A Novel Analytical Equivalent Circuit for Single-Sided Linear Induction Motors Considering Secondary Leakage Reactance
Abstract
:1. Introduction and Literature Review
2. New Equivalent Circuit
2.1. Longitudinal Edge Effects
2.2. Tranverse Edge Effects
2.3. Half-Filled Slots
2.4. Vertical Forces
3. Experimental Tests and Discussion
3.1. Prototype
3.2. Curves Compared
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laithwaite, E.R.; Barwell, F.T. Application of Linear Induction Motors to High-speed Transport Systems. Proc. Inst. Electr. Eng. 1969, 116, 713–724. [Google Scholar] [CrossRef]
- Alscher, H.; Boldea, I.F.; Eastham, A.R.; Iguchi, M. Propelling Passengers Faster Than a Speeding Bullet: As Maglev Urban Railways Get Tracking, Lines in West Germany, Japan, and Canada Are Expected to Follow England’s Commercial Lead. IEE Spectr. 1984, 21, 57–64. [Google Scholar] [CrossRef]
- Laithwaite, E.R. Linear Induction Motors. Proc. IEE Part A Power Eng. 1957, 104, 461–470. [Google Scholar] [CrossRef]
- Nasar, S.A. Electromagnetic Fields and Forces in a Linear Induction Motor, Taking Into Account Edge Effects. Proc. Inst. Electr. Eng. 1969, 116, 605–608. [Google Scholar] [CrossRef]
- Laithwaite, E.R. Some Aspects of Electrical Machines With Open Magnetic Circuits. Proc. Inst. Electr. Eng. 1968, 115, 1275–1283. [Google Scholar] [CrossRef]
- Yamamura, S.; Ito, H.; Ishulawa, Y. Theories of the Linear, Induction Motor and Compensated Linear Induction Motor. IEEE Trans. Power Appar. Syst. 1972, PAS-91, 1700–1710. [Google Scholar] [CrossRef]
- Lee, C.H.; Chin, C.Y. A Theoretical Analysis of Linear Induction Motors. IEEE Trans. Power Appar. Syst. 1979, PAS-98, 679–688. [Google Scholar] [CrossRef]
- Gieras, J.F.; Dawson, G.E.; Eastham, A.R. A New Longitudinal End Effect Factor for Linear Induction Motors. IEEE Trans. Energy Convers. 1987, EC-2, 152–159. [Google Scholar] [CrossRef]
- Pai, R.M.; Boldea, I.; Nasar, S.A. A Complete Equivalent Circuit of a Linear Induction Motor With Sheet Secondary. IEEE Trans. Magn. 1988, 24, 639–654. [Google Scholar] [CrossRef]
- Zhang, Z.; Eastham, T.R.; Dawson, G.E. LIM Dynamic Performance Assessment from Parameter Identification. In Proceedings of the Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Toronto, ON, Canada, 2–8 October 1993. [Google Scholar]
- Hofmann, R.; Binder, A.; Pfeiffer, R. Investigations on a Linear Induction Machine for Railway Applications. In Proceedings of the IEEE International Electric Machines and Drives Conference, Cambridge, MA, USA, 17–20 June 2001. [Google Scholar]
- Woronowicz, K.; Safaee, A. A Novel Linear Induction Motor Equivalent-Circuit With Optimized End Effect Model. Can. J. Electr. Comput. Eng. 2014, 37, 34–41. [Google Scholar] [CrossRef]
- Duncan, J. Linear Induction Motor–Equivalent Circuit Model. IEE Proc. B–Electr. Power Appl. 1983, 130, 51–57. [Google Scholar] [CrossRef]
- Koseki, T.; Sone, S.; Yokoi, T.; Ebihara, D.; Osawa, S. Investigation on Secondary Slot Pitches of a Cage-type Linear Induction Motor. IEEE Trans. Magn. 1993, 29, 2944–2946. [Google Scholar] [CrossRef]
- Park, S.C.; Kim, B.T. Effect of Contact Resistance Between Side-bar and Secondary Conductors in a Linear Induction Motor With a Cage-type Secondary. IEEE Trans. Magn. 2003, 39, 1562–1565. [Google Scholar] [CrossRef]
- Ravanji, M.H.; Nasiri-Gheidari, Z. Design Optimization of a Ladder Secondary Single-Sided Linear Induction Motor for Improved Performance. IEEE Trans. Energy Convers. 2015, 30, 1595–1603. [Google Scholar] [CrossRef]
- Koseki, T.; Sone, S.; Yokoi, T.; Ebihara, D. Analysis of secondary eddy current path of a linear induction motor. In Proceedings of Linear Drive Symposium; LD-92-100; IEEE: Tokyo, Japan, 1992; pp. 21–29. [Google Scholar]
- Yamaguchi, T.; Ito, M.; Matsui, K. Improvement of thrust of linear induction motor using modified ladder slits. In Proceedings of the Power Conversion Conference—-PCC’97, Nagaoka, Japan, 6 August 1997; Volume 2, pp. 563–566. [Google Scholar]
- Lv, G.; Zhou, T.; Zeng, D. Design of Ladder-Slit Secondaries and Performance Improvement of Linear Induction Motors for Urban Rail Transit. IEEE Trans. Ind. Electron. 2018, 65, 1187–1195. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, J.G.; Zhang, Y.; Li, Y.; Wang, Y.; Guo, Y. An Improved Equivalent Circuit Model of a Single-Sided Linear Induction Motor. IEEE Trans. Veh. Technol. 2010, 59, 2277–2289. [Google Scholar] [CrossRef] [Green Version]
- Zare-Bazghaleh, A.; Meshkatoddini, M.Z.; Fallah-Choolabi, E. Derivation of Equivalent Circuit Parameters for Single-Sided Linear Induction Motors. Plasma Sci. IEEE Trans. 2015, 44, 3637–3644. [Google Scholar] [CrossRef]
- Lv, G.; Zeng, D.; Zhou, T.; Degano, M. A Complete Equivalent Circuit for Linear Induction Motors With Laterally Asymmetric Secondary for Urban Railway Transit. IEEE Trans. Energy Convers. 2021, 36, 1014–1022. [Google Scholar] [CrossRef]
- Hirahara, H.; Inoue, M.; Yamamoto, S. A Method for Determining Equivalent Circuit Constant of Linear Induction Motors Using Locked Mover and Standstill Impedance Tests. In Proceedings of the IEEE International Power Electronics Conference, Himeji, Japan, 15–19 May 2022. [Google Scholar]
- Heidari, H.; RassÕLKIN, A.; Razzaghi, A.; Vaimann, T.; Kallaste, A.; Andriushchenko, E.; Belahcen, A.; Lukichev, D.V. A Modified Dynamic Model of Single-Sided Linear Induction Motors Considering Longitudinal and Transversal Effects. Electronics 2021, 10, 933. [Google Scholar] [CrossRef]
- Lv, G.; Zeng, D.; Zhou, T. An Equivalent Circuit of the Single-Sided Linear Induction Motor Considering the Discontinuous Secondary. IET Electr. Power Appl. 2019, 13, 31–37. [Google Scholar] [CrossRef]
- Teriaiev, V.; Dovbyk, A.; Kornienko, V.; Pechenik, M.; Buryan, S. Generalized Mathematical Model of a Linear Induction Motor. In Proceedings of the 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 10–14 October 2022; pp. 741–745. [Google Scholar] [CrossRef]
- Di, J.; Fletcher, J.E.; Fan, Y.; Liu, Y.; Sun, Z. Design and Performance Investigation of the Double-Sided Linear Induction Motor With a Ladder-Slot Secondary. IEEE Trans. Energy Convers. 2019, 34, 1603–1612. [Google Scholar] [CrossRef]
- Zhang, L.; Obeid, H.; Laghrouche, S.; Cirrincione, M. Second Order Sliding Mode Observer of Linear Induction Motor. IET Electr. Power Appl. 2019, 13, 38–47. [Google Scholar] [CrossRef]
- Sotelo, G.G.; de Andrade, R., Jr.; Dias, D.H.N.; Ferreira, A.C.; Costa, F.; Machado, O.J.; de Oliveira, R.A.H.; Santos, M.D.A.; Stephan, R.M. Tests with One Module of the Brazilian Maglev-Cobra Vehicle. IEEE Trans. Appl. Supercond. 2013, 23, 3601204. [Google Scholar] [CrossRef]
- Mattos, L.S.; Rodriguez, E.; Costa, F.; Sotelo, G.G.; de Andrade, R., Jr.; Stephan, R.M. MagLev-Cobra Operational Tests. IEEE Trans. Appl. Supercond. 2016, 26, 3600704. [Google Scholar] [CrossRef]
Data | Value | Data | Value |
---|---|---|---|
v [m/s] | 2.6–13.5 | [kW] | 0.3–2.4 |
[N] | 120–175 | [V] | 87.5–437.5 |
f [Hz] | 30–150 | 8 | |
3 | 256 | ||
[mm] | 80 | [mm] | 90 |
Parameter | Value | Parameter | Value |
---|---|---|---|
[mm] | 1.86–4.24 | ||
[/ph] | [/ph] | ||
[mH/ph] | 7.58–7.36 | [mH/ph] | 4.31–4.20 |
[mH/ph] | 18.1–8.54 | 4.2–2.0 |
mm/Hz | |||||
mm/Hz | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, D.R.; Chabu, I.E. A Novel Analytical Equivalent Circuit for Single-Sided Linear Induction Motors Considering Secondary Leakage Reactance. Energies 2023, 16, 1261. https://doi.org/10.3390/en16031261
Gomes DR, Chabu IE. A Novel Analytical Equivalent Circuit for Single-Sided Linear Induction Motors Considering Secondary Leakage Reactance. Energies. 2023; 16(3):1261. https://doi.org/10.3390/en16031261
Chicago/Turabian StyleGomes, Daniel R., and Ivan E. Chabu. 2023. "A Novel Analytical Equivalent Circuit for Single-Sided Linear Induction Motors Considering Secondary Leakage Reactance" Energies 16, no. 3: 1261. https://doi.org/10.3390/en16031261
APA StyleGomes, D. R., & Chabu, I. E. (2023). A Novel Analytical Equivalent Circuit for Single-Sided Linear Induction Motors Considering Secondary Leakage Reactance. Energies, 16(3), 1261. https://doi.org/10.3390/en16031261