A GIS-Based Multidimensional Evaluation Method for Solar Energy Potential in Shanxi Province, China
Abstract
:1. Introduction
2. Data Source and Research Method
2.1. Study Area and Data Source
2.2. Climatological Calculation Method of Total Solar Radiation in Horizontal Plane
2.3. Kriging Interpolation
2.4. Solar Energy Resource Assessment Methods
3. Research Results
3.1. Spatial Distribution and Changing Trend of Solar Energy Resources in Shanxi Province
3.2. Spatial Distribution of Suitable Area of Solar Energy Resources
3.3. Solar Energy Potential of Shanxi Province
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Lin, A.; He, L.; Wang, L. Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China. Energies 2022, 15, 3463. [Google Scholar] [CrossRef]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Yakubu, R.O.; Ankoh, M.T.; Mensah, L.D.; Quansah, D.A.; Adaramola, M.S. Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region. Energies 2022, 15, 8510. [Google Scholar] [CrossRef]
- Hammer, A.; Heinemann, D.; Hoyer, C.; Kuhlemann, R.; Lorenz, E.; Müller, R.; Beyer, H.G. Solar energy assessment using remote sensing technologies. Remote Sens. Environ. Interdiscip. J. 2003, 86, 423–432. [Google Scholar] [CrossRef]
- Mahmud, A.M.; Kahsay, M.B.; Hailesilasie, A.; Hagos, F.Y.; Gebray, P.; Kelele, H.K.; Gebrehiwot, K.; Bauer, H.; Deckers, S.; De Baerdemaeker, J.; et al. Solar Energy Resource Assessment of the Geba Catchment, Northern Ethiopia. Energy Procedia 2014, 57, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Escobar, R.A.; Cortés, C.; Pino, A.; Pereira, E.B.; Martins, F.R.; Cardemil, J.M. Solar energy resource assessment in Chile: Satellite estimation and ground station measurements. Renew. Energy 2014, 71, 324–332. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, H.; Xiong, F.; Zhang, C.; Xie, M.; Li, Z. Evaluation for block-scale solar energy potential of industrial block and optimization of application strategies: A case study of Wuhan, China. Sustain. Cities Soc. 2021, 72, 103000. [Google Scholar] [CrossRef]
- Rylatt, M.; Gadsden, S.; Lomas, K. GIS-based decision support for solar energy planning in urban environments. Comput. Environ. Urban Syst. 2001, 25, 579–603. [Google Scholar] [CrossRef]
- Groppi, D.; de Santoli, L.; Cumo, F.; Garcia, D.A. A GIS-based model to assess buildings energy consumption and usable solar energy potential in urban areas. Sustain. Cities Soc. 2018, 40, 546–558. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Nematollahi, O.; Mijani, N.; Shorabeh, S.N.; Firozjaei, H.K.; Toomanian, A. An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning. Renew. Energy 2019, 136, 1130–1146. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, F.; Li, S.; Mao, J.; Xu, H.; Ju, W.; Liu, X.; Wu, J.; Min, K.; Zhang, X.; et al. Solar energy potential of urban buildings in 10 cities of China. Energy 2020, 196, 117038.1–117038.16. [Google Scholar] [CrossRef]
- Diner, F. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renew. Sustain. Energy Rev. 2011, 15, 713–720. [Google Scholar] [CrossRef]
- Girard, A.; Gago, E.J.; Ordoñez, J.; Muneer, T. Spain’s energy outlook: A review of PV potential and energy export. Renew. Energy 2016, 86, 703–715. [Google Scholar] [CrossRef]
- Rosenbloom, D.; Meadowcrof, J. Harnessing the Sun_ Reviewing the potential of solar photovoltaics in Canada. Renew. Sustain. Energy Rev. 2014, 40, 488–496. [Google Scholar] [CrossRef]
- Urban, F.; Geall, S.; Wang, Y. Solar PV and solar water heaters in China Different pathways to low carbon energy. Renew. Sustain. Energy Rev. 2016, 64, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Vardimon, R. Assessment of the potential for distributed photovoltaic electricity production in Israel. Renew. Energy 2011, 36, 591–594. [Google Scholar] [CrossRef]
- Fillol, E.; Albarelo, T.; Primerose, A.; Wald, L.; Linguet, L. Spatiotemporal indicators of solar energy potential in the Guiana Shield using GOES images. Renew. Energy 2017, 111, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Wang, S.; Yang, Q.; Li, J. A GIS-based assessment of large-scale PV potential in China. Energy Procedia 2018, 152, 1079–1084. [Google Scholar] [CrossRef]
- Lau KK, L.; Lindberg, F.; Johansson, E.; Rasmussen, M.I.; Thorsson, S. Investigating solar energy potential in tropical urban environment: A case study of Dar es Salaam, Tanzania. Sustain. Cities Soc. 2017, 30, 118–127. [Google Scholar]
- Polo, J.; Bernardos, A.; Navarro, A.; Fernandez-Peruchena, C.; Ramírez, L.; Guisado, M.V.; Martínez, S. Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information. Energy Convers. Manag. 2015, 98, 348–358. [Google Scholar] [CrossRef]
- Li, C.; Shi, H.; Cao, Y.; Wang, J.; Kuang, Y.; Tan, Y.; Wei, J. Comprehensive review of renewable energy curtailment and avoidance: A specific example in China. Renew. Sustain. Energy Rev. 2015, 41, 1067–1079. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J.; Pu, Y.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, F.; Guo, Z.; Feng, W.; Li, Z.; Wang, J.; Sun, Q.; Ma, H.; Li, Y. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the Loess Plateau area in Shanxi (China). J. Clean. Prod. 2020, 277, 124–159. [Google Scholar] [CrossRef]
- Niu, Z.; Xiong, J.; Ding, X.; Wu, Y. Analysis of China’s Carbon Peak Achievement in 2025. Energies 2022, 15, 5041. [Google Scholar] [CrossRef]
- SSY. Shanxi Statistical Yearbook; Shanxi Statistical Publishing House: Taiyuan, China, 2021. [Google Scholar]
- NBS. Statistical Bulletin for National Economic and Social Development; The People’s Government of Shanxi Province: Taiyuan, China, 2021.
- Elagib, N.; Mansell, M.G. New approaches for estimating global solar radiation across Sudan. Energy Convers. Manag. 2000, 41, 419–434. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 3rd ed.; John Wiley & Son: New York, NY, USA, 2006. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- IEC 61724:1998; Photovoltaic System Performance Monitoring—Guidelines for Measurement, Data Exchange and Analysis. International Electrotechnical Commission: Geneva, Switzerland, 1998; German Version EN 61724:1998. p. 61724.
- Liu, G.X.; Wu, W.X.; Zhang, X.J.; Zhou, Y. Study for evaluating roof-mounted available solar energy resource—Case in jiangsu province according to its 2000data. Resour. Environ. Yangtze Basin 2010, 19, 1242–1248. [Google Scholar]
Component Type | Peak Power/Wp | Component Size/mm | Component Area/m2 | Photoelectric Conversion Efficiency/% |
---|---|---|---|---|
JNMM60 | 320 | 1665 × 996 × 35 | 1.66 | 19.3 |
Meteorological Station Name | Sunshine Hours/h | ||||
---|---|---|---|---|---|
Throughout the Year | Spring | Summer | Autumn | Winter | |
Tianzhen | 2748.34 | 765.56 | 748.57 | 646.61 | 587.80 |
Datong | 2655.68 | 744.96 | 739.68 | 627.25 | 543.79 |
Youyu | 2823.74 | 787.89 | 767.01 | 667.27 | 601.57 |
Lingqiu | 2564.95 | 736.78 | 657.92 | 606.13 | 564.12 |
Hequ | 2490.28 | 711.56 | 725.28 | 585.50 | 467.95 |
Shuozhou | 2515.00 | 705.82 | 671.18 | 602.55 | 535.45 |
Wutai | 2685.13 | 758.09 | 639.23 | 645.69 | 642.12 |
Wuzhai | 2563.29 | 711.18 | 693.13 | 608.43 | 550.54 |
Yuanping | 2290.22 | 676.24 | 627.17 | 535.26 | 451.55 |
Linjin | 2468.54 | 688.60 | 678.15 | 586.25 | 515.54 |
Pingding | 2594.19 | 742.34 | 680.72 | 612.30 | 558.84 |
Taiyuan | 2438.61 | 702.4 | 680.12 | 565.85 | 490.60 |
Lishi | 2387.46 | 669.6 | 658.18 | 561.24 | 498.45 |
Taigu | 2539.15 | 729.53 | 697.57 | 580.81 | 531.24 |
Yangquan | 2401.89 | 690.07 | 605.21 | 572.05 | 534.56 |
Yushe | 2339.96 | 660.46 | 606.07 | 549.6 | 523.83 |
Jiexiu | 2108.52 | 642.41 | 545.89 | 473.29 | 446.94 |
Xi county | 2492.28 | 690.81 | 674.62 | 576.63 | 550.22 |
Xiangyuan | 2337.92 | 679.14 | 621.09 | 530.53 | 507.16 |
Anze | 2187.66 | 629.67 | 581.98 | 497.42 | 478.59 |
Ji county | 2261.82 | 636.03 | 608.77 | 517.50 | 499.53 |
Changzhi | 2409.23 | 689.54 | 637.71 | 551.52 | 530.45 |
Linfen | 2059.20 | 618.21 | 616.01 | 453.82 | 371.16 |
Houma | 2049.23 | 612.70 | 601.28 | 439.40 | 395.85 |
Yangcheng | 2413.39 | 684.52 | 653.59 | 545.16 | 530.13 |
Yuanqu | 2050.42 | 585.38 | 543.70 | 467.82 | 453.53 |
Yuncheng | 2093.62 | 600.96 | 636.34 | 448.26 | 408.07 |
Yongji | 2146.00 | 608.07 | 659.75 | 462.14 | 416.04 |
Level Symbol | Level Name | Graded Threshold/(MJ/m2) |
---|---|---|
A | Most abundant | ≥6300 |
B | Very rich | 5040~6300 |
C | Abundant | 3780~5040 |
D | General | <3780 |
Evaluation Index | I | II | III | IV |
---|---|---|---|---|
Total horizontal solar radiation/MJ·m−2 | 5200~5444 | 5000~5200 | 4900~5000 | 4769~4900 |
Total horizontal solar radiation stability | 0.40~0.41 | 0.37~0.40 | 0.34~0.37 | 0.32~0.34 |
Available days/d | 250~275 | 220~250 | 200~220 | 0~200 |
Sunshine hour stability | 1~2 | 2~2.5 | 2.5~3 | 3~4 |
Slope/° | 0~8 | 8~15 | 15~25 | 25~90 |
Aspect/° | −1/135~225 | 90~135/225~270 | 45~90/270~315 | 0~45/315~360 |
Assumption | Conclusions |
---|---|
(1) The land use types are cultivated land, forest land and water area; | Unsuitable zone |
(2) Any area with a terrain slope greater than 25°. | |
(1) The annual horizontal radiation is more than 5040 MJ/m2, the slope is 0~15°, the slope direction is flat slope or south direction, and the land use type is low coverage grassland; | The most suitable zone |
(2) All unused land satisfying the terrain slope restriction conditions; | |
(3) Urban, industrial, mining and rural residential land with a population density of 200 people/km2. |
City Name | Urban and Rural Construction Land (km2) | Area for Installing Photovoltaic Modules/(km2) | Installed Capacity (MW) | Peak Annual Sunshine Hours (h) | Annual Power Generation (GWh) |
---|---|---|---|---|---|
Datong | 738 | 77.49 | 4959.36 | 1664.4 | 6603.49 |
Shuozhou | 666 | 69.93 | 4475.52 | 1657.1 | 5933.11 |
Xinzhou | 891 | 91.67 | 5866.56 | 1624.25 | 7623.01 |
Lvliang | 1107 | 106.79 | 6834.24 | 1627.9 | 8900.37 |
Taiyuan | 711 | 74.66 | 4777.92 | 1627.9 | 6222.38 |
Yangquan | 270 | 28.35 | 1814.40 | 1609.65 | 2336.44 |
Jinzhong | 891 | 75.60 | 4838.40 | 1627.9 | 6301.15 |
Changzhi | 990 | 97.34 | 6229.44 | 1584.1 | 7894.44 |
Linfen | 783 | 2.84 | 181.44 | 1580.45 | 229.41 |
Jincheng | 504 | 52.92 | 3386.88 | 1525.7 | 4133.89 |
Yuncheng | 1152 | 0 | 0 | 1500.15 | 0 |
Summary | 6453 | 677.57 | 43,364.16 | — | 56,177.68 |
City Name | The Area of the Most Suitable Area (km2) | Total Installed Capacity (MW) | Annual Power Generation (GWh) |
---|---|---|---|
Datong | 3060 | 137,700 | 183,350.30 |
Shuozhou | 1602 | 72,090 | 95,568.27 |
Xinzhou | 4743 | 213,435 | 277,337.45 |
Lvliang | 1134 | 51,030 | 66,457.39 |
Taiyuan | 945 | 42,525 | 55,381.16 |
Yangquan | 1026 | 46,170 | 59,454.03 |
Jinzhong | 1377 | 61,965 | 80,698.26 |
Changzhi | 9 | 405 | 513.25 |
Linfen | 0 | 0 | 0 |
Jincheng | 0 | 0 | 0 |
Yuncheng | 45 | 2025 | 2430.24 |
Summary | 13,941 | 627,345 | 821,190.35 |
City Name | Annual Growth Potential of Distributed pv (GWh) | Annual Growth Potential of Concentrated pv (GWh) | Total (GWh) | Electricity Consumption of the Whole Society in 2021 (GWh) |
---|---|---|---|---|
Datong | 6603.49 | 183,350.3 | 189,953.79 | 18,600 |
Shuozhou | 5933.11 | 95,568.27 | 101,501.38 | 14,130 |
Xinzhou | 7623.01 | 277,337.45 | 284,960.46 | 15,220 |
Lvliang | 8900.37 | 66,457.39 | 75,357.76 | 28,470 |
Taiyuan | 6222.38 | 55,381.16 | 61,603.54 | 28,853 |
Yangquan | 2336.44 | 59,454.03 | 61,790.47 | 9010 |
Jinzhong | 6301.15 | 80,698.26 | 86,999.41 | 25,079 |
Changzhi | 7894.44 | 513.25 | 8407.69 | 36,186 |
Linfen | 229.41 | 0 | 229.41 | 24,750 |
Jincheng | 4133.89 | 0 | 4133.89 | 22,780 |
Yuncheng | 0 | 2430.24 | 2430.24 | 33,770 |
Summary | 56,177.68 | 821,190.35 | 877,368.04 | 260,790 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Zhang, J.; Su, Y.; Li, S. A GIS-Based Multidimensional Evaluation Method for Solar Energy Potential in Shanxi Province, China. Energies 2023, 16, 1305. https://doi.org/10.3390/en16031305
Cui L, Zhang J, Su Y, Li S. A GIS-Based Multidimensional Evaluation Method for Solar Energy Potential in Shanxi Province, China. Energies. 2023; 16(3):1305. https://doi.org/10.3390/en16031305
Chicago/Turabian StyleCui, Liang, Junrui Zhang, Yongyong Su, and Siyuan Li. 2023. "A GIS-Based Multidimensional Evaluation Method for Solar Energy Potential in Shanxi Province, China" Energies 16, no. 3: 1305. https://doi.org/10.3390/en16031305
APA StyleCui, L., Zhang, J., Su, Y., & Li, S. (2023). A GIS-Based Multidimensional Evaluation Method for Solar Energy Potential in Shanxi Province, China. Energies, 16(3), 1305. https://doi.org/10.3390/en16031305