The Tools and Parameters to Consider in the Design of Power Transformer Cooling Systems
Abstract
:1. Introduction
1.1. Determination of the Temperature Field in a Transformer
1.2. Research Overview
1.3. Research Novelty
2. Fundamentals of Transformer Temperature Distribution
2.1. Heat Sources in the Transformer
2.2. Transformer Cooling System
2.3. Effects of Increased Temperature in the Transformer
3. Motivation, Aim, Thesis, and Scope of Research
4. Materials and Methods
4.1. Insulating Liquids
4.2. Methods
5. Measurement Results
5.1. Results of the Heat Transfer Coefficient α Measurements
5.2. Heat Transfer Coefficient α for Vertically and Horizontally Positioned Heat Sources
5.3. Heat Transfer Coefficient α at Different Locations of a Horizontally Positioned Heat Source
5.4. Heat Transfer Coefficient α at Different Locations of a Vertically Positioned Heat Source
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jezierski, E. Transformers. In Theoretical Basics; Scientific and Technical Publishing House: Warsaw, Poland, 1965; p. 450. [Google Scholar]
- Luo, C.; Li, C.; Wan, X.; Zhao, Z. Convective Heat Transfer Coefficient of Insulation Paper–Oil Contact Surface of Transformer Vertical Oil Channel. Coatings 2023, 13, 81. [Google Scholar] [CrossRef]
- Cano-Pleite, E.; Barrado, A.; Garcia-Hernando, N.; Olías, E.; Soria-Verdugo, A. Numerical and Experimental Evaluation and Heat Transfer Characteristics of a Soft Magnetic Transformer Built from Laminated Steel Plates. Sensors 2021, 21, 7939. [Google Scholar] [CrossRef] [PubMed]
- Mansour, D.E.A.; Elsaeed, A.M. Heat Transfer Properties of Transformer Oil-Based Nanofluids Filled with Al2O3 Nanoparticles. In Proceedings of the International Conference of Power and Energy (PECon), Kuching, Malaysia, 1–3 December 2014; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Goscinski, P.; Nadolny, Z.; Tomczewski, A.; Nawrowski, R.; Boczar, T. The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems. Energies 2023, 16, 2627. [Google Scholar] [CrossRef]
- Nadolny, Z. Determination of Dielectric Losses in a Power Transformer. Energies 2022, 15, 993. [Google Scholar] [CrossRef]
- Martínez, V.L.; López, E.P.; Romeu, J.M.; Monrós, C.A.; Cañamero, L.M. Assessment of Load Losses Caused by Harmonic Currents in Distribution Transformers Using the Transformer Loss Calculator Software. Environments 2023, 10, 177. [Google Scholar] [CrossRef]
- Bukreev, A.; Vinogradov, A. A Method for Estimating Power Losses in Power Transformers without Disconnecting them from the Mains and with Ranking for Short-Circuit Losses, Load Losses and Idling Losses. In Proceedings of the 4th International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 9–11 November 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Steinmetz, T.; Cranganu-Cretu, B.; Smajic, J. Investigations of No-Load and Load Losses in Amorphous Core Dry-Type Transformers. In Proceedings of the XIX International Conference on Electrical Machines (ICEM 2010), Rome, Italy, 6–8 September 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Khan, S.; Maximov, S.; Perez, R.E.; Galvan, J.C.O.; Vazquez, E.M.; Garcia, L. Computation of Stray Losses in Transformer Bushing Regions Considering Harmonics in the Load Current. Appl. Sci. 2020, 10, 3527. [Google Scholar] [CrossRef]
- Suechoey, B.; Tadsuan, S.; Khluabwannarat, P.; Chompoo-Inwai, C. An Analysis of Total Loss and Temperature of Oil-Immersed Transformer with Short Circuit Test Linear Load and Non-Linear Load. In Proceedings of the International Power Engineering Conference, Singapore, 29 November–2 December 2005; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Sadati, S.B.; Tahani, A.; Darvishi, B.; Dargahi, M.; Yousefi, H. Comparison of Distribution Transformer Losses and Capacity Under Linear and Harmonic Loads. In Proceedings of the 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Guo, J.; Fan, K.; Yang, B.; Yang, H.; Peng, Q.; Zheng, H. Investigation on Temperature Rise Characteristic and Load Capacity of Amorphous Alloy Vegetable Oil Distribution Transformers with 3D Coupled-Field Method. Machines 2022, 10, 67. [Google Scholar] [CrossRef]
- Sieradzki, S.; Rygal, R.; Soinski, M. Apparent Core Losses and Core Losses In 5 Limb Amorphous Transformer Of 160 kVA. In Proceedings of the International Magnetics Conference (INTERMAG), San Francisco, CA, USA, 6–9 January 1998; IEEE: Piscataway, NJ, USA, 2002. [Google Scholar]
- Sun, H.; Jing, C.; Zeng, H.; Su, Y.; Yang, S.; Zhang, Y.; Bachagha, T.; Zhou, T.; Hou, L.; Ren, W. Martensitic Transformation, Magnetic and Mechanical Characteristics in Unidirectional Ni–Mn–Sn Heusler Alloy. Magnetochemistry 2022, 8, 136. [Google Scholar] [CrossRef]
- Dawood, K.; Komurgoz, G.; Isik, F. Modelling of Distribution Transformer for Analysis of Core Losses of Different Core Materials Using FEM. In Proceedings of the 8th International Conference on Modelling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 15–17 April 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Yue, S.; Yang, Q.; Li, Y.; Zhang, C.; Xu, G. Core Loss Calculation of the Soft Ferrite Cores in High Frequency Transformer under Non-Sinusoidal Excitations. In Proceedings of the 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, 11–14 August 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Bastiaens, K.; Curti, M.; Krop, D.C.J.; Jumayev, S.; Lomonova, E.A. Spectral Element Method Modeling of Eddy Current Losses in High-Frequency Transformers. Math. Comput. Appl. 2019, 24, 28. [Google Scholar] [CrossRef]
- Drandić, A.; Frljić, S.; Trkulja, B. Methodology for Eddy Current Losses Calculation in Linear Variable Differential Transformers (LVDTs). Sensors 2023, 23, 1760. [Google Scholar] [CrossRef] [PubMed]
- Freitag, C.; Leibfried, T. Mixed Core Design for Power Transformers to Reduce Core Losses. In Proceedings of the International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Brasov, Romania, 25–27 May 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Frljić, S.; Trkulja, B.; Žiger, I. Calculation of the Eddy Current Losses in a Laminated Open-Type Transformer Core Based on the A→, T→ −A→ Formulation. Appl. Sci. 2021, 11, 11543. [Google Scholar] [CrossRef]
- Eberle, W.; Liu, Y.F.; Han, Y. New Measurement Methods to Characterize Transformer Core Loss and Copper Loss in High Frequency Switching Mode Power Supplies. In Proceedings of the 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004; IEEE: Piscataway, NJ, USA, 2004. [Google Scholar]
- Karaman, H.S.; Mansour, D.E.A.; Lehtonen, M.; Darwish, M.M.F. Condition Assessment of Natural Ester–Mineral Oil Mixture Due to Transformer Retrofilling via Sensing Dielectric Properties. Sensors 2023, 23, 6440. [Google Scholar] [CrossRef] [PubMed]
- Kunakorn, A.; Pramualsingha, S.; Yutthagowith, P.; Nimsanong, P.; Kittiratsatcha, S. Accurate Assessment of Moisture Content and Degree of Polymerization in Power Transformers via Dielectric Response Sensing. Sensors 2023, 23, 8236. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.S.; Im, Y.C.; Kim, Y.S. Long-Lifetime Event-Driven Wireless Monitoring System for Pole-Mounted Transformers. Appl. Sci. 2021, 11, 7313. [Google Scholar] [CrossRef]
- Shenton, M.J.; Herman, H.; Heywood, R.J.; Stevens, G.C. The Use of Spectroscopy with Chemometrics to Assess the Condition and Predict the Lifetime of Paper and Oil Used as Transformer Insulation. In Proceedings of the Eighth International Conference on Dielectric Materials, Measurements and Applications, Edinburgh, UK, 17–21 September 2000; IET: Piscataway, NJ, USA, 2002. [Google Scholar]
- Polanský, R.; Hahn, P.; Kadlec, P.; Moravcová, D.; Prosr, P. Quantifying the Effect of Catalysts on the Lifetime of Transformer Oil. Appl. Sci. 2020, 10, 1309. [Google Scholar] [CrossRef]
- Ebenezer, M.; Rajkumar, M.R.; Chandramohanan Nair, P.S. Determination of Temperature Distribution and Reduction of Life of a Dry Type Three Phase Transformer. In Proceedings of the 10th International Conference on the Properties and Applications of Dielectric Materials, Bangalore, India, 24–28 July 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Notingher, P.V.; Tanasescu, G. Determination of Estimated, Consumed and Remaining Lifetimes of Paper—Oil Transformers Insulation Based on Winding Insulation Resistance. In Proceedings of the International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Husnayain, F.; Latif, M.; Garniwa, I. Transformer Oil Lifetime Prediction Using the Arrhenius Law Based on Physical and Electrical Characteristics. In Proceedings of the International Conference on Quality in Research (QiR), Lombok, Indonesia, 10–13 August 2015; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Kolbinski, K. Electrotechnical Materials Science; Scientific and Technical Publishing House: Warsaw, Poland, 1976; p. 155.
- Jezierski, E. Construction and Design; Scientific and Technical Publishing House: Warsaw, Poland, 1963; p. 117.
- Inhof, A. Electrical Insulating Materials in High Voltage Technology; Scientific and Technical Publishing House: Warsaw, Poland, 1963; p. 127.
- Sicinski, Z. Electrical Insulating Materials; Scientific and Technical Publishing House: Warsaw, Poland, 1965; p. 85.
- Slowikowska, H. Diagnostic Indicators of Thermal Processes Occurring in Cellulose Insulation of Oil Transformers. In Proceedings of the 8th Scientific and Technical Conference: Power and Special Transformers, Kazimierz Dolny, Poland, 13–15 October 2010. [Google Scholar]
- Slowikowski, S.J. A Method to Describe the Breakdown Risk of Zygomatic Insulation of Oil-Filled Transformers in Use. In Proceedings of the International Conference: Transformer’11, Torun, Poland, 1–3 June 2011. [Google Scholar]
- Przybylek, P.; Moranda, H.; Moscicka-Grzesiak, H. Bubble Effect in Bushings with Insulation made of Various Materials. Meas. Autom. Monit. 2011, 57, 406–408. [Google Scholar]
- Mosinski, F.; Bochenski, B. Transformer Life Time Criteria. In Proceedings of the International Conference: Transformer’07, Torun, Poland, 30 May–1 June 2007. [Google Scholar]
- Slowikowska, H. Progress in the Diagnosis of Thermal Processes Occurring in Paper Insulation of Oil Transformers. Meas. Autom. Monit. 2011, 57, 401–405. [Google Scholar]
- Przybylek, P. The influence of selected factors on the bubble effect initiation temperature. Meas. Autom. Monit. 2011, 57, 409–412. [Google Scholar]
- Buchacz, T.; Olech, W.; Olejniczak, H. Current problems regarding the threat of oil-paper insulation of transformers. In Proceedings of the International Conference: Transformer’09, Torun, Poland, 2–4 June 2009. [Google Scholar]
- Gielniak, J.; Graczkowski, A.; Moranda, H.; Przybylek, P.; Walczak, K.; Nadolny, Z.; Moscicka-Grzesiak, H.; Feser, K.; Gubanski, S.M. Moisture in Cellulose Insulation of Power Transformers—Statistics. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 82–987. [Google Scholar] [CrossRef]
- Perrier, C.; Beroual, A.; Bessede, J.L. Experimental Investigations on different Insulating Liquids and Mixture for Power Transformers. In Proceedings of the International Symposium on Electrical Insulation, Indianapolis, IN, USA, 19–22 September 2004. [Google Scholar]
- Goscinski, P.; Dombek, G. Contemporary Trends in the Use of Electrical Insulating Liquids used in High Voltage Power Transformers. In Between Evolution and Revolution—In Search of an Energy Strategy, Politics, Economy, Technology, Transport; Clean Energy Foundation: Komorniki, Poland, 2018; pp. 567–577. [Google Scholar]
- Rozga, P. Characteristics of Electrical Insulating Fluids for Power Transformers Alternative to Mineral Oil. In Technical and Information Bulletin of Lodz Branch of the Association of Polish Electricians; Association of Polish Electricians: Lodz, Poland, 2015; pp. 2–6. ISSN 2082-7377. [Google Scholar]
- Gradnik, T.; Lukan, T.; Čuček, B.; Končan-Gradnik, M. Impact of Ageing on Thermal Properties of Power Transformer Insulating Liquids. In Proceedings of the 21st International Conference on Dielectric Liquids (ICDL), Sevilla, Spain, 29 May–2 June 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Dombek, G.; Nadolny, Z.; Marcinkowska, A. Thermal properties of natural ester and low viscosity natural ester in the aspect of the reliable operation of the transformer cooling system. Maint. Reliab. 2019, 21, 384–391. [Google Scholar] [CrossRef]
Type of Liquid | Mineral Oil | Natural Ester | Natural Ester with Reduced Viscosity | Synthetic Ester |
---|---|---|---|---|
Electrical properties | ||||
Breakdown voltage Ub [kV] | 68 | 75 | 75 | 75 |
Electrical resistivity [Ω·m] | 108 ÷ 1014 | 108 ÷ 1012 | 1010 ÷ 1011 | 108 ÷ 1012 |
tan(delta) | <0.0020 | 0.0050 | 0.0400 | 0.0006 |
Electrical permittivity ε | 2.26 | 3.20 | 2.82 | 3.20 |
Thermal properties | ||||
Specific heat cp [J·kg−1·K−1] | 2077 | 2166 | 1990 | 2052 |
Thermal conductivity λ [W·m−1·K−1] | 0.128 | 0.178 | 0.188 | 0.153 |
Viscosity ν [mm2·s−1] | 5.4 | 18.3 | 10.0 | 14.0 |
Density ρ [kg·m−3] | 845 | 892 | 863 | 940 |
Thermal expansion β [K−1] | 0.00078 | 0.00078 | 0.00078 | 0.00078 |
Heat transfer coefficient α [W·m−2·K−1] | 134.67 | 118.85 | 123.12 | 112.99 |
Heat Transfer Coefficient α [W·m−2·K−1] | |||||
---|---|---|---|---|---|
Type of Liquid | Mineral Oil | Natural Ester with Reduced Viscosity | Natural Ester | Synthetic Ester | |
Surficial heat power [W·m−2] | 1000 | ||||
Place on heat source | top | 57.94 | 54.66 | 51.78 | 49.93 |
middle | 65.46 | 65.03 | 62.42 | 61.08 | |
bottom | 162.78 | 149.53 | 138.82 | 138.50 | |
average | 95.39 | 89.74 | 84.34 | 83.17 | |
Surficial heat power [W·m−2] | 2000 | ||||
Place on heat source | top | 79.36 | 78.01 | 71.06 | 70.35 |
middle | 83.84 | 81.68 | 78.40 | 76.19 | |
bottom | 240.81 | 209.67 | 207.10 | 192.44 | |
average | 134.67 | 123.12 | 118.85 | 112.99 | |
Surficial heat power [W·m−2] | 3000 | ||||
Place on heat source | top | 114.73 | 96.24 | 90.69 | 90.93 |
middle | 116.98 | 99.58 | 94.91 | 94.09 | |
bottom | 234.49 | 232.56 | 213.44 | 206.76 | |
average | 155.40 | 142.79 | 133.01 | 130.59 |
Heat Transfer Coefficient α [W·m−2·K−1] | |||||
---|---|---|---|---|---|
Type of Liquid | Mineral Oil | Natural Ester with Reduced Viscosity | Natural Ester | Synthetic Ester | |
Surficial heat power [W·m−2] | 1000 | ||||
Place on heat source | top | 122.22 | 119.72 | 121.35 | 106.57 |
side | 129.15 | 121.24 | 127.64 | 109.53 | |
bottom | 140.57 | 127.17 | 135.83 | 119.14 | |
average | 130.65 | 122.71 | 128.27 | 111.75 | |
Surficial heat power [W·m−2] | 2000 | ||||
Place on heat source | top | 150.00 | 147.69 | 151.64 | 132.67 |
side | 152.67 | 148.31 | 157.60 | 136.93 | |
bottom | 182.91 | 157.00 | 168.03 | 147.75 | |
average | 161.86 | 151.00 | 159.09 | 139.12 | |
Surficial heat power [W·m−2] | 3000 | ||||
Place on heat source | top | 180.00 | 174.43 | 172.57 | 167.00 |
side | 181.42 | 173.76 | 175.09 | 168.99 | |
bottom | 203.59 | 180.90 | 192.35 | 181.83 | |
average | 188.34 | 176.36 | 180.00 | 172.61 |
Location of the Heat Source | Heat Transfer Coefficient α [W·m−2·K−1] | Temperature Decrease ΔT [°C] |
---|---|---|
top | 79.36 | 25.20 |
middle | 83.84 | 23.86 |
bottom | 240.81 | 8.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goscinski, P.; Nadolny, Z.; Nawrowski, R.; Boczar, T. The Tools and Parameters to Consider in the Design of Power Transformer Cooling Systems. Energies 2023, 16, 8000. https://doi.org/10.3390/en16248000
Goscinski P, Nadolny Z, Nawrowski R, Boczar T. The Tools and Parameters to Consider in the Design of Power Transformer Cooling Systems. Energies. 2023; 16(24):8000. https://doi.org/10.3390/en16248000
Chicago/Turabian StyleGoscinski, Przemyslaw, Zbigniew Nadolny, Ryszard Nawrowski, and Tomasz Boczar. 2023. "The Tools and Parameters to Consider in the Design of Power Transformer Cooling Systems" Energies 16, no. 24: 8000. https://doi.org/10.3390/en16248000
APA StyleGoscinski, P., Nadolny, Z., Nawrowski, R., & Boczar, T. (2023). The Tools and Parameters to Consider in the Design of Power Transformer Cooling Systems. Energies, 16(24), 8000. https://doi.org/10.3390/en16248000