Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Torrefaction Experimental Setup and Procedure
2.3. Torrefaction Products Analyses
3. Results and Discussion
3.1. Effect of Biomass Particle Size on the Torrefaction Products Evolving Characteristics under Different Torrefaction Temperatures
3.1.1. Mass Yields of Torrefaction Products
3.1.2. Product Gas Composition from Torrefaction
3.1.3. Composition, Heating Value and Energy Yield of Torrefied Wood
3.2. Effect of Biomass Particle Size on the Torrefaction Products Evolving Characteristics under Different Torrefaction Times
3.2.1. Mass Yields of Torrefaction Products
3.2.2. Product Gas Composition from Torrefaction
3.2.3. Composition, Heating Value, and Energy Yield of Torrefied Wood
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Xie, X.; Zhang, L.; Lin, D.; Wang, S.; Wang, S.; Xu, H.; Wang, J.; Huang, Y.; Zhang, S.; et al. Coke formation during rapid quenching of volatile vapors from fast pyrolysis of cellulose. Fuel 2021, 306, 121658. [Google Scholar] [CrossRef]
- Li, B.; Tang, J.; Huang, H.; Xie, X.; Lin, D.; Zhang, S.; Huang, Y.; Liu, D.; Xu, Z.; Chen, D. Biocoke production from heat treatment of bio-oil: Effect of temperature. J. Anal. Appl. Pyrolysis 2022, 161, 105401. [Google Scholar] [CrossRef]
- Li, B.; Tang, J.; Xie, X.; Wei, J.; Xu, D.; Shi, L.; Ding, K.; Zhang, S.; Hu, X.; Zhang, S.; et al. Char structure evolution during molten salt pyrolysis of biomass: Effect of temperature. Fuel 2023, 331, 125747. [Google Scholar] [CrossRef]
- Sobczak, A.; Chomać-Pierzecka, E.; Kokiel, A.; Różycka, M.; Stasiak, J.; Soboń, D. Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany. Energies 2022, 15, 5239. [Google Scholar] [CrossRef]
- Chen, W.H.; Lin, B.J.; Lin, Y.Y.; Chu, Y.S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.S.; Ho, S.H.; Culaba, A.B.; et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Thengane, S.K.; Kung, K.S.; Gomez-Barea, A.; Ghoniem, A.F. Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Prog. Energy Combust. Sci. 2022, 93, 101040. [Google Scholar] [CrossRef]
- Wei, F.; Kudo, S.; Asano, S.; Hayashi, J.-i. Torrefaction of woody biomass and in-situ pyrolytic reforming of volatile matter: Analyses of products and process heat demand. J. Anal. Appl. Pyrolysis 2022, 167, 105658. [Google Scholar] [CrossRef]
- Kota, K.B.; Shenbagaraj, S.; Sharma, P.K.; Sharma, A.K.; Ghodke, P.K.; Chen, W.-H. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel 2022, 324, 124663. [Google Scholar] [CrossRef]
- Kong, G.; Wang, K.; Zhang, X.; Li, J.; Han, L.; Zhang, X. Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars. Bioresour. Technol. 2022, 363, 127960. [Google Scholar] [CrossRef]
- Sukiran, M.A.; Abnisa, F.; Daud, W.M.A.W.; Abu Bakar, N.; Loh, S.K. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers. Manag. 2017, 149, 101–120. [Google Scholar] [CrossRef]
- Niu, X.; Xu, Y.; Shen, L. Effect of torrefaction on the evolution of carbon and nitrogen during chemical looping gasification of rapeseed cake. Chem. Eng. J. 2022, 450, 138134. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Zhang, T.; Li, S.; Wang, J.; Niu, W.; Liu, Y.; Zheng, A.; Zhao, Z. Advancing biomass pyrolysis by torrefaction pretreatment: Linking the productions of bio-oil and oxygenated chemicals to torrefaction severity. Fuel 2022, 330, 125514. [Google Scholar] [CrossRef]
- Huang, Y.; Li, B.; Liu, D.; Xie, X.; Zhang, H.; Sun, H.; Hu, X.; Zhang, S. Fundamental Advances in Biomass Autothermal/Oxidative Pyrolysis: A Review. ACS Sustain. Chem. Eng. 2020, 8, 11888–11905. [Google Scholar] [CrossRef]
- Ho, S.-H.; Zhang, C.; Chen, W.-H.; Shen, Y.; Chang, J.-S. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour. Technol. 2018, 264, 7–16. [Google Scholar] [CrossRef]
- Dyjakon, A.; Noszczyk, T.; Sobol, Ł.; Misiakiewicz, D. Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method. Energies 2021, 14, 5299. [Google Scholar] [CrossRef]
- Niu, Q.; Ronsse, F.; Qi, Z.Y.; Zhang, D.D. Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production. Renew. Energy 2022, 185, 552–563. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Li, B.; Zhao, L.; Xie, X.; Lin, D.; Xu, H.; Wang, S.; Xu, Z.; Wang, J.; Huang, Y.; Zhang, S.; et al. Volatile-char interactions during biomass pyrolysis: Effect of char preparation temperature. Energy 2021, 215, 119189. [Google Scholar] [CrossRef]
- Magoua Mbeugang, C.F.; Li, B.; Lin, D.; Xie, X.; Wang, S.; Wang, S.; Zhang, S.; Huang, Y.; Liu, D.; Wang, Q. Hydrogen rich syngas production from sorption enhanced gasification of cellulose in the presence of calcium oxide. Energy 2021, 228, 120659. [Google Scholar] [CrossRef]
- Li, B.; Magoua Mbeugang, C.F.; Xie, X.; Wei, J.; Zhang, S.; Zhang, L.; El Samahy, A.A.; Xu, D.; Wang, Q.; Zhang, S.; et al. Catalysis/CO2 sorption enhanced pyrolysis-gasification of biomass for H2-rich gas production: Effects of activated carbon, NiO active component and calcined dolomite. Fuel 2023, 334, 126842. [Google Scholar] [CrossRef]
- Chen, D.Y.; Gao, A.J.; Cen, K.H.; Zhang, J.; Cao, X.B.; Ma, Z.Q. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Li, B.; Liu, D.; Lin, D.; Xie, X.; Wang, S.; Xu, H.; Wang, J.; Huang, Y.; Zhang, S.; Hu, X. Changes in Biochar Functional Groups and Its Reactivity after Volatile–Char Interactions during Biomass Pyrolysis. Energy Fuels 2020, 34, 14291–14299. [Google Scholar] [CrossRef]
- Shen, J.; Wang, X.-S.; Garcia-Perez, M.; Mourant, D.; Rhodes, M.J.; Li, C.-Z. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 2009, 88, 1810–1817. [Google Scholar] [CrossRef]
- Haas, T.J.; Nimlos, M.R.; Donohoe, B.S. Real-Time and Post-reaction Microscopic Structural Analysis of Biomass Undergoing Pyrolysis. Energy Fuels 2009, 23, 3810–3817. [Google Scholar] [CrossRef]
- Zhou, S.; Garcia-Perez, M.; Pecha, B.; McDonald, A.G.; Westerhof, R.J.M. Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel 2014, 125, 15–19. [Google Scholar] [CrossRef]
- Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Kikas, T. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 2020, 301, 122737. [Google Scholar] [CrossRef]
- Niu, Y.; Lv, Y.; Lei, Y.; Liu, S.; Liang, Y.; Wang, D.; Hui, S.e. Biomass torrefaction: Properties, applications, challenges, and economy. Renew. Sustain. Energy Rev. 2019, 115, 109395. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Wu, Y.; Wu, S.; Yang, J. A comprehensive study on torrefaction of penicillin mycelial residues: Analysis of product characteristics and conversion mechanisms of N. Fuel 2022, 330, 125703. [Google Scholar] [CrossRef]
- Chen, D.; Mei, J.; Li, H.; Li, Y.; Lu, M.; Ma, T.; Ma, Z. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour. Technol. 2017, 228, 62–68. [Google Scholar] [CrossRef]
- Wang, L.; Riva, L.; Skreiberg, O.; Khalil, R.; Bartocci, P.; Yang, Q.; Yang, H.P.; Wang, X.B.; Chen, D.Y.; Rudolfsson, M.; et al. Effect of Torrefaction on Properties of Pellets Produced from Woody Biomass. Energy Fuels 2020, 34, 15343–15354. [Google Scholar] [CrossRef]
Samples | Chemical Composition (wt.%) | HHV (MJ/kg) | Energy Yield | ||||
---|---|---|---|---|---|---|---|
C | H | N | O | A | |||
260-60-12 | 53.53 | 5.82 | 0.07 | 40.33 | 0.26 | 21.35 | 87.20% |
260-60-6 | 53.82 | 6.08 | 0.18 | 39.67 | 0.26 | 21.62 | 87.06% |
260-60-3 | 53.90 | 5.68 | 0.07 | 40.09 | 0.26 | 21.47 | 85.81% |
260-60-<0.3 | 54.71 | 5.88 | 0.09 | 39.06 | 0.27 | 21.94 | 83.50% |
290-60-12 | 62.13 | 5.64 | 0.08 | 31.80 | 0.36 | 25.60 | 77.06% |
290-60-6 | 60.42 | 5.55 | 0.09 | 33.58 | 0.37 | 24.62 | 72.79% |
290-60-3 | 62.19 | 5.43 | 0.10 | 31.92 | 0.37 | 25.48 | 74.54% |
290-60-<0.3 | 60.81 | 5.57 | 0.11 | 33.15 | 0.36 | 24.84 | 70.25% |
Samples | Chemical Composition (wt.%) | HHV (MJ/kg) | Energy Yield | ||||
---|---|---|---|---|---|---|---|
C | H | N | O | A | |||
260-30-12 | 52.12 | 5.79 | 0.08 | 41.77 | 0.24 | 20.70 | 90.65 |
260-45-12 | 52.74 | 5.86 | 0 | 41.16 | 0.25 | 21.00 | 87.84 |
260-60-12 | 53.53 | 5.82 | 0.07 | 40.33 | 0.26 | 21.35 | 87.20 |
260-90-12 | 54.50 | 5.83 | 0.04 | 39.38 | 0.27 | 21.81 | 83.53 |
290-30-12 | 55.77 | 6.18 | 0.10 | 37.68 | 0.29 | 22.61 | 80.42 |
290-45-12 | 59.29 | 5.47 | 0.08 | 34.85 | 0.33 | 23.98 | 78.45 |
290-60-12 | 62.13 | 5.64 | 0.08 | 31.80 | 0.36 | 25.60 | 77.06 |
290-90-12 | 64.45 | 5.56 | 0 | 29.61 | 0.38 | 26.83 | 73.56 |
260-30-6 | 50.42 | 6.15 | 0.24 | 42.96 | 0.24 | 20.08 | 87.75 |
260-45-6 | 52.45 | 5.84 | 0.19 | 41.27 | 0.25 | 20.89 | 86.51 |
260-60-6 | 53.82 | 6.08 | 0.18 | 39.67 | 0.26 | 21.62 | 87.06 |
260-90-6 | 52.87 | 5.77 | 0 | 41.09 | 0.27 | 21.03 | 80.30 |
290-30-6 | 55.78 | 5.81 | 0.04 | 38.09 | 0.30 | 22.42 | 81.65 |
290-45-6 | 58.31 | 5.54 | 0.07 | 35.77 | 0.32 | 23.53 | 75.85 |
290-60-6 | 60.42 | 5.55 | 0.09 | 33.58 | 0.37 | 24.62 | 71.61 |
290-90-6 | 64.56 | 5.63 | 0.11 | 29.31 | 0.40 | 26.96 | 72.96 |
260-30-0.8-1 | 51.68 | 5.83 | 0 | 42.26 | 0.24 | 20.51 | 88.67 |
260-45-0.8-1 | 52.26 | 5.70 | 0 | 41.80 | 0.25 | 20.72 | 85.36 |
260-60-0.8-1 | 52.08 | 5.12 | 0.05 | 42.50 | 0.26 | 20.44 | 81.71 |
260-90-0.8-1 | 53.58 | 5.56 | 0 | 40.59 | 0.28 | 21.26 | 79.46 |
290-30-0.8-1 | 56.98 | 5.80 | 0.04 | 36.90 | 0.29 | 23.00 | 81.04 |
290-45-0.8-1 | 57.09 | 5.58 | 0 | 37.02 | 0.32 | 22.93 | 73.79 |
290-60-0.8-1 | 58.32 | 5.54 | 0.04 | 35.76 | 0.35 | 23.53 | 68.42 |
290-90-0.8-1 | 62.85 | 5.20 | 0.08 | 31.48 | 0.41 | 25.65 | 65.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhang, S.; Liu, D.; Xie, X.; Li, B. Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor. Energies 2023, 16, 1104. https://doi.org/10.3390/en16031104
He Y, Zhang S, Liu D, Xie X, Li B. Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor. Energies. 2023; 16(3):1104. https://doi.org/10.3390/en16031104
Chicago/Turabian StyleHe, Yajing, Shihong Zhang, Dongjing Liu, Xing Xie, and Bin Li. 2023. "Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor" Energies 16, no. 3: 1104. https://doi.org/10.3390/en16031104
APA StyleHe, Y., Zhang, S., Liu, D., Xie, X., & Li, B. (2023). Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor. Energies, 16(3), 1104. https://doi.org/10.3390/en16031104