Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation
Abstract
:1. Introduction
- The European Solar Rooftops Initiative, promoting—and possibly setting requirements for—a growing installation of PV panels;
- A large-scale skills partnership, developing an expert workforce in the sector;
- An industry alliance, a forum of stakeholders that aims to maximize investment opportunities and diversify the supply chain.
2. Research Outline and Methodology
3. Results: Framework of the Studies
3.1. Scope
- Helbich et al. [43], looking for a correlation between the potential energy production and the housing market through the hedonic prices method;
- Hofierka [45], using solar energy predictions to correct land surface temperature estimations;
- Sun et al. [79], adopting solar radiation as one of the factors influencing the choice of adequate points to install a wireless sensor network;
- Palliwal et al. [66], requiring the quantification of solar energy to define the feasibility of urban farming in Singapore;
- Peng et al. [68], analyzing Urban Heat Islands and thus requiring solar energy as one of the parameters to predict the incidence of this phenomenon.
3.2. Scale of Analysis
3.3. Relationships between Scope and Scale
4. Results: Solar Energy Calculation
4.1. Geographical Input
4.2. Weather Parameter Sources
4.3. Tools for Solar Radiation Estimation
- Topographic parameters: the “z factor” corrects biases deriving from the use of different scales in planar and vertical units; the “slope and aspect input type” establishes whether the elaboration assumes a planar surface or requires the calculation of orientation and inclination of the receiving surfaces; “calculation directions” refers to the viewshed calculation.
- Radiation parameters: zenith and azimuth divisions are instrumental for the definition of the sky map; the correlation between diffuse radiation and zenith angle is defined according to the “diffuse model type”; “diffuse ratio” quantifies the share of diffuse radiation over the global radiation; “transmissivity” is the fraction of radiation passing through the atmosphere.
- The paper by Nakhaee and Paydar [64] was specifically devoted to the elaboration of a tool to compute solar radiation through artificial intelligence. The authors used data from QGIS and Ladybug for training but then ran elaborations on their own.
- Esclapés et al. [35] used the open-source software gvSIG, designing with Java a specific code to be run in its environment.
- PySolar, which was mentioned in the previous paragraph because of the intermediate outputs it can provide, was used by Lagahit and Blanco [52]. It is based on data from the USA, and it can compute direct clear-sly solar irradiation.
- Saran et al. [76] used the SunCast application in Virtual Environment Software to calculate the solar intensity on wall surfaces, using a CityGML LoD2 model as geometrical input.
5. Results: Photovoltaic Potential Calculation
5.1. Pre-Filtering
5.2. Equation Used
6. Discussion
6.1. Validation of Results
6.2. Limitations and Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Council of the European Union Fit for 55. Available online: https://www.Consilium.Europa.Eu/En/Policies/Green-Deal/Fit-for-55-the-Eu-Plan-for-a-Green-Transition/ (accessed on 10 October 2023).
- European Commission. Proposal for a Directive of the European Parliament and of the Council on the Energy Performance of Buildings. Recast. 2021. [Google Scholar]
- Deng, Y.; Dewil, R.; Baeyens, J.; Ansart, R.; Zhang, H. The “Screening Index” to Select Building-Scale Heating Systems. IOP Conf. Ser. Earth Environ. Sci. 2020, 586, 012004. [Google Scholar] [CrossRef]
- Anselmo, S.; Ferrara, M.; Corgnati, S.; Boccardo, P. Aerial Urban Observation to Enhance Energy Assessment and Planning towards Climate-Neutrality: A Pilot Application to the City of Turin. Sustain. Cities Soc. 2023, 99, 104938. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Recast. 2018.
- Corgnati, S.P.; Cattaneo, S. Efficientamento Energetico Degli Edifici e Soluzioni Innovative Di Decarbonizzazione. In Le città a Impatto Climatico Zero: Strategie e Politiche; Ministero delle Infrastrutture e della Mobilità Sostenibili: Rome, Italy, 2022; pp. 37–56. [Google Scholar]
- Roberts, J.; Frieden, D.; d’Herbemont, S. Energy Community Definitions. 2019. Available online: https://main.compile-project.eu/wp-content/uploads/Explanatory-note-on-energy-community-definitions.pdf (accessed on 10 October 2023).
- IRENA. IRENASTAT Online Data Query Tool. Available online: https://www.irena.org/Data/Downloads/IRENASTAT (accessed on 28 September 2023).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—EU Solar Energy Strategy 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A221%3AFIN (accessed on 10 October 2023).
- Amadio, G. Introduzione Alla Geomatica; Dario Flaccovio Editore: Palermo, Italy, 2012. [Google Scholar]
- Minerva, R.; Lee, G.M.; Crespi, N. Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural Models. Proc. IEEE 2020, 108, 1785–1824. [Google Scholar] [CrossRef]
- Achbab, E.; Lambarki, R.; Rhinane, H.; Saifaoui, D. Estimation of Photovoltaic Potential at the Urban Level from 3d City Model (Solar Cadaster): Case of Casablanca City, Morocco. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 46, 9–16. [Google Scholar] [CrossRef]
- Agugiaro, G.; Remondino, F.; Stevanato, G.; De Filippi, R.; Furlanello, C. Estimation of Solar Radiation on Building Roofs in Mountainous Areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 38, 155–160. [Google Scholar] [CrossRef]
- Alam, N.; Coors, V.; Zlatanova, S.; Oosterom, P.J.M. Shadow Effect on Photovoltaic Potentiality Analysis Using 3D City Models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 209–214. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Zur, S.; Lebendiger, Y.; Lerman, Y. Shade Maps for Prioritizing Municipal Microclimatic Action in Hot Climates: Learning from Tel Aviv-Yafo. Sustain. Cities Soc. 2020, 53, 101931. [Google Scholar] [CrossRef]
- Alomari, K.; AlTal, B.; Ayadi, O. The Efficiency of Using of Solar Cells on the Multistory Residential Buildings in Jordan (Housing Building as a Case Study). Int. J. Sustain. Dev. Plan. 2023, 18, 1833–1839. [Google Scholar] [CrossRef]
- An, Y.; Chen, T.; Shi, L.; Heng, C.K.; Fan, J. Solar Energy Potential Using GIS-Based Urban Residential Environmental Data: A Case Study of Shenzhen, China. Sustain. Cities Soc. 2023, 93, 104547. [Google Scholar] [CrossRef]
- Beltran-Velamazan, C.; Monzón-Chavarrías, M.; López-Mesa, B. A Method for the Automated Construction of 3d Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis. Sustainability 2021, 13, 6028. [Google Scholar] [CrossRef]
- Bernabé, A.; Musy, M.; Andrieu, H.; Calmet, I. Radiative Properties of the Urban Fabric Derived from Surface Form Analysis: A Simplified Solar Balance Model. Sol. Energy 2015, 122, 156–168. [Google Scholar] [CrossRef]
- Biljecki, F.; Heuvelink, G.B.M.; Ledoux, H.; Stoter, J. Propagation of Positional Error in 3D GIS: Estimation of the Solar Irradiation of Building Roofs. Int. J. Geogr. Inf. Sci. 2015, 29, 2269–2294. [Google Scholar] [CrossRef]
- Borfecchia, F.; Pollino, M.; De Cecco, L.; Martini, S.; La Porta, L.; Marucci, A.; Caiaffa, E. Integrated GIS and Remote Sensing Techniques to Support. PV Potential. Assessment of Roofs in Urban. Areas; Springer: Berlin, Germany, 2013; Volume 7973, LNCS; ISBN 9783642396458. [Google Scholar]
- Borfecchia, F.; Caiaffa, E.; Pollino, M.; De Cecco, L.; Martini, S.; La Porta, L.; Marucci, A. Remote Sensing and GIS in Planning Photovoltaic Potential of Urban Areas. Eur. J. Remote Sens. 2014, 47, 195–216. [Google Scholar] [CrossRef]
- Bremer, M.; Mayr, A.; Wichmann, V.; Schmidtner, K.; Rutzinger, M. A New Multi-Scale 3D-GIS-Approach for the Assessment and Dissemination of Solar Income of Digital City Models. Comput. Environ. Urban. Syst. 2016, 57, 144–154. [Google Scholar] [CrossRef]
- Carneiro, C.; Morello, E.; Desthieux, G. Assessment of Solar Irradiance on the Urban Fabric for the Production of Renewable Energy Using Lidar Data and Image Processing Techniques; Springer: Berlin, Germany, 2009; ISBN 9783642003172. [Google Scholar]
- Catita, C.; Redweik, P.; Pereira, J.; Brito, M.C. Extending Solar Potential Analysis in Buildings to Vertical Facades. Comput. Geosci. 2014, 66, 1–12. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, F.; Li, S.; Mao, J.; Xu, H.; Ju, W.; Liu, X.; Wu, J.; Min, K.; Zhang, X.; et al. Solar Energy Potential of Urban Buildings in 10 Cities of China. Energy 2020, 196, 117038. [Google Scholar] [CrossRef]
- Chiabrando, F.; Danna, C.; Lingua, A.; Noardo, F.; Osello, A. 3D Roof Model Generation and Analysis Supporting Solar System Positioning. Geomatica 2017, 71, 137–153. [Google Scholar] [CrossRef]
- Choi, Y.; Rayl, J.; Tammineedi, C.; Brownson, J.R.S. PV Analyst: Coupling ArcGIS with TRNSYS to Assess Distributed Photovoltaic Potential in Urban Areas. Sol. Energy 2011, 85, 2924–2939. [Google Scholar] [CrossRef]
- Chow, A.; Fung, A.S.; Li, S. GIS Modeling of Solar Neighborhood Potential at a Fine Spatiotemporal Resolution. Buildings 2014, 4, 195–206. [Google Scholar] [CrossRef]
- de Vries, T.N.C.; Bronkhorst, J.; Vermeer, M.; Donker, J.C.B.; Briels, S.A.; Ziar, H.; Zeman, M.; Isabella, O. A Quick-Scan Method to Assess Photovoltaic Rooftop Potential Based on Aerial Imagery and LiDAR. Sol. Energy 2020, 209, 96–107. [Google Scholar] [CrossRef]
- Desthieux, G.; Carneiro, C.; Camponovo, R.; Ineichen, P.; Morello, E.; Boulmier, A.; Abdennadher, N.; Dervey, S.; Ellert, C. Solar Energy Potential Assessment on Rooftops and Facades in Large Built Environments Based on LiDAR Data, Image Processing, and Cloud Computing. Methodological Background, Application, and Validation in Geneva (Solar Cadaster). Front. Built Environ. 2018, 4, 14. [Google Scholar] [CrossRef]
- Dewanto, B.G.; Novitasari, D.; Tan, Y.C.; Puruhito, D.D.; Fikriyadi, Z.A.; Aliyah, F. Application of Web 3D GIS to Display Urban Model and Solar Energy Analysis Using the Unmanned Aerial Vehicle (UAV) Data (Case Study: National Cheng Kung University Buildings). In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 520. [Google Scholar]
- El-Bouzaidi, R.D.; Rhinane, H.; Hilali, A.; El Hassan, E.A.; Maanan, M.; Saddiqi, O. Technical and Economical Photovoltaic Potential Assessment on Flat Roofs in Urban Area Case Study: Casablanca, Morocco. In Proceedings of the 2018 4th International Conference on Renewable Energies for Developing Countries (REDEC), Beirut, Lebanon, 1–2 November 2018. [Google Scholar]
- Eldesoky, A.H.; Colaninno, N.; Morello, E. An Integrated, Agile Approach for Estimating Solar Radiation on Building Facades in Complex Urban Environments. J. Phys. Conf. Ser. 2019, 1343, 012015. [Google Scholar] [CrossRef]
- Esclapés, J.; Ferreiro, I.; Piera, J.; Teller, J. A Method to Evaluate the Adaptability of Photovoltaic Energy on Urban Façades. Sol. Energy 2014, 105, 414–427. [Google Scholar] [CrossRef]
- Fichera, A.; Gagliano, A.; Nocera, F.; Pagano, A.; Volpe, R.; Bisegna, F. Application of a Geographical Information System to Plan Energy Policy at a Neighborhood Scale. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I and CPS Europe), Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Fijałkowska, A.; Waksmundzka, K.; Chmiel, J. Assessment of the Effectiveness of Photovoltaic Panels at Public Transport Stops: 3D Spatial Analysis as a Tool to Strengthen Decision Making. Energies 2022, 15, 1230. [Google Scholar] [CrossRef]
- Gawley, D.; McKenzie, P. Investigating the Suitability of GIS and Remotely-Sensed Datasets for Photovoltaic Modelling on Building Rooftops. Energy Build. 2022, 265, 112083. [Google Scholar] [CrossRef]
- Gergelova, M.B.; Kuzevicova, Z.; Labant, S.; Kuzevic, S.; Bobikova, D.; Mizak, J. Roof’s Potential and Suitability for PV Systems Based on LiDAR: A Case Study of Komárno, Slovakia. Sustainability 2020, 12, 10018. [Google Scholar] [CrossRef]
- Hafeez, S.; Atif, S. 3D Rooftop Photovoltaic Potential Calculation Using GIS Techniques: A Case Study of F-11 Sector Islamabad. In Proceedings of the 12th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 17–19 December 2014; pp. 187–192. [Google Scholar]
- Han, J.-Y.; Chen, Y.-C.; Li, S.-Y. Utilising High-Fidelity 3D Building Model for Analysing the Rooftop Solar Photovoltaic Potential in Urban Areas. Sol. Energy 2022, 235, 187–199. [Google Scholar] [CrossRef]
- Harikesh; Singh, S.; Shrivastava, V.; Sharma, V. CityGML Based 3D Modeling of Urban Area Using Uav Dataset for Estimation of Solar Potential; Springer: Berlin, Germany, 2020; Volume 51. [Google Scholar]
- Helbich, M.; Jochem, A.; Mücke, W.; Höfle, B. Boosting the Predictive Accuracy of Urban Hedonic House Price Models through Airborne Laser Scanning. Comput. Environ. Urban. Syst. 2013, 39, 81–92. [Google Scholar] [CrossRef]
- Hippenstiel, R.; Brownson, J.R.S. Computing Solar Energy Potential of Urban Areas Using Airborne Lidar and Orthoimagery. In Proceedings of the World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference, Denver, Colorado, 13–17 May 2012; Volume 3, pp. 2004–2008. [Google Scholar]
- Hofierka, J. Assessing Land Surface Temperature in Urban Areas Using Open-Source Geospatial Tools. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 48, 195–200. [Google Scholar] [CrossRef]
- HosseiniHaghighi, S.; de Uribarri, P.M.Á.; Padsala, R.; Eicker, U. Characterizing and Structuring Urban GIS Data for Housing Stock Energy Modelling and Retrofitting. Energy Build. 2022, 256, 111706. [Google Scholar] [CrossRef]
- Hubinský, T.; Hajtmanek, R.; Šeligová, A.; Legény, J.; Špaček, R. Potentials and Limits of Photovoltaic Systems Integration in Historic Urban Structures: The Case Study of Monument Reserve in Bratislava, Slovakia. Sustainability 2023, 15, 2299. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C.F. A Method for Predicting City-Wide Electricity Gains from Photovoltaic Panels Based on LiDAR and GIS Data Combined with Hourly Daysim Simulations. Sol. Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
- Jately, V.; Balaji, V.V.; Azzopardi, S.; Azzopardi, B. Design and Performance Investigation of a Pilot Micro-Grid in the Mediterranean: Mcast Case Study. Energies 2021, 14, 6846. [Google Scholar] [CrossRef]
- Kazak, J.K.; Świa̧der, M. SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS. Energies 2018, 11, 2105. [Google Scholar] [CrossRef]
- La Gennusa, M.; Lascari, G.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G. A Model for Predicting the Potential Diffusion of Solar Energy Systems in Complex Urban Environments. Energy Policy 2011, 39, 5335–5343. [Google Scholar] [CrossRef]
- Lagahit, M.L.R.; Blanco, A.C. Using Openly Sourced 3D Geographic Information Systems (GIS) in Determining the Photovoltaic Potential of Quezon City Hall in Terms of Received Direct Solar Radiation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 263–270. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W.; Ibrahim, A.N. A Visualization-Oriented 3D Method for Efficient Computation of Urban Solar Radiation Based on 3D-2D Surface Mapping. Int. J. Geogr. Inf. Sci. 2014, 28, 780–798. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Zhou, J.; Ibrahim, A.N.; Li, M. An Open-Source 3D Solar Radiation Model Integrated with a 3D Geographic Information System. Environ. Model. Softw. 2015, 64, 94–101. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J. A Sparse Voxel Octree-Based Framework for Computing Solar Radiation Using 3d City Models. ISPRS Int. J. Geo-Inf. 2017, 6, 106. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Xie, X.; Sun, J. Solar3D: An Open-Source Tool for Estimating Solar Radiation in Urban Environments. ISPRS Int. J. Geo-Inf. 2020, 9, 524. [Google Scholar] [CrossRef]
- Lindberg, F.; Jonsson, P.; Honjo, T.; Wästberg, D. Solar Energy on Building Envelopes—3D Modelling in a 2D Environment. Sol. Energy 2015, 115, 369–378. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Q.; Lin, Z.; Shi, H.; Wen, S.; Wu, Q.; Zhang, J.; Peng, C. A Novel Approach for Assessing Rooftop-and-Facade Solar Photovoltaic Potential in Rural Areas Using Three-Dimensional (3D) Building Models Constructed with GIS. Energy 2023, 282, 128920. [Google Scholar] [CrossRef]
- Lohani, B.; Kumar Singh, S.; Choudhary, D.; Nagarajan, B. A New Approach to Determine Solar Potential Using Terrestrial Images. Remote Sens. Lett. 2018, 9, 636–645. [Google Scholar] [CrossRef]
- Lu, Y.; McCarty, J.; Sezto, J.; Cheng, Z.; Martino, N.; Girling, C.; Rysanek, A.; Barron, S.; Matasci, G. Modeling the Shading Effect of Vancouver’s Urban Tree Canopy in Relation to Neighborhood Variations. Arboric. Urban For. 2022, 48, 95–112. [Google Scholar] [CrossRef]
- Machete, R.; Falcão, A.P.; Gomes, M.G.; Moret Rodrigues, A. The Use of 3D GIS to Analyse the Influence of Urban Context on Buildings’ Solar Energy Potential. Energy Build. 2018, 177, 290–302. [Google Scholar] [CrossRef]
- Mutani, G.; Casalengo, M.; Ramassotto, M.A. The Effect of Roof-Integrated Solar Technologies on the Energy Performance of Public Buildings: Tthe Case Study of the City of Turin (IT). In Proceedings of the INTELEC, International Telecommunications Energy Conference (Proceedings), Turino, Italy, 7–11 October 2018; Volume 2018. [Google Scholar]
- Nakazato, R.; Yokogawa, S.; Ichikawa, H.; Ushirokawa, T.; Takeda, T. Compact Model for Estimating Area-Level Photovoltaic Power Generation on Facade Surface Using 3D City Model and Solar Radiation Simulation. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies—Asia (ISGT Asia), Brisbane, Australia, 5–8 December 2021. [Google Scholar]
- Nakhaee, A.; Paydar, A. DeepRadiation: An Intelligent Augmented Reality Platform for Predicting Urban Energy Performance Just through 360 Panoramic Streetscape Images Utilizing Various Deep Learning Models. Build. Simul. 2023, 16, 499–510. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F.; Agugiaro, G.; De Filippi, R.; Poletti, M.; Furlanello, C.; Menegon, S.; Dallago, G.; Fontanari, S. 3D SolarWeb: A Solar Cadaster in the Italian Alpine Landscape. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 173–178. [Google Scholar] [CrossRef]
- Palliwal, A.; Song, S.; Tan, H.T.W.; Biljecki, F. 3D City Models for Urban Farming Site Identification in Buildings. Comput. Environ. Urban. Syst. 2021, 86, 101584. [Google Scholar] [CrossRef]
- Pedrero, J.; Hermoso, N.; Hernández, P.; Munoz, I.; Arrizabalaga, E.; Mabe, L.; Prieto, I.; Izkara, J.L. Assessment of Urban-Scale Potential for Solar PV Generation and Consumption. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 323. [Google Scholar]
- Peng, F.; Wong, M.S.; Nichol, J.E.; Chan, P.W. Historical GIS Data and Changes in Urban Morphological Parameters for the Analysis of Urban Heat Islands in Hong Kong. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 55–62. [Google Scholar] [CrossRef]
- Prades-Gil, C.; Viana-Fons, J.D.; Masip, X.; Cazorla-Marín, A.; Gómez-Navarro, T. An Agile Heating and Cooling Energy Demand Model for Residential Buildings. Case Study in a Mediterranean City Residential Sector. Renew. Sustain. Energy Rev. 2023, 175, 113166. [Google Scholar] [CrossRef]
- Prieto, I.; Izkara, J.L.; Usobiaga, E. The Application of Lidar Data for the Solar Potential Analysis Based on Urban 3D Model. Remote Sens. 2019, 11, 2348. [Google Scholar] [CrossRef]
- Pružinec, F.; Ďuračiová, R. A Point-Cloud Solar Radiation Tool. Energies 2022, 15, 7018. [Google Scholar] [CrossRef]
- Redweik, P.M.; Catita, C.; Brito, M.C. 3D Local Scale Solar Radiation Model Based on Urban LiDAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 38, 265–269. [Google Scholar] [CrossRef]
- Ren, H.; Ma, Z.; Ming Lun Fong, A.; Sun, Y. Optimal Deployment of Distributed Rooftop Photovoltaic Systems and Batteries for Achieving Net-Zero Energy of Electric Bus Transportation in High-Density Cities. Appl. Energy 2022, 319, 119274. [Google Scholar] [CrossRef]
- Ren, H.; Xu, C.; Ma, Z.; Sun, Y. A Novel 3D-Geographic Information System and Deep Learning Integrated Approach for High-Accuracy Building Rooftop Solar Energy Potential Characterization of High-Density Cities. Appl. Energy 2022, 306, 117985. [Google Scholar] [CrossRef]
- Saadaoui, H.; Ghennioui, A.; Ikken, B.; Rhinane, H.; Maanan, M. Using GIS and Photogrammetry for Assessing Solar Photovoltaic Potential on Flat Roofs in Urban Area Case of the City of Ben Guerir/Morocco. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 155–166. [Google Scholar] [CrossRef]
- Saran, S.; Wate, P.; Srivastav, S.K.; Krishna Murthy, Y.V.N. CityGML at Semantic Level for Urban Energy Conservation Strategies. Ann. GIS 2015, 21, 27–41. [Google Scholar] [CrossRef]
- Singh, S.K.; Lohani, B.; Arora, L.; Choudhary, D.; Nagarajan, B. A Visual-Inertial System to Determine Accurate Solar Insolation and Optimal PV Panel Orientation at a Point and over an Area. Renew. Energy 2020, 154, 223–238. [Google Scholar] [CrossRef]
- Soares, P.; Bayrakci-Boz, M.; Brownson, J.R.S. GIS Information for Solar PV Energy Siting: A Case Study in the Borough of State College, PA, USA. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Calgary, AB, Canada, 15 June–21 August 2020; Volume 2020, pp. 1749–1753. [Google Scholar]
- Sun, D.; Tan, Y.; Zhang, S. Research and Application of GIS in Wisdom Forestry Wireless Sensor Networks Node Location Selection. In Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019; pp. 232–235. [Google Scholar]
- Tara, A.; Patuano, A.; Lawson, G. Between 2d and 3d: Studying Structural Complexity of Urban Fabric Using Voxels and Lidar-Derived Dsms. Fractal Fract. 2021, 5, 227. [Google Scholar] [CrossRef]
- Teofilo, A.; Sun, Q.C.; Radosevic, N.; Tao, Y.; Iringan, J.; Liu, C. Investigating Potential Rooftop Solar Energy Generated by Leased Federal Airports in Australia: Framework and Implications. J. Build. Eng. 2021, 41, 102390. [Google Scholar] [CrossRef]
- Wate, P.; Saran, S. Implementation of CityGML Energy Application Domain Extension (ADE) for Integration of Urban Solar Potential Indicators Using Object-Oriented Modelling Approach. Geocarto Int. 2015, 30, 1144–1162. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, R.; Kwan, M.-P.; Luo, W.; Wang, D.; Zhang, S.; Wong, M.S.; You, L.; Yang, B.; Chen, B.; et al. Estimation of Urban-Scale Photovoltaic Potential: A Deep Learning-Based Approach for Constructing Three-Dimensional Building Models from Optical Remote Sensing Imagery Imagery. Sustain. Cities Soc. 2023, 93, 104515. [Google Scholar] [CrossRef]
- Yoon, D.H.; Song, J.H.; Koh, J.H. Estimation of Solar Radiation Potential in the Urban Buildings Using CIE Sky Model and Ray-Tracing. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2020, 38, 141–151. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; She, J.; Peng, X. Assimilating Remote Sensing Data into GIS-Based All Sky Solar Radiation Modeling for Mountain Terrain. Remote Sens. Environ. 2019, 231, 111239. [Google Scholar] [CrossRef]
- Zhu, R.; Cheng, C.; Santi, P.; Chen, M.; Zhang, X.; Mazzarello, M.; Wong, M.S.; Ratti, C. Optimization of Photovoltaic Provision in a Three-Dimensional City Using Real-Time Electricity Demand. Appl. Energy 2022, 316, 119042. [Google Scholar] [CrossRef]
- Decreto Legislativo 387/2003 2003. Available online: https://www.parlamento.it/parlam/leggi/deleghe/03387dl.htm (accessed on 10 October 2023).
- Directive 2001/77/CE of the European Parliament and of the Council of 27 September 2001 on the Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market 2001.
- Meteonorm Intro. Available online: https://Meteonorm.Com/En/ (accessed on 11 October 2023).
- SoDa. Available online: https://Www.Soda-pro.Com/ (accessed on 11 October 2023).
- World Weather Online. Available online: https://Www.Worldweatheronline.Com/ (accessed on 11 October 2023).
- Sun Earth Tools. Available online: https://Www.Sunearthtools.Com/ (accessed on 11 October 2023).
- Iqbal, M. An Introduction to Solar Radiation; Elsevier: Amsterdam, The Netherlands, 1983; ISBN 9780123737502. [Google Scholar]
- Xie, Y.; Sengupta, M.; Dudhia, J. A Fast All-Sky Radiation Model for Solar Applications (FARMS): Algorithm and Performance Evaluation. Sol. Energy 2016, 135, 435–445. [Google Scholar] [CrossRef]
- Freitas, S.; Catita, C.; Redweik, P.; Brito, M.C. Modelling Solar Potential in the Urban Environment: State-of-the-Art Review. Renew. Sustain. Energy Rev. 2015, 41, 915–931. [Google Scholar] [CrossRef]
- Šúri, M.; Huld, T.A.; Dunlop, E.D. PV-GIS: A Web-Based Solar Radiation Database for the Calculation of PV Potential in Europe. Int. J. Sustain. Energy 2005, 24, 55–67. [Google Scholar] [CrossRef]
- Energy Saving Trust Solar Energy Calculator Sizing Guide. Available online: https://www.pvfitcalculator.energysavingtrust.org.uk/Documents/150224_SolarEnergy_Calculator_Sizing_Guide_v1.pdf (accessed on 10 October 2023).
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar Cell Efficiency Tables (Version 62). Prog. Photovolt. Res. Appl. 2023, 31, 651–663. [Google Scholar] [CrossRef]
- Zhang, H.L.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated Solar Power Plants: Review and Design Methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
Reference | Author(s) | Year | Country | Scale |
---|---|---|---|---|
[12] | Achbab et al. | 2022 | Morocco | City |
[13] | Agugiaro et al. | 2011 | Italy | District |
[14] | Alam et al. | 2012 | Germany | District |
[15] | Aleksandrowicz et al. | 2020 | Israel | District |
[16] | Alomari et al. | 2023 | Jordan | Building |
[17] | An et al. | 2023 | China | District |
[18] | Beltran-Velamazan | 2021 | Spain | District |
[19] | Bernabé et al. | 2015 | France | District |
[20] | Biljecki et al. | 2015 | Monaco | District |
[21] | Borfecchia et al. | 2013 | Italy | City |
[22] | Borfecchia et al. | 2014 | Italy | City |
[23] | Bremer et al. | 2016 | Austria | District |
[24] | Carneiro et al. | 2009 | Switzerland | City |
[25] | Catita et al. | 2014 | Portugal | Campus |
[26] | Cheng et al. | 2020 | China | City |
[27] | Chiabrando et al. | 2017 | Italy | Campus |
[28] | Choi et al. | 2011 | USA | Campus |
[29] | Chow et al. | 2014 | Canada | District |
[30] | De Vries et al. | 2020 | Netherlands | District |
[31] | Desthieux et al. | 2018 | Switzerland | Region |
[32] | Dewanto et al. | 2020 | Taiwan | Campus |
[33] | El-Bouzaidi et al. | 2018 | Morocco | District |
[34] | Eldesoky et al. | 2019 | Italy | District |
[35] | Esclapés et al. | 2014 | Spain | District |
[36] | Fichera et al. | 2018 | Italy | District |
[37] | Fijałkowska et al. | 2022 | Poland | Tram stop |
[38] | Gawley et al. | 2022 | UK | District |
[39] | Gergelova et al. | 2020 | Slovakia | District |
[40] | Hafeez et al. | 2015 | Pakistan | District |
[41] | Han et al. | 2022 | Taiwan | District |
[42] | Harikesh et al. | 2020 | India | District |
[43] | Helbich et al. | 2013 | Austria | District |
[44] | Hippenstiel et al. | 2012 | USA | |
[45] | Hofierka | 2022 | Slovakia | District |
[46] | HosseiniHaghighi et al. | 2022 | Canada | City |
[47] | Hubinský et al. | 2023 | Slovakia | District |
[48] | Jakubiec et al. | 2013 | USA | City |
[49] | Jately et al. | 2021 | Malta | Campus |
[50] | Kazak et al. | 2018 | Poland | District |
[51] | La Gennusa et al. | 2011 | Italy | City |
[52] | Lagahit et al. | 2019 | Philippines | Building |
[53] | Liang et al. | 2014 | USA | District |
[54] | Liang et al. | 2015 | USA | City |
[55] | Liang et al. | 2017 | China | District |
[56] | Liang et al. | 2020 | China | City |
[57] | Lindberg et al. | 2015 | Sweden | District |
[58] | Liu et al. | 2023 | China | City |
[59] | Lohani et al. | 2018 | India | Campus |
[60] | Lu et al. | 2022 | Canada | City |
[61] | Machete et al. | 2018 | Portugal | District |
[62] | Mutani et al. | 2018 | Italy | City |
[63] | Nakazato et al. | 2021 | Japan | District |
[64] | Nakhaee et al. | 2023 | USA | District |
[65] | Nex et al. | 2013 | Italy | City |
[66] | Palliwal et al. | 2021 | Singapore | City |
[67] | Pedrero et al. | 2019 | Spain | City |
[68] | Peng et al. | 2016 | Hong Kong | Region |
[69] | Prades-Gil et al. | 2023 | Spain | District |
[70] | Prieto et al. | 2019 | Spain | City |
[71] | Pružinec et al. | 2022 | Slovakia | District |
[72] | Redweik et al. | 2011 | Portugal | Campus |
[73] | Ren et al. | 2022 | Hong Kong | Bus stop |
[74] | Ren et al. | 2022 | Hong Kong | Campus |
[75] | Saadaoui et al. | 2019 | Morocco | City |
[76] | Saran et al. | 2015 | India | Building |
[77] | Singh et al. | 2020 | India | Campus |
[78] | Soares et al. | 2020 | USA | District |
[79] | Sun et al. | 2019 | China | Forest |
[80] | Tara et al. | 2021 | Australia | District |
[81] | Teofilo et al. | 2021 | Australia | Airport |
[82] | Wate et al. | 2015 | India | Campus |
[83] | Yan et al. | 2023 | China | City |
[84] | Yoon et al. | 2020 | Korea | District |
[85] | Zhang et al. | 2019 | China | Region |
[86] | Zhu et al. | 2022 | Italy | District |
Single Building | Campus | District | City | Region | |
---|---|---|---|---|---|
3D modeling | 0 | 1 | 0 | 0 | 0 |
Energy | 2 | 0 | 2 | 0 | 0 |
Plugin development | 0 | 0 | 4 | 1 | 0 |
Other | 1 | 0 | 4 | 3 | 2 |
Photovoltaic potential | 2 | 3 | 9 | 8 | 0 |
Solar radiation | 1 | 5 | 16 | 7 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anselmo, S.; Ferrara, M. Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation. Energies 2023, 16, 7760. https://doi.org/10.3390/en16237760
Anselmo S, Ferrara M. Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation. Energies. 2023; 16(23):7760. https://doi.org/10.3390/en16237760
Chicago/Turabian StyleAnselmo, Sebastiano, and Maria Ferrara. 2023. "Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation" Energies 16, no. 23: 7760. https://doi.org/10.3390/en16237760
APA StyleAnselmo, S., & Ferrara, M. (2023). Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation. Energies, 16(23), 7760. https://doi.org/10.3390/en16237760