A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium–Ion Batteries in a Sealed Chamber during Thermal Runaway
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Setup
2.2. Tested Samples
2.3. ‘Two-Point’ Fitting Method
3. Results and Discussion
3.1. A Case Study on the Application of the ‘Two-Point’ Fitting Method
3.2. The Influence of Energy Density
3.3. The Influence of Ambient Temperature
3.4. The Influence of Ambient Pressure
3.5. The Influence of SOC
3.6. Discussion
- Pattern 1 (Tv ≥ TTR): venting events mainly induced by thermal runaway, which are generally found for batteries with high energy density or SOCs. The ‘two-point’ fitting method is considered to apply broadly in such cases.
- Pattern 2 (Tv < TTR): venting events mainly induced by the vaporized electrolytes and subsequent thermal runaway reactions, which are common in medium SOCs. The ‘two-point’ fitting method is suitable for the second injection caused by thermal runaway.
- Pattern 3 (TTR does not exist): venting events mainly induced by the vaporized electrolytes only, which are universal for relatively low SOCs. Usually, no thermal runaway will occur; in other words, the energy release is not remarkable.
4. Conclusions
- Energy density, ambient temperature, ambient pressure, and SOC are found to greatly affect the venting behaviors of NCM and LFP batteries. The intensity of the venting process seems weaker for lower energy density, temperature, and SOC and higher pressure.
- The normalized gas amount ranges within 0.075–0.105 mol/Ah (1.68–2.35 L/Ah) for 100% SOC NCM batteries and 0.025–0.035 mol/L (0.56–0.78 L/Ah) for 100% SOC LFP batteries.
- In a sealed chamber filled with nitrogen, the maximum gas releasing rate shows a strongly positive and linear correlation with the capacity of NCM batteries and a weakly positive trend for LFP batteries. Moreover, it also increases with ambient temperature and SOC significantly.
- Venting durations t50, t90, t95, and t99 reflect the evolution of the venting process, demonstrating a considerable difference between LFP and NCM batteries, for which the durations are close. In general, venting durations reduce with elevated temperature and SOC.
- Nearly all venting events obey the three typical venting patterns advanced in this study according to the energy density and SOC of the targeted battery.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Yuan, C.; Wang, Z.; He, J.; Yu, S. Lithium battery state-of-health estimation and remaining useful lifetime prediction based on non-parametric aging model and particle filter algorithm. eTransportation 2022, 11, 100156. [Google Scholar] [CrossRef]
- Steinstraeter, M.; Buberger, J.; Minnerup, K.; Trifonov, D.; Horner, P.; Weiss, B.; Lienkamp, M. Controlling cabin heating to improve range and battery lifetime of electric vehicles. eTransportation 2022, 13, 100181. [Google Scholar] [CrossRef]
- Widmer, F.; Ritter, A.; Duhr, P.; Onder, C.H. Battery lifetime extension through optimal design and control of traction and heating systems in hybrid drivetrains. eTransportation 2022, 14, 100196. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2, 197–212. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Abada, B.S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F. Safety focused modeling of lithium-ion batteries: A review-ScienceDirect. J. Power Sources 2016, 306, 178–192. [Google Scholar] [CrossRef]
- Nilsson, E.J.K.; Brackmann, C.; Tidblad, A.A. Evaluation of combustion properties of vent gases from Li-ion batteries. J. Power Sources 2023, 585, 233638. [Google Scholar] [CrossRef]
- Ping, P.; Wang, Q.; Huang, P.; Sun, J.; Chen, C. Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl. Energy 2014, 129, 261–273. [Google Scholar] [CrossRef]
- Galushkin, N.E.; Yazvinskaya, N.N.; Galushkin, D.N. Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. J. Electrochem. Soc. 2019, 166, A897–A908. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Santhanagopalan, S.; Yang, C.; Pesaran, A. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory): Golden, CO, USA, 2013. [Google Scholar]
- Golubkov, A.W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633–3642. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924. [Google Scholar] [CrossRef] [PubMed]
- Coman, P.T.; Rayman, S.; White, R.E. A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell. J. Power Sources 2016, 307, 56–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, W.; Li, C. Quantitative identification of emissions from abused prismatic Ni-rich lithium-ion batteries. eTransportation 2019, 2, 100031. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes–impact of state of charge and overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef]
- Koch, S.; Fill, A.; Birke, K.P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112. [Google Scholar] [CrossRef]
- Fernandes, Y.; Bry, A.; de Persis, S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J. Power Sources 2018, 389, 106–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, W.; Li, C.; Ouyang, M. Size distribution and elemental composition of vent particles from abused prismatic Ni-rich automotive lithium-ion batteries. J. Energy Storage 2019, 26, 100991. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, W.; Li, C.; Ouyang, M. Quantitative analysis of eruption process of abused prismatic Ni-rich automotive batteries based on in-chamber pressure. J. Energy Storage 2020, 31, 101617. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Wang, Y.; Li, C.; Liu, Y.; Ouyang, M. Thermal abusive experimental research on the large-format lithium-ion battery using a buried dual-sensor. J. Energy Storage 2021, 33, 102156. [Google Scholar] [CrossRef]
- Mier, F.A.; Hargather, M.J.; Ferreira, S.R. Experimental Quantification of Vent Mechanism Flow Parameters in 18650 Format Lithium Ion Batteries. J. Fluids Eng. 2019, 141, 061403. [Google Scholar] [CrossRef]
- Zou, K.; Chen, X.; Ding, Z.; Gu, J.; Lu, S. Jet behavior of prismatic lithium-ion batteries during thermal runaway. Appl. Therm. Eng. Des. Process. Equip. Econ. 2020, 179, 115745. [Google Scholar] [CrossRef]
- Coman, P.T.; Mátéfi-Tempfli, S.; Veje, C.T.; White, R.E. Modeling Vaporization, Gas Generation and Venting in Li-Ion Battery Cells with a Dimethyl Carbonate Electrolyte. J. Electrochem. Soc. 2017, 164, A1858–A1865. [Google Scholar] [CrossRef]
- Kong, D.; Wang, G.; Ping, P.; Wen, J. A coupled conjugate heat transfer and CFD model for the thermal runaway evolution and jet fire of 18650 lithium-ion battery under thermal abuse. eTransportation 2022, 12, 100157. [Google Scholar] [CrossRef]
- Wang, G.; Kong, D.; Ping, P.; Wen, J.; He, X.; Zhao, H.; He, X.; Peng, R.; Zhang, Y.; Dai, X. Revealing particle venting of lithium-ion batteries during thermal runaway: A multi-scale model toward multiphase process. eTransportation 2023, 16, 100237. [Google Scholar] [CrossRef]
- Patil, A.; Patil, V.; Shin, D.W.; Choi, J.W.; Paik, D.S.; Yoon, S.J. Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 2008, 43, 1913–1942. [Google Scholar] [CrossRef]
- Jeong, G.; Kim, Y.U.; Kim, H.; Kim, Y.J.; Sohn, H.J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Grugeon, S.; Laruelle, S.; Boyanov, S.; Lecocq, A.; Bertrand, J.P.; Marlair, G. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 9145–9155. [Google Scholar] [CrossRef]
- Bertilsson, S.; Larsson, F.; Furlani, M.; Albinsson, I.; Mellander, B.E. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy. J. Power Sources 2017, 365, 446–455. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, W.; Zhang, W. Life Cycle Prediction Model of Safety Vent Based on Two-Phase Degradation Process. IEEE Access 2018, 6, 19034–19043. [Google Scholar] [CrossRef]
- Swart, J.; Arora, A.; Megerle, M.; Nilsson, S. Methods for Measuring the Mechanical Safety Vent Pressure of Lithium ion Battery Cells. In Proceedings of the Product Safety Engineering Society Symposium, St. Louis, MI, USA, 30 July–3 August 2007. [Google Scholar]
No. | Cathode | Capacity (Ah) | Battery Type | A | B | C | D |
---|---|---|---|---|---|---|---|
1 | NCM811 | 117 | Prismatic | √ | √ | √ | |
2 | NCM811 | 71 | Pouch | √ | |||
3 | NCM622 | 50 | Prismatic | √ | √ | ||
4 | NCM523 | 153 | Prismatic | √ | |||
5 | NCM523 | 50 | Prismatic | √ | |||
6 | LFP | 150 | Prismatic | √ | √ | ||
7 | LFP | 304 | Prismatic | √ | √ | ||
8 | LFP | 280 | Prismatic | √ | √ | ||
9 | LFP | 304 1 | Prismatic | √ | √ |
Samples | n (mol) | t50 (s) | t90 (s) | t95 (s) | t99 (s) |
---|---|---|---|---|---|
50% SOC | 7.93 (0.78) | 26 (−13) | 68 (−36) | 80 (−41) | 109 (−58) |
100% SOC | 11.13 (1.09) | 30 (−14) | 71 (−34) | 88 (−44) | 126 (−70) |
Samples | Pressure 1 (MPa) | n (mol) | Max(dn/dt) (mol/s) | t50 (s) | t90 (s) | t95 (s) | t99 (s) |
---|---|---|---|---|---|---|---|
NCM622 | 0.1 | 1.73 | 0.033 | 33 | 94 | 118 | 163 |
0.18 | 1.29 | 0.012 | N/A 2 | N/A | N/A | N/A | |
0.26 | 1.43 | 0.013 | 59 | 109 | 126 | 151 | |
NCM523 | 0.02 | 2.16 | 0.062 | N/A | N/A | N/A | N/A |
0.1 | 2.43 | 0.049 | N/A | N/A | N/A | N/A | |
0.26 | 2.63 | 0.048 | N/A | N/A | N/A | N/A |
Samples | SOC | n (mol) | Max(dn/dt) (mol/s) | t50 (s) | t90 (s) | t95 (s) | t99 (s) |
---|---|---|---|---|---|---|---|
NCM811 | 100% | 12.22 | 0.48 | 16 | 37 | 44 | 56 |
50% | 8.71 | 0.37 | 436 | 455 | 460 | 469 | |
0% | 4.93 | 0.04 | 472 | 1863 | 1962 | 2166 | |
LFP | 100% | 9.00 | 0.20 | 63 | 313 | 372 | 423 |
50% | 5.41 | 0.02 | 448 | 1197 | 1275 | 1404 | |
0% | 3.84 | 0.01 | 608 | 1629 | 1865 | 2044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, H.; Shi, C.; Wang, Y.; Li, Y.; Ouyang, M. A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium–Ion Batteries in a Sealed Chamber during Thermal Runaway. Energies 2023, 16, 7874. https://doi.org/10.3390/en16237874
Li C, Wang H, Shi C, Wang Y, Li Y, Ouyang M. A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium–Ion Batteries in a Sealed Chamber during Thermal Runaway. Energies. 2023; 16(23):7874. https://doi.org/10.3390/en16237874
Chicago/Turabian StyleLi, Cheng, Hewu Wang, Chao Shi, Yan Wang, Yalun Li, and Minggao Ouyang. 2023. "A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium–Ion Batteries in a Sealed Chamber during Thermal Runaway" Energies 16, no. 23: 7874. https://doi.org/10.3390/en16237874
APA StyleLi, C., Wang, H., Shi, C., Wang, Y., Li, Y., & Ouyang, M. (2023). A Fitting Method to Characterize the Gaseous Venting Behavior of Lithium–Ion Batteries in a Sealed Chamber during Thermal Runaway. Energies, 16(23), 7874. https://doi.org/10.3390/en16237874