Advancing Energy Recovery from Sugarcane Leaf via Two-Stage Anaerobic Digestion for Hydrogen and Methane Production: Impacts on Greenhouse Gas Mitigation and Sustainable Energy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Preparation
2.2. Inoculum Preparation
2.3. Two-Stage Anaerobic Digestion of Biohydrogen and Methane Production in the Batch Experiment
2.4. Semi-Continuous Setup and Operation for Two-Stage Anaerobic Digestion of Biohydrogen and Methane Production
2.5. Analytical Methods
2.6. Bacterial Population Analysis Using 16S rRNA Amplicon Sequencing on an Illumina Platform
3. Results
3.1. Two-Stage Anaerobic Digestion of Biohydrogen and Methane Production in the Batch Experiment
3.2. Effect of HRT on Biohydrogen Production Performance and Microbial Community in a Semi-Continuous Reactor
3.3. Second-Stage Methane Production from Hydrogenic Effluent in the Semi-Continuous Reactor
3.4. Estimation of Reduction in GHG and Pollutant Emissions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mugica-Álvarez, V.; Hernández-Rosas, F.; Magaña-Reyes, M.; Herrera-Murillo, J.; Santiago-De La Rosa, N.; Gutiérrez-Arzaluz, M.; de Jesús Figueroa-Lara, J.; González-Cardoso, G. Sugarcane burning emissions: Characterization and emission factors. Atmos. Environ. 2018, 193, 262–272. [Google Scholar] [CrossRef]
- Mason, P.J.; Furtado, A.; Marquardt, A.; Hodgson-Kratky, K.; Hoang, N.V.; Botha, F.C.; Papa, G.; Mortimer, J.C.; Simmons, B.; Henry, R.J. Variation in sugarcane biomass composition and enzymatic saccharification of leaves, internodes and roots. Biotechnol. Biofuels 2020, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Espirito Santo, M.C.; Kane, A.O.; Pellegrini, V.O.A.; Thema, F.T.; García, J.M.; Acevedo, A.; Erazzú, L.E.; Guimaraes, F.E.G.; de Azevedo, E.R.; Polikarpov, I. Leaves from four different sugarcane varieties as potential renewable feedstocks for second-generation ethanol production: Pretreatments, chemical composition, physical structure, and enzymatic hydrolysis yields. Biocatal. Agric. Biotechnol. 2022, 45, 102485. [Google Scholar] [CrossRef]
- Hans, M.; Kumar, S. Biohythane production in two-stage anaerobic digestion system. Int. J. Hydrogen Energy 2019, 44, 17363–17380. [Google Scholar] [CrossRef]
- Holl, E.; Steinbrenner, J.; Merkle, W.; Krümpel, J.; Lansing, S.; Baier, U.; Oechsner, H.; Lemmer, A. Two-stage anaerobic digestion: State of technology and perspective roles in future energy systems. Bioresour. Technol. 2022, 360, 127633. [Google Scholar] [CrossRef] [PubMed]
- Sukphun, P.; Wongarmat, W.; Imai, T.; Sittijunda, S.; Chaiprapat, S.; Reungsang, A. Two-stage biohydrogen and methane production from sugarcane-based sugar and ethanol industrial wastes: A comprehensive review. Bioresour. Technol. 2023, 386, 129519. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Teleken, J.G.; Weiser Meier, T.R.; Alves, H.J. Two-stage anaerobic digestion in agro-industrial waste treatment: A review. J. Environ. Manag. 2021, 281, 111854. [Google Scholar] [CrossRef]
- Wandera, S.M.; Westerholm, M.; Qiao, W.; Yin, D.; Jiang, M.; Dong, R. The correlation of methanogenic communities’ dynamics and process performance of anaerobic digestion of thermal hydrolyzed sludge at short hydraulic retention times. Bioresour. Technol. 2019, 272, 180–187. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Yellezuome, D.; Liu, R.; Liu, X.; Sun, C.; Abd-Alla, M.H.; Rasmey, A.H.M. Effects of adding Thermoanaerobacterium thermosaccharolyticum in the hydrogen production stage of a two-stage anaerobic digestion system on hydrogen-methane production and microbial communities. Fuel 2023, 342, 127831. [Google Scholar] [CrossRef]
- Saidi, R.; Hamdi, M.; Bouallagui, H. Enhanced hydrogen and methane production from date fruit wastes using semi continuous two-stage anaerobic digestion process with increasing organic loading rates. Process Saf. Environ. Prot. 2023, 174, 267–275. [Google Scholar] [CrossRef]
- Silva Rabelo, C.A.B.; Camargo, F.P.; Sakamoto, I.K.; Varesche, M.B.A. Metataxonomic characterization of an autochthonous and allochthonous microbial consortium involved in a two-stage anaerobic batch reactor applied to hydrogen and methane production from sugarcane bagasse. Enzym. Microb. Technol. 2023, 162, 110119. [Google Scholar] [CrossRef] [PubMed]
- Tomasini, M.; de Oliveira Faber, M.; Ferreira-Leitão, V.S. Sequential production of hydrogen and methane using hemicellulose hydrolysate from diluted acid pretreatment of sugarcane straw. Int. J. Hydrogen Energy 2023, 48, 9971–9987. [Google Scholar] [CrossRef]
- Fangkum, A.; Reungsang, A. Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung. Int. J. Hydrogen Energy 2011, 36, 13928–13938. [Google Scholar] [CrossRef]
- Owen, W.F.; Stuckey, D.C.; Healy, J.B.; Young, L.Y.; McCarty, P.L. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 1979, 13, 485–492. [Google Scholar] [CrossRef]
- Baird, R.; Rice, E.; Eaton, A. Standard Methods for the Examination of Water and Wastewaters, 23rd ed.; American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF): Washington, DC, USA, 2017; ISBN 9780875532875. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses Apparatus, Reagents, Procedures, and Some Applications. In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- Edgar, R.C. Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Margareta, W.; Nagarajan, D.; Chang, J.-S.; Lee, D.-J. Dark fermentative hydrogen production using macroalgae (Ulva sp.) as the renewable feedstock. Appl. Energy 2020, 262, 114574. [Google Scholar] [CrossRef]
- Wongfaed, N.; O-Thong, S.; Sittijunda, S.; Reungsang, A. Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and Its Application in enhancing biomethane production. Sci. Rep. 2023, 13, 2968. [Google Scholar] [CrossRef]
- Miftah, A.K.; Sittijunda, S.; Imai, T.; Salakkam, A.; Reungsang, A. Biohydrogen and methane production from sugarcane leaves pretreated by deep eutectic solvents and enzymatic hydrolysis by cellulolytic consortia. Fermentation 2022, 8, 396. [Google Scholar] [CrossRef]
- Mukherjee, T.; Trably, E.; Kaparaju, P. Critical assessment of hydrogen and methane production from 1G and 2G sugarcane processing wastes using one-stage and two-stage anaerobic digestion. Energies 2023, 16, 4919. [Google Scholar] [CrossRef]
- Kumari, S.; Das, D. Biohythane production from sugarcane bagasse and water hyacinth: A way towards promising green energy production. J. Clean. Prod. 2019, 207, 689–701. [Google Scholar] [CrossRef]
- Pomdaeng, P.; Chu, C.Y.; Sripraphaa, K.; Sintuya, H. An accelerated approach of biogas production through a two-stage bioH2/CH4 continuous anaerobic digestion system from Napier grass. Bioresour. Technol. 2022, 361, 127709. [Google Scholar] [CrossRef] [PubMed]
- Tsegaye, B.; Balomajumder, C.; Roy, P. Biodegradation of wheat straw by Ochrobactrum oryzae BMP03 and Bacillus Sp. BMP01 bacteria to enhance biofuel production by increasing total reducing sugars yield. Environ. Sci. Pollut. Res. 2018, 25, 30585–30596. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Ocaña, E.R.; Soto-Paz, J.; Torres, V.S.; Castellanos-Suarez, L.J.; Komilis, D. Effect of the addition of the Bacillus sp., Paenibacillus sp. bacterial strains on the co-composting of green and food waste. J. Environ. Chem. Eng. 2022, 10, 107816. [Google Scholar] [CrossRef]
- Zabidi, N.A.M.; Foo, H.L.; Loh, T.C.; Mohamad, R.; Rahim, R.A. Enhancement of versatile extracellular cellulolytic and hemicellulolytic enzyme productions by Lactobacillus plantarum RI 11 isolated from Malaysian food using renewable natural polymers. Molecules 2020, 25, 2607. [Google Scholar] [CrossRef] [PubMed]
- Ezeilo, U.R.; Zakaria, I.I.; Huyop, F.; Wahab, R.A. Enzymatic breakdown of lignocellulosic biomass: The role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol. Biotechnol. Equip. 2017, 31, 647–662. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nishimura, Y. Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 2007, 103, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Aggarwal, N.K.; Sharma, A.; Yadav, A. Actinomycetes: A source of lignocellulolytic enzymes. Enzym. Res. 2015, 2015, 279381. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Tsigkou, K.; Vavouraki, A.I.; Kornaros, M. Hydrogen and methane production from anaerobic co-digestion of sorghum and cow manure: Effect of pH and hydraulic retention time. Fermentation 2022, 8, 304. [Google Scholar] [CrossRef]
- Ramos, L.R.; Silva, E.L. Thermophilic hydrogen and methane production from sugarcane stillage in two-stage anaerobic fluidized bed reactors. Int. J. Hydrogen Energy 2020, 45, 5239–5251. [Google Scholar] [CrossRef]
- Cabrera-Díaz, A.; Pereda-Reyes, I.; Oliva-Merencio, D.; Lebrero, R.; Zaiat, M. Anaerobic digestion of sugarcane vinasse through a methanogenic UASB reactor followed by a packed bed reactor. Appl. Biochem. Biotechnol. 2017, 183, 1127–1145. [Google Scholar] [CrossRef]
- Mateus, S.; Carvalheira, M.; Cassidy, J.; Freitas, E.; Oehmen, A.; Reis, M.A.M. Two-stage anaerobic digestion system treating different seasonal fruit pulp wastes: Impact on biogas and hydrogen production and total energy recovery potential. Biomass Bioenergy 2020, 141, 105694. [Google Scholar] [CrossRef]
- Seiler, W.; Crutzen, P.J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Sornpoon, W.; Bonnet, S.; Kasemsap, P.; Prasertsak, P.; Garivait, S. Estimation of emissions from sugarcane field burning in Thailand using bottom-up country-specific activity data. Atmosphere 2014, 5, 669–685. [Google Scholar] [CrossRef]
- Junpen, A.; Pansuk, J.; Garivait, S. Estimation of reduced air emissions as a result of the implementation of the measure to reduce burned sugarcane in Thailand. Atmosphere 2020, 11, 366. [Google Scholar] [CrossRef]
- Prasertsri, P. Sugar Annual. Foreign Agricultural Service U.S. Department of Agriculture Bangkok. Available online: https://www.fas.usda.gov/data/thailand-sugar-annual-7 (accessed on 26 August 2023).
- Silalertruksa, T.; Wirodcharuskul, C.; Gheewala, S.H. Environmental sustainability of waste circulation models for sugarcane biorefinery system in Thailand. Energies 2022, 15, 9515. [Google Scholar] [CrossRef]
- Akbulut, A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study. Energy 2012, 44, 381–390. [Google Scholar] [CrossRef]
- Thailand Greenhouse Gas Management Organization (TGO). Grid Emission Factor 2022 (in Thai). Available online: https://ghgreduction.tgo.or.th/th/download-tver/120-tver-gwp-emission-factor/3377-emission-factor-30-2565.html (accessed on 26 August 2023).
Runs | CSTR-H2 | CSTR-CH4 | ||||
---|---|---|---|---|---|---|
Feeding Rate (L/d) | Volume of Substrate (mL) | HRT (d) | Feeding Rate (L/d) | Volume of Substrate (mL) | HRT (d) | |
1 | 0.20 | 200 | 5 | 0.25 | 250 | 40 |
2 | 0.25 | 250 | 4 | 0.33 | 333 | 30 |
3 | 0.33 | 333 | 3 | 0.40 | 400 | 25 |
4 | 0.50 | 500 | 2 | 0.50 | 500 | 20 |
Parameters | Values | |||
---|---|---|---|---|
First-stage H2 Production | ||||
HRT (days) | 5.0 | 4.0 | 3.0 | 2.0 |
HPR (mL-H2/L d) | 11.2 ± 1.0 | 24.9 ± 1.3 | 60.1 ± 6.4 | 7.9 ± 1.7 |
HY (mL-H2/g-VS) | 1.9 ± 0.7 | 3.2 ± 0.5 | 5.5 ± 0.6 | 0.5 ± 0.1 |
H2 Content (%) | 9.21 ± 0.97 | 15.46 ± 0.83 | 19.76 ± 1.48 | 10.28 ± 2.24 |
Energy recovery (kJ/g-VS) * | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.07 ± 0.01 | 0.01 ± 0.01 |
pH | 5.86 ± 0.2 | 5.77 ± 0.09 | 5.70 ± 0.10 | 6.10 ± 2.24 |
Total VFAs (g/L) | 4.82 ± 0.33 | 4.79 ± 0.09 | 5.49 ± 0.23 | 4.57 ± 0.53 |
Individual VFA (%) | ||||
Acetic acid | 41.46 ± 2.31 | 42.98 ± 3.77 | 46.44 ± 1.67 | 39.87 ± 5.56 |
Butyric acid | 25.57 ± 2.84 | 27.71 ± 4.62 | 26.41 ± 1.02 | 28.37 ± 10.57 |
Propionic acid | 30.19 ± 2.16 | 27.71 ± 4.62 | 26.05 ± 1.02 | 30.45 ± 4.82 |
Valeric acid | 2.79 ± 0.63 | 1.22 ± 0.13 | 1.1 ± 1.02 | 1.31 ± 0.25 |
Second-stage CH4 Production | ||||
HRT (days) | 40.0 | 30.0 | 25.0 | 20.0 |
MPR (mL-CH4/L d) | 141.1 ± 9.3 | 191.9 ± 25.3 | 238.6 ± 12.3 | 106.3 ± 24.8 |
MY (mL-CH4/g-VS) | 116.8 ± 7.4 | 115.1 ± 9.3 | 118.3 ± 22.2 | 42.5 ± 9.9 |
CH4 Content (%) | 64.02 ± 0.06 | 63.03 ± 1.03 | 65.84 ± 2.46 | 56.54 ± 3.59 |
Energy recovery (kJ/g-VS) * | 4.37 ± 0.28 | 4.30 ± 0.35 | 4.42 ± 0.83 | 1.59 ± 0.37 |
pH | 7.41 ± 0.06 | 7.25 ± 0.07 | 7.24 ± 0.08 | 6.72 ± 0.15 |
Total VFAs (mg/L) | 2526 ± 127.6 | 2716.2 ± 202 | 5857.9 ± 330.1 | 3376.3 ± 282.5 |
Alkalinity (mg/L) | 8041.7 ± 526.6 | 7662.5 ± 489.6 | 8343.8 ± 979.5 | 6875 ± 978.9 |
VFAs/Alkalinity ratio | 0.32 ± 0.02 | 0.35 ± 0.02 | 0.36 ± 0.03 | 0.50 ± 0.07 |
Parameters | Values | Unit | References |
---|---|---|---|
Sugarcane production in 2022/2023 (P) | 96.8 | Mt | [37] |
Percentage of burnt sugarcane (B) | 64% | % | [36] |
Sugarcane production per harvesting areas (Y) | 69.7 | t/ha | [36] |
Biomass load (BL) | 7.9 | t/ha | [35] |
Combustion completeness (CC) | 0.64 | - | [35] |
Emissions | Emission Factors (g/kg) | GWP Values Relative to CO2 | Air Pollution Emissions (kt) | GHG Emissions (kt-CO2 eq) |
---|---|---|---|---|
CO2 | 1152.5 | 1 | 2589.65 | 2590 |
CH4 | 3.9 | 25 | 8.76 | 245 |
N2O | 0.07 | 298 | 0.16 | 42 |
CO | 40.1 | - | 90.10 | - |
NOX | 1.5 | - | 3.37 | - |
NH3 | 1 | - | 2.25 | - |
SO2 | 0.53 | - | 1.19 | - |
PM2.5 | 4.12 | - | 9.26 | - |
PM10 | 5.65 | - | 12.70 | - |
BC | 0.73 | - | 1.64 | - |
OC | 1.25 | - | 2.81 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukphun, P.; Ponuansri, C.; Wongarmat, W.; Sittijunda, S.; Promnuan, K.; Reungsang, A. Advancing Energy Recovery from Sugarcane Leaf via Two-Stage Anaerobic Digestion for Hydrogen and Methane Production: Impacts on Greenhouse Gas Mitigation and Sustainable Energy Production. Energies 2023, 16, 7861. https://doi.org/10.3390/en16237861
Sukphun P, Ponuansri C, Wongarmat W, Sittijunda S, Promnuan K, Reungsang A. Advancing Energy Recovery from Sugarcane Leaf via Two-Stage Anaerobic Digestion for Hydrogen and Methane Production: Impacts on Greenhouse Gas Mitigation and Sustainable Energy Production. Energies. 2023; 16(23):7861. https://doi.org/10.3390/en16237861
Chicago/Turabian StyleSukphun, Prawat, Chaweewan Ponuansri, Worapong Wongarmat, Sureewan Sittijunda, Kanathip Promnuan, and Alissara Reungsang. 2023. "Advancing Energy Recovery from Sugarcane Leaf via Two-Stage Anaerobic Digestion for Hydrogen and Methane Production: Impacts on Greenhouse Gas Mitigation and Sustainable Energy Production" Energies 16, no. 23: 7861. https://doi.org/10.3390/en16237861
APA StyleSukphun, P., Ponuansri, C., Wongarmat, W., Sittijunda, S., Promnuan, K., & Reungsang, A. (2023). Advancing Energy Recovery from Sugarcane Leaf via Two-Stage Anaerobic Digestion for Hydrogen and Methane Production: Impacts on Greenhouse Gas Mitigation and Sustainable Energy Production. Energies, 16(23), 7861. https://doi.org/10.3390/en16237861