Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Employed Formulae and Metrics
3.1.1. Spatial Daylight Autonomy (sDA)
- pi is the j-th sensor node on a horizontal plane;
- ti is the i-th working hour;
- xi,j is a binary function “to account for a double summation over both the temporal and spatial domains being these metrics defined as a spatial average.” [47];
- τ denotes the transitory fraction threshold; and
- ty is the annual date-time count [48].
3.1.2. Annual Solar Exposure (ASE)
3.1.3. Daylight Glare Probability (DGP)—Disturbing Glare
- Ls,i is the luminance of i-th window(cd/m2);
- ωs,i is the solid angle (angular size of the window seen) of the i-th window(sr);
- Pi is the position index of the i-th window.
3.1.4. Useful Daylight Illuminance (UDI)
- ti is the i-th working hour; and
- Eavg is the mean illuminance.
3.1.5. Daylight Factor (DF)
- θ is the vertical angle delimited by the visible sky from the center of the window;
- T is the diffuse transmittance of the glazing material. For clear single glazing windows, T ≈ 0.8;
- Aw is the effective area of a window. In this paper, window bars are ignored;
- M is the maintenance factor. As the case window in this project is a vertical window located in a suburban area and subjected to heavy rains, M ≈ 0.98 [8].
3.1.6. Predicted Percentage Dissatisfied (PPD)
3.1.7. Electric Power Consumption
- Qc, Qh, and Ql are cooling, heating, and lighting energy consumption, respectively; and
- COPc and COPh, are the coefficients of performance of the standard facility, respectively.
3.1.8. Reflective Surface Optimizing ADS Geometry (Curve Fitting) Formula
- ns is the reflective index of the inner surface of the ADS curve; and
- ng is the medium which the daylight comes from. In this study, the authors assumed ng = 1 since the sunlight beams come from the air.
3.2. Multi-Objective Optimization
for i ∈ [1−N] which N is the number of population size: | ||||
X0(i,j)=round(LB(j)+rand()*(UB(j)-LB(j))) which LB, and UB are the lower and upper bounds; | ||||
end | ||||
for iteration from 1 to M which M is the maximum number of iterations: | ||||
for each i∈[N,1]: | ||||
for each j∈[V,1] which V is the number of variables: | ||||
update velocity of swarm by | ||||
update swarm positions by | ||||
Amend the | ||||
end | ||||
evaluate the fitness of swarm | ||||
end | ||||
update global best | ||||
end | ||||
end |
4. Results and Discussion
4.1. Visual Comfort
4.2. System Efficiency
4.3. Radiation
4.4. Energy Consumption and Thermal Comfort
4.5. View to the Outside
4.6. Non-Visual Effect of Admitted Daylight
5. Validation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ADS | Anidolic Daylighting System | EUI | Energy Use Intensity |
AIC | Anidolic Integrated Ceiling | IEA | International Energy Agency |
ALFA | Adaptive Lighting for Alertness | IES | Illuminating Engineering Society |
ASE | Annual Solar Exposure | LEED | Leadership in Energy and Environmental Design |
ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers | MCDM | Multiple-Criteria Decision-Making |
BREEAM | Building Research Establishment Environmental Assessment Method | MOGA | Multi-Objective Genetic Algorithm |
CBDM | Climate-Based Daylight Modeling | NSPSO | Non-dominated Sorting Particle Swarm Optimization |
CPC | Compound Parabolic Concentrator | PPD | Predicted Percentage Dissatisfied |
DA | Daylight Autonomy | sDA | Spatial Daylight Autonomy |
DF | Daylight Factor | UDI | Useful Daylight Illuminance |
DGP | Daylight Glare Probability | WFR | Window-to-Floor Ratio |
EML | Equivalent Melanopic Lux | WWR | Window-to-Wall Ratio |
Appendix A
References
- Garcia-Fernandez, B.; Omar, O. Integrated innovative solar lighting system for optimization of daylight utilization for public library in Alexandria, Egypt. Ain Shams Eng. J. 2023, 14, 101819. [Google Scholar] [CrossRef]
- Sorooshnia, E.; Rashidi, M.; Rahnamayiezekavat, P.; Rezaei, F.; Samali, B. Optimum external shading system for counterbalancing glare probability and daylight illuminance in Sydney’s residential buildings. Eng. Constr. Archit. Manag. 2021; ahead of print. [Google Scholar] [CrossRef]
- Sorooshnia, E.; Rashidi, M.; Rahnamayiezekavat, P.; Samali, B. Optimizing Window Configuration Counterbalancing Energy Saving and Indoor Visual Comfort for Sydney Dwellings. Buildings 2022, 12, 1823. [Google Scholar] [CrossRef]
- Onubogu, N.O.; Chong, K.K.; Tan, M.H. Review of Active and Passive Daylighting Technologies for Sustainable Building. Int. J. Photoenergy 2021, 2021, 8802691. [Google Scholar] [CrossRef]
- Ponmalar, V.; Ramesh, B. Energy efficient building design and estimation of energy savings from daylighting in Chennai. Energy Eng. 2014, 111, 59–80. [Google Scholar] [CrossRef]
- Linhart, F.; Scartezzini, J.-L. Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems. Sol. Energy 2010, 84, 587–595. [Google Scholar] [CrossRef]
- Veitch, J.A. Lighting for High-Quality Workplaces. In Creating the Productive Workplace; Taylor & Francis: New York, NY, USA, 2006; pp. 234–250. [Google Scholar]
- CIBSE. Daylighting and Window Design-Lighting Guide LG; Chartered Institution of Building Services Engineers: London, UK, 1999. [Google Scholar]
- Bodart, M.; De Herde, A. Global energy savings in offices buildings by the use of daylighting. Energy Build. 2002, 34, 421–429. [Google Scholar] [CrossRef]
- Campisi, D.; Gitto, S.; Morea, D. An Evaluation of Energy and Economic Efficiency in Residential Buildings Sector: A Multi-criteria Analisys on an Italian Case Study. 2018. Available online: https://hdl.handle.net/11584/317289 (accessed on 1 October 2022).
- Saadi, M.Y.; Daich, S.; Daiche, A.M. Design and Analysis of a Passive Lighting Device for a Sustainable Office Environment in Hot-Arid Climate Conditions. Int. J. Sustain. Constr. Eng. Technol. 2022, 13, 25–38. [Google Scholar] [CrossRef]
- Wittkopf, S.K.; Yuniarti, E.; Soon, L.K. Prediction of energy savings with anidolic integrated ceiling across different daylight climates. Energy Build. 2006, 38, 1120–1129. [Google Scholar] [CrossRef]
- Scartezzini, J.-L.; Courret, G. Anidolic daylighting systems. Sol. Energy 2002, 73, 123–135. [Google Scholar] [CrossRef]
- Boubekri, M. Daylighting, Architecture and Health; Routledge: Oxfordshire, UK, 2008. [Google Scholar]
- Ochoa, C.E.; Capeluto, I.G. Evaluating visual comfort and performance of three natural lighting systems for deep office buildings in highly luminous climates. Build. Environ. 2006, 41, 1128–1135. [Google Scholar] [CrossRef]
- Tian, M.; Su, Y.; Zheng, H.; Pei, G.; Li, G.; Riffat, S. A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications. Renew. Sustain. Energy Rev. 2017, 82, 1272–1296. [Google Scholar] [CrossRef] [Green Version]
- Verso, V.R.L.; Pellegrino, A.; Serra, V. Light transmission efficiency of daylight guidance systems: An assessment approach based on simulations and measurements in a sun/sky simulator. Sol. Energy 2011, 85, 2789–2801. [Google Scholar] [CrossRef]
- Binarti, F.; Satwiko, P. Assessing the energy saving potential of anidolic system in the tropics. Energy Effic. 2018, 11, 955–974. [Google Scholar] [CrossRef] [Green Version]
- Binarti, F.; Satwiko, P. An east-facing anidolic daylighting system on a tropical urban house. Indoor Built Environ. 2015, 25, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; Anaraki, H.K. Analysis of the Impacts of Light Shelves on the Useful Daylight Illuminance in Office Buildings in Toronto. Energy Procedia 2015, 78, 1793–1798. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, K. Daylight in buildings, collaborative research in the International Energy Agency (IEA Task 21). Renew. Energy 1998, 15, 142–150. [Google Scholar] [CrossRef]
- Kleindienst, S.A. Improving the Daylighting Conditions of Existing Buildings: The Benefits and Limitations of Integrating Anidolic Daylighting Systems Using the American Classroom as a Model; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006. [Google Scholar]
- Roshan, M.; Kandar, M.Z.B.; Nikpur, M.; Mohammadi, M.P.; Ghasemi, M. Investigating the performance of anidolic daylighting system with respect to building orientation in tropical area. Eng. Sci. Technol. 2013, 3. [Google Scholar]
- Binarti, F.; Satwiko, P. Long-term Monitoring and Simulations of the Daylighting and Thermal Performance of an Anidolic Daylighting System on a Tropical Urban House. Energy Procedia 2015, 78, 1787–1792. [Google Scholar] [CrossRef] [Green Version]
- Praditwattanakit, R.; Chaiwiwatworakul, P.; Chirarattananon, S. Anidolic concentrator to enhance the daylight use in tropical buildings. In Proceedings of the International Conference on Alternative Energy in Developing Countries and Emerging Economies, Bangkok, Thailand, 30–31 May 2013. [Google Scholar]
- Wittkopf, S. Daylight performance of anidolic ceiling under different sky conditions. Sol. Energy 2007, 81, 151–161. [Google Scholar] [CrossRef]
- Kontadakis, A.; Tsangrassoulis, A.; Doulos, L.; Zerefos, S. A Review of Light Shelf Designs for Daylit Environments. Sustainability 2018, 10, 71. [Google Scholar] [CrossRef]
- Daich, S.; Zemmouri, N.; Morello, E.; Piga, B.E.; Saadi, M.Y.; Daiche, A.M. Assessment of Anidolic Integrated Ceiling effects in interior daylight quality under real sky conditions. Energy Procedia 2017, 122, 811–816. [Google Scholar] [CrossRef]
- Compagnon, R. Numerical Simulations of Daylighting Systems for Side-Lighting; Simulations Numeriques de Systemes Declairage Naturel a Penetration Laterale; Ecole Polytechnique Federale: Lausanne, Switzerland, 1994. [Google Scholar]
- Darling, D. Passive Solar Design. Available online: https://www.daviddarling.info/encyclopedia/P/AE_passive_solar_design.html (accessed on 7 November 2022).
- Gordon, J.M.; Rabl, A. Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction. Appl. Opt. 1992, 31, 7332–7338. [Google Scholar] [CrossRef] [PubMed]
- Courret, G. Anidolic Daylighting Systems. In Department of Architecture; EPFL: Lausanne, Switzerland, 1999. [Google Scholar]
- Wittkopf, S.; Grobe, L.O.; Geisler-Moroder, D.; Compagnon, R.; Kämpf, J.; Linhart, F.; Scartezzini, J.-L. Ray tracing study for non-imaging daylight collectors. Sol. Energy 2010, 84, 986–996. [Google Scholar] [CrossRef]
- Rhino3D, Rhinoceros Features. 2022. Available online: https://www.rhino3d.com/features/ (accessed on 1 November 2022).
- McNeel Europe Grasshopper—Algorithmic Modeling for Rhino. Available online: https://www.grasshopper3d.com/ (accessed on 1 November 2022).
- Costanzo, V.; Nocera, F.; Evola, G.; Buratti, C.; Faro, A.L.; Marletta, L.; Domenighini, P. Optical characterization of historical coloured stained glasses in winter gardens and their modelling in daylight availability simulations. Sol. Energy 2022, 243, 22–34. [Google Scholar] [CrossRef]
- Xiang, C.; Lobaccaro, G.; Matusiak, B.S. Tailored Architectural Design Method for Coloured Façade Integrated Photovoltaics: An Example from the Nordic Built Environment. In Proceedings of the Solar World Congress, Virtual Conference, 25–29 October 2021. [Google Scholar] [CrossRef]
- Ayoub, M. 100 Years of daylighting: A chronological review of daylight prediction and calculation methods. Sol. Energy 2019, 194, 360–390. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0038092X19310692?via%3Dihub (accessed on 8 December 2022). [CrossRef]
- EnergyPlus Simulation Software. 2022. Available online: https://energyplus.net (accessed on 1 July 2022).
- Compagnon, R. Simulations Numériques de systèmes D’éclairage Naturel à Pénétration Latérale. In Department of Architecture; EPFL: Lausanne, Switzerland, 1994. [Google Scholar]
- Feng, Y.; Zheng, B.; Li, Z. Exploratory study of sorting particle swarm optimizer for multiobjective design optimization. Math. Comput. Model. 2010, 52, 1966–1975. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Suganthan, P.N.; Qu, B. Multiobjective Particle Swarm Optimizer with DYNAMIC epsilon-Dominance Sorting. In Proceedings of the 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC), Kitakyushu, Japan, 15–17 December 2010. [Google Scholar]
- Li, X. A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, Chicago, IL, USA, 12–16 July 2003; Springer: Berlin/Heidelberg, Germany; pp. 37–48. [Google Scholar] [CrossRef]
- Liu, Y. A Fast and Elitist Multi-Objective Particle Swarm Algorithm: NSPSO. In Proceedings of the 2008 IEEE International Conference on Granular Computing, Hangzhou, China, 26–28 August 2008; pp. 470–475. [Google Scholar] [CrossRef]
- ANSI/IES RP-16-17; Addendum 2. Illuminating-Engineering-Society: New York, NY, USA, 2019.
- USGBC. LEED BD+ C: New Construction; v4-LEED v4: Daylight; USGBC: Washington, DC, USA, 2014. [Google Scholar]
- Costanzo, V.; Evola, G.; Marletta, L.; Pistone Nascone, F. Application of Climate Based Daylight Modelling to the Refurbishment of a School Building in Sicily. Sustainability 2018, 10, 2653. [Google Scholar] [CrossRef]
- Pilechiha, P.; Mahdavinejad, M.; Pour Rahimian, F.; Carnemolla, P.; Seyedzadeh, S. Multi-objective optimisation framework for designing office windows: Quality of view, daylight and energy efficiency. Appl. Energy 2020, 261, 114356. [Google Scholar] [CrossRef]
- Council, U.G.B. LEED-v4.1 for Building Design and Construction; USGBC Inc.: Washington, DC, USA, 2019. [Google Scholar]
- Pierson, C.; Wienold, J.; Bodart, M. Review of Factors Influencing Discomfort Glare Perception from Daylight. Leukos 2017, 14, 111–148. [Google Scholar] [CrossRef]
- Nazzal, A.A. A new evaluation method for daylight discomfort glare. Int. J. Ind. Ergon. 2005, 35, 295–306. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Light. Res. Technol. 2005, 37, 41–57. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminances: A replacement for daylight factors. Energy Build. 2006, 38, 905–913. [Google Scholar] [CrossRef]
- Mardaljevic, J. Climate-Based Daylight Modelling and its Discontents. In Proceedings of the CIBSE Technical Symposium, London, UK, 16–17 April 2015. [Google Scholar]
- BREEAM. BREEAM New Construction, Non Domestic Building; Global BRE: Watford, UK, 2012. [Google Scholar]
- Cruse, A. Improving the Weather: On Architectural Comforts and Climates, in Examining the Environmental Impacts of Materials and Buildings; IGI Global: Hershey, PA, USA, 2020; pp. 251–281. [Google Scholar]
- Hong, X.; Shi, F.; Wang, S.; Yang, X.; Yang, Y. Multi-objective optimization of thermochromic glazing based on daylight and energy performance evaluation. Build. Simul. 2021, 14, 1685–1695. [Google Scholar] [CrossRef]
- Obradovic, B.; Matusiak, B. A customised method for estimating light transmission efficiency of the horizontal light pipe via a temporal parameter with an example application using laser-cut panels as a collector. Methodsx 2021, 8, 101339. [Google Scholar] [CrossRef]
- Rashidi, M.; Sorooshnia, E. Heuristic Catenary-based Rule of Thumbs to Find Bending Moment Diagrams. Civ. Eng. Arch. 2020, 8, 557–570. [Google Scholar] [CrossRef]
- Ries, H.; Rabl, A. Edge-ray principle of nonimaging optics. J. Opt. Soc. Am. A 1994, 11, 2627–2632. [Google Scholar] [CrossRef]
- Chen, F.; Li, M.; Zhang, P. Distribution of Energy Density and Optimization on the Surface of the Receiver for Parabolic Trough Solar Concentrator. Int. J. Photoenergy 2015, 2015, 120917. [Google Scholar] [CrossRef]
- MathWorks, Curve Fitting via Optimization. 2020. Available online: https://www.mathworks.com/help/matlab/math/example-curve-fitting-via-optimization.html (accessed on 1 October 2022).
- Winston, R.; Miñano, J.; Benitez, P. Nonimaging Optics; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Deb, K.J.I. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: New York, NY, USA, 2001; ISBN 978-0-471-87339-6. [Google Scholar]
- Roslan, M.F.; Al-Shetwi, A.Q.; Hannan, M.A.; Ker, P.J.; Zuhdi, A.W.M. The pseudocode of the proposed PSO algorithm. PLoS ONE 2020, 15, e0243581. [Google Scholar] [CrossRef]
- Solemma. ALFA. Adaptive Lighting for Alertness. A new Circadian Lighting Design Software. 2022. Available online: https://www.solemma.com/alfa (accessed on 1 October 2022).
- Institute, I.W.B. LIGHT. Feature Visual Lighting Design, in WELL Building Standard. 2020. Available online: https://standard.wellcertified.com/well (accessed on 1 September 2022).
- Ravn, M.; Mach, G.; Hansen, E.K.; Triantafyllidis, G. Simulating Physiological Potentials of Daylight Variables in Lighting Design. Sustainability 2022, 14, 881. [Google Scholar] [CrossRef]
- Bullock, J. Explainer: Melanopic Lux. The Light Review 2019. Available online: https://www.thelightreviewonline.com/explainer-melanopic-lux/ (accessed on 1 November 2022).
- Brown, T.M.; Brainard, G.C.; Cajochen, C.; Czeisler, C.A.; Hanifin, J.P.; Lockley, S.W.; Lucas, R.J.; Münch, M.; O’Hagan, J.B.; Peirson, S.N.; et al. Recommendations for daytime, evening, and nighttime indoor light exposure. PLoS Biol. 2022, 20, e3001571. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cano, A.; Aporta, J. Optimization of Lighting Projects Including Photopic and Circadian Criteria: A Simplified Action Protocol. Appl. Sci. 2020, 10, 8068. [Google Scholar] [CrossRef]
- Miller, N.J.; Irvin, A.L. M/P Ratios—A Call for Consistency. LD+A Mag. 2020, 50, PNNL-SA-152939. [Google Scholar]
Room Dimensions | Climate and Location | Construction | Window | |||||
---|---|---|---|---|---|---|---|---|
Length | 7.0 m | Location | Sydney, NSW, Australia | Wall 1 | Thickness | 0.12 mm insulation + 78 mm solid wood + 13 mm gypsum | Glazing | 4 mm single-pane, low-E |
Width | 6.0 m | Latitude | 33.83 | Thermal Conductivity | 0.03 (W/m·°C) | Visible light transmission | 67% | |
Height | 3.0 m | Longitude | 151.07 | U-value | 0.264 (W/m2·°C) | External visible light reflectance | 9% | |
Time zone | GMT + 10.0 | Roof | Thickness | 400 mm | Internal visible light reflectance | 10% | ||
Elevation | 4.00 m | Thermal Conductivity | 0.27 (W/m2·°C) | U-value | 5.6 (W/m2·°C) | |||
U-value | 0.15 (W/m2·°C) | Vision | 68% | |||||
Floor | Thickness | 150 mm screed with insulation + 140 mm wood | SHGC | 0.41 | ||||
Thermal Conductivity | 0.115 (W/m·°C) | Frame conductance | 5 (W/m2·°C) | |||||
U-value | 0.18 (W/m2·°C) |
Equipment | off | |||||
Hot water | off | |||||
Ventilation | Wind-driven flow | off | ||||
Buoyancy-driven flow | off | |||||
Natural ventilation | on | |||||
Scheduled ventilation setpoint | 18 °C | Humidity air change | 0.6 (ACH) | |||
Infiltration | 0.5 (ACH) | |||||
Humidity control | on | |||||
Mechanical ventilation | on | Fresh air | 8.33 (L/s/person) | Heat recovery | Sensible (0.6) | |
Heating | Constant setpoint | 19 °C | Max. supply air temp. | 30 °C | Heating limit | 100 (W/m2) |
Cooling | Constant setpoint | 26 °C | Max. supply air temp. | 18 °C | Heating limit | 100 (W/m2) |
People | People density | 0.1 (person/m2) | Metabolic rate | 1.2 | ||
Lighting | Lighting power density | 9.5 (W/m2) | Illuminance target | 300(Lux) | Dimming | Stepped |
Schedule (see Appendix A) |
Reflectance (%) | Specular (%) | Diffuse (%) | Tvis (%) | Uval (W/m2·°C) | ||
---|---|---|---|---|---|---|
Ceiling | 85.67 | 0.35 | 85.31 | --- | 0.15 | |
Walls | 83.40 | 1.01 | 82.39 | --- | 0.264 | |
Floor | 54.82 | 2.29 | 52.53 | --- | 0.18 | |
View Window | --- | --- | --- | 87.7 | 2.48 | |
Anidolic Entry | --- | --- | --- | 68.1 | 1.22 | |
Reflector | Inside | 91.05 | --- | --- | --- | --- |
Out | 4.36 | 2.20 | 2.15 | --- | --- |
sDA | ASE | DGP (Not Disturbing) | UDI (Acceptable Range) | PPD | Heating Energy | Cooling Energy | Lighting Energy | |
---|---|---|---|---|---|---|---|---|
Min/max | max | min | min | max | min | min | min | min |
Maximum threshold | --- | 1000 (Lux) | 40% | 3000(Lux) | 20% | --- | --- | --- |
Minimum threshold | 300(Lux) | --- | --- | 300(Lux) | --- | --- | --- | --- |
Time domain | hr | hr | hr | hr | day | month | month | month |
Metrics | Reference Room | Room with ADS | ||||||
---|---|---|---|---|---|---|---|---|
Time | Sky Condition | Ave. Melanopic Lux | Ave. Photopic Lux | Ave. M/P ratio | Ave. Melanopic Lux | Ave. Photopic Lux | Ave. M/P ratio | |
28th Sep. Midday | Clear | 1002 | 1054 | 0.92 | 2504 | 2174 | 0.92 | |
Overcast | 595 | 645 | 0.89 | 1168 | 1259 | 0.90 | ||
4th Aug. Midday | Clear | 1902 | 2095 | 0.86 | 4363 | 4764 | 0.88 | |
Overcast | 356 | 383 | 0.89 | 702 | 748 | 0.91 | ||
6th Jul. Midday | Clear | 1930 | 2160 | 0.85 | 3890 | 4316 | 0.86 | |
Overcast | 296 | 317 | 0.90 | 573 | 610 | 0.91 | ||
16th Jun. Midday | Clear | 1926 | 2155 | 0.85 | 3880 | 4325 | 0.87 | |
Overcast | 289 | 310 | 0.90 | 579 | 615 | 0.91 | ||
19th May. Midday | Clear | 1705 | 1898 | 0.87 | 3932 | 4320 | 0.88 | |
Overcast | 342 | 368 | 0.90 | 675 | 719 | 0.91 | ||
22nd Apr. Midday | Clear | 1372 | 1504 | 0.88 | 3355 | 3629 | 0.89 | |
Overcast | 431 | 465 | 0.89 | 870 | 929 | 0.90 | ||
11th Mar. Midday | Clear | 998 | 1044 | 0.93 | 2052 | 2155 | 0.93 | |
Overcast | 631 | 683 | 0.89 | 1233 | 1324 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorooshnia, E.; Rahnamayiezekavat, P.; Rashidi, M.; Sadeghi, M.; Samali, B. Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings. Energies 2023, 16, 1090. https://doi.org/10.3390/en16031090
Sorooshnia E, Rahnamayiezekavat P, Rashidi M, Sadeghi M, Samali B. Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings. Energies. 2023; 16(3):1090. https://doi.org/10.3390/en16031090
Chicago/Turabian StyleSorooshnia, Ehsan, Payam Rahnamayiezekavat, Maria Rashidi, Mahsan Sadeghi, and Bijan Samali. 2023. "Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings" Energies 16, no. 3: 1090. https://doi.org/10.3390/en16031090
APA StyleSorooshnia, E., Rahnamayiezekavat, P., Rashidi, M., Sadeghi, M., & Samali, B. (2023). Curve Optimization for the Anidolic Daylight System Counterbalancing Energy Saving, Indoor Visual and Thermal Comfort for Sydney Dwellings. Energies, 16(3), 1090. https://doi.org/10.3390/en16031090