A.; Jiménez, M.; Boer, D.; Medrano, M.; Cabeza, L.F. Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings. Energy Build. 2010, 42, 1517–1523. [Google Scholar] [CrossRef]
Material/Parameters | Melting Range | Solidification Range | Specific Heat | Thermal Conductivity | Heat of Phase Change (Latent Heat) | Density |
---|---|---|---|---|---|---|
- | °C | °C | kJ/(kg·K) | W/(m·K) | kJ/kg | kg/m3 |
ceramic hollow brick | - | - | 1.0 | 0.266 | - | (gross) 702 |
PCM RT25HC | 22–26 | 26–22 | 2.0 | (both phases) 0.2 | 230 ± 7.5% | solid state 880 liquid state 770 |
ceramic brick flour | - | - | - | 0.456 | - | 1700 |
Type of External Barrier | Surface Area | Overall Heat Transfer Coefficient U | Materials for Construction |
---|---|---|---|
- | m2 | W/(m2K) | - |
External walls | 101.9 | 0.14 | Light clay brick, rock wool, base plaster, alkyd paint |
Southern wall (V1) | 20.2 | 0.2 | Light clay block, rock wool, base plaster, alkyd paint |
Southern wall (V2) | 20.2 | 0.401 | Light clay block (block plus recyclate), paraffin in PP cover, window frame, alkyd paint, flat glass |
Floor on the ground | 105.95 | 0.2 | Sand, poor concrete, PE foil, PS, wood |
Insulated ceiling | 105.95 | 0.15 | Base plaster, reinforced concrete blocks, PE foil, PS, poor concrete |
Internal wall | 130.2 | 0.98 | Lightweight concrete blocks, base plaster, alkyd paint |
Roof | 121.8 | 0.15 | Steel, PE membrane, rock wool, wood, base plaster |
Windows | 15.2 | 0.6 | Window frame, flat glass |
Doors | 2.1 | 0.9 | External doors |
Month | Qew [kWh] | Qua [kWh] | Qfl [kWh] | Qvent [kWh] | Qint [kWh] | Qs [kWh] | Qh [kWh] |
---|---|---|---|---|---|---|---|
January | 637.0 | 449.8 | 158.0 | 760.9 | 0.0 | 0.0 | 1337.6 |
February | 460.7 | 325.3 | 144.3 | 1981.4 | −1270.1 | −1496.7 | 824.1 |
March | 492.0 | 347.4 | 158.0 | 2115.8 | −1406.2 | −2645.2 | 734.9 |
April | 300.7 | 212.3 | 148.4 | 1293.2 | −1360.8 | −3740.3 | 293.2 |
May | 31.3 | 22.1 | 23.7 | 134.7 | −226.8 | −819.4 | 19.9 |
June | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
July | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
August | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
September | 23.8 | 16.8 | 21.9 | 102.4 | −226.8 | −492.8 | 17.9 |
October | 341.8 | 241.3 | 140.6 | 1469.9 | −1406.2 | −2029.2 | 469.2 |
November | 451.0 | 318.5 | 142.3 | 1939.8 | −1360.8 | −1127.2 | 844.2 |
December | 548.9 | 387.6 | 153.4 | 2360.8 | −1406.2 | −961.2 | 1134.3 |
Sum | 11,834.0 | 8355.6 | 3926.0 | 14,137.2 | −10,069.9 | −14,462.7 | 5675.1 |
Month | Temperature of Air in Chamber | Mean Air Temperature in Months (Measured) | Mean Temperature in Months (TMY) | Irradiation on Horizontal Plane (Measured) | Irradiation on Horizontal Plane (TMY) | Energy Balance of Wall V2 (Measured) | Energy Balance of Wall V2 (TMY) |
---|---|---|---|---|---|---|---|
°C | °C | °C | kWh/m2 | kWh/m2 | kWh/m2 | kWh/m2 | |
January | 19.9 | 1.4 | −4.6 | 32.3 | 31.1 | −0.197 | 2.952 |
February | 20.1 | −3.0 | 0.3 | 47.2 | 41.9 | −1.110 | −1.188 |
March | 19.8 | 1.2 | 1.0 | 97.1 | 74.5 | −6.003 | −3.227 |
April | 20.2 | 14.9 | 8.0 | 151.7 | 109.8 | −11.301 | −5.775 |
May | 20.2 | 17.7 | 12.5 | 188.1 | 150.2 | −0.785 | −0.245 |
June | 20.3 | 19.3 | 16.8 | 161.3 | 163.4 | 0.000 | 0.000 |
July | 20.3 | 20.6 | 16.9 | 159.6 | 149.9 | 0.000 | 0.000 |
August | 20.4 | 21.2 | 17.7 | 161.9 | 134.3 | 0.000 | 0.000 |
September | 20.0 | 16.2 | 14.3 | 125.4 | 84.8 | −0.524 | −0.263 |
October | 20.0 | 10.5 | 6.8 | 61.8 | 55.8 | −7.935 | −5.800 |
November | 19.5 | 4.9 | 2.0 | 32.1 | 30.2 | −1.747 | −0.554 |
December | 19.3 | 2.7 | −1.2 | 19.1 | 25.5 | 1.203 | 1.144 |
SUM | −12.957 |
Month | QH Wall V1 | QH,TSW Wall V2 |
---|---|---|
kWh | kWh | |
January | 89.05 | 59.62 |
February | 54.87 | −23.99 |
March | 48.93 | −65.18 |
April | 19.52 | −116.66 |
May | 1.32 | −4.94 |
June | 0.00 | 0.00 |
July | 0.00 | 0.00 |
August | 0.00 | 0.00 |
September | 1.19 | −5.32 |
October | 31.24 | −117.17 |
November | 56.20 | −11.20 |
December | 75.52 | 23.11 |
Sum | 377.83 | −261.72 |
Sample No. | Melting Temperature (Beginning) | Melting Temperature (End) | Latent Heat of Fusion |
---|---|---|---|
°C | °C | J/g | |
Stored no. 1 | 21.01 | 26.84 | 232.03 |
Stored no. 2 | 21.96 | 25.98 | 237.37 |
Stored no. 3 | 21.69 | 26.18 | 246.66 |
Working no. 1 | 22.45 | 29.89 | 278.81 |
Working no. 2 | 22.19 | 29.17 | 278.52 |
Working no. 3 | 22.41 | 29.78 | 283.64 |
Stored, mean | 21.55 | 26.33 | 238.69 |
Working, mean | 22.35 | 29.61 | 280.32 |
Variant of LCA | GWP, MgCO2eq | |||
---|---|---|---|---|
Construction | 1 yr Operation | Cumulated Load, 50 yrs | Avoided Emission | |
V1 | 81.028 | 1.600 | 161.027 | 0.000 |
V2 SC1 | 81.076 | 1.420 | 152.060 | 8.967 |
V2 SC2 | 81.076 | 1.420–2%diff./yr | 150.899 | 10.128 |
Variant of LCA | IMPACT 2002+, Pt | |||
---|---|---|---|---|
Construction | 1 yr Operation | Cumulated Load, 50 yrs | Avoided Impact | |
V1 | 21.461 | 0.381 | 40.533 | 0.000 |
V2 SC1 | 21.663 | 0.338 | 38.585 | 1.947 |
V2 SC2 | 21.663 | 0.338 | 38.309 | 2.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żelazna, A.; Lichołai, L.; Krasoń, J.; Miąsik, P.; Mikušová, D. The Effects of Using a Trombe Wall Modified with a Phase Change Material, from the Perspective of a Building’s Life Cycle. Energies 2023, 16, 7689. https://doi.org/10.3390/en16237689
Żelazna A, Lichołai L, Krasoń J, Miąsik P, Mikušová D. The Effects of Using a Trombe Wall Modified with a Phase Change Material, from the Perspective of a Building’s Life Cycle. Energies. 2023; 16(23):7689. https://doi.org/10.3390/en16237689
Chicago/Turabian StyleŻelazna, Agnieszka, Lech Lichołai, Joanna Krasoń, Przemysław Miąsik, and Dominika Mikušová. 2023. "The Effects of Using a Trombe Wall Modified with a Phase Change Material, from the Perspective of a Building’s Life Cycle" Energies 16, no. 23: 7689. https://doi.org/10.3390/en16237689
APA StyleŻelazna, A., Lichołai, L., Krasoń, J., Miąsik, P., & Mikušová, D. (2023). The Effects of Using a Trombe Wall Modified with a Phase Change Material, from the Perspective of a Building’s Life Cycle. Energies, 16(23), 7689. https://doi.org/10.3390/en16237689