A Small-Sample Borehole Fluvial Facies Identification Method Using Generative Adversarial Networks in the Context of Gas-Fired Power Generation, with the Hangjinqi Gas Field in the Ordos Basin as an Example
Abstract
:1. Introduction
2. Methods
3. Verification and Application
3.1. Case Study
3.2. Borehole Fluvial Facies Identification Method
3.3. Borehole Fluvial Facies: Identification of Results and Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, Y.; Yin, X.; Gong, Q.; Li, X.; Liu, N. Classification and Provenance on Geochemical Lithogenes: A Case Study on Rock-Soil-Sediment System in Wanquan Area of Zhangjiakou, North China. Appl. Sci. 2023, 13, 1008. [Google Scholar] [CrossRef]
- Li, B.; Peng, Y.; Zhao, X.; Liu, X.; Wang, G.; Jiang, H.; Wang, H.; Yang, Z. Combining 3D Geological Modeling and 3D Spectral Modeling for Deep Mineral Exploration in the Zhaoxian Gold Deposit, Shandong Province, China. Minerals 2022, 12, 1272. [Google Scholar] [CrossRef]
- Goswami, S.; Goswami, B.; Bhandari, G. Hexalevel Grayscale Imaging and K-Means Clustering to Identify Cloud Types in Satellite Visible Range Images. In Proceedings of the International Conference on Computational Intelligence and Computing, Vijayawada, India, 29 April 2023; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–23. [Google Scholar]
- Capó, M.; Pérez, A.; Lozano, J.A. An efficient approximation to the K-means clustering for massive data. Knowl. Based Syst. 2017, 117, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhu, Y.; Fu, Q. Adversarial deep domain adaptation for multi-band SAR images classification. IEEE Access 2019, 7, 78571–78583. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Z.; Davis, C.A.; Ralph, F.M.; Delle Monache, L.; Zheng, M. Impacts of dropsonde and satellite observations on the forecasts of two atmospheric-river-related heavy rainfall events. Atmos. Res. 2022, 278, 106327. [Google Scholar] [CrossRef]
- Rashid, M.; Luo, M.; Ashraf, U.; Hussain, W.; Ali, N.; Rahman, N.; Hussain, S.; Martyushev, D.A.; Vo Thanh, H.; Anees, A. Reservoir Quality Prediction of Gas-Bearing Carbonate Sediments in the Qadirpur Field: Insights from Advanced Machine Learning Approaches of SOM and Cluster Analysis. Minerals 2023, 13, 29. [Google Scholar] [CrossRef]
- Leila, M.; El Sharawy, M.; Bakr, A.; Mohamed, A.K. Controls of facies distribution on reservoir quality in the Messinian incised-valley fill Abu Madi Formation in Salma delta gas field, northeastern onshore Nile Delta, Egypt. J. Nat. Gas Sci. Eng. 2022, 97, 104360. [Google Scholar] [CrossRef]
- Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3723–3732. [Google Scholar]
- Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 2018, 465, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Y. Computational experiments for behavior analysis and decision evaluation of complex systems. J. Syst. Simul. 2004, 16, 893–897. [Google Scholar]
- Wang, F.Y. Parallel system methods for management and control of complex systems. Control. Decis. 2004, 19, 485–489. [Google Scholar]
- Zakharov, L.A.; Martyushev, D.A.; Ponomareva, I.N. Predicting dynamic formation pressure using artificial intelligence methods. J. Min. Inst. 2022, 253, 23–32. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Finn, C.; Christiano, P.; Abbeel, P.; Levine, S. A connection between generative adversarial networks, inverse reinforcement learning, and energy-based models. arXiv 2016, arXiv:1611.03852. [Google Scholar]
- Ran, X.; Xue, L.; Sang, X.; Pei, Y.; Zhang, Y. Intelligent Generation of Cross Sections Using a Conditional Generative Adversarial Network and Application to Regional 3D Geological Modeling. Mathematics 2022, 10, 4677. [Google Scholar] [CrossRef]
- Wang, F.; Gao, C. Settlement–river relationship and locality of river-related built environment. SAGE J. 2020, 29, 10. [Google Scholar] [CrossRef]
- Shen, J.; Qu, Y.; Zhang, W.; Yu, Y. Wasserstein distance guided representation learning for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Wu, X.; Liang, L.; Shi, Y.; Geng, Z.; Fomel, S. Multitask learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophys. J. Int. 2019, 219, 2097–2109. [Google Scholar] [CrossRef]
- McDaniel, P.; Papernot, N.; Celik, Z.B. Machine learning in adversarial settings. IEEE Secur. Priv. 2016, 14, 68–72. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Ye, R.; Cha, Y.H.; Dickens, T.; Vdovina, T.; MacDonald, C.; Denli, H.; Liu, W.; Kovalski, M.; som de Cerff, V. Multi-channel convolutional neural network workflow for automatic salt interpretation. In Proceedings of the SEG International Exposition and Annual Meeting, OnePetro, San Antonio, TX, USA, 15–20 September 2019. [Google Scholar]
- Liu, M.Y.; Tuzel, O. Coupled generative adversarial networks. arXiv 2016, arXiv:1606.07536. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Gössling, S.; Cohen, S.; Higham, J.; Peeters, P.; Eijgelaar, E. Desirable transport futures. Transp. Res. Part D Transp. Environ. 2018, 61, 301–309. [Google Scholar] [CrossRef]
- Pant, D.; Bista, R. Image-based Malware Classification using Deep Convolutional Neural Network and Transfer Learning. In Proceedings of the 2021 3rd International Conference on Advanced Information Science and System (AISS 2021), Sanya, China, 26–28 November 2021; pp. 1–6. [Google Scholar]
- Han, S.; Yang, F.; Jiang, H.; Yang, G.; Wang, D.; Zhang, N. Statistical analysis of infrared thermogram for CNN-based electrical equipment identification methods. Appl. Artif. Intell. 2022, 36, 2004348. [Google Scholar] [CrossRef]
- Liang, B.; Wang, Z.; Si, L.; Wei, D.; Gu, J.; Dai, J. A Novel Pressure Relief Hole Recognition Method of Drilling Robot Based on SinGAN and Improved Faster R-CNN. Appl. Sci. 2022, 13, 513. [Google Scholar] [CrossRef]
Algorithm | Total Number of Original Samples | Total Number of Training Samples after Generation of Samples | Maximum Number of Iterations | Training Accuracy |
---|---|---|---|---|
k-means | 16 | 16 (no sample generation capability) | 100 | 62% |
convolutional neural networks | 16 | 16 (no sample generation capability) | 100 | 64% |
borehole fluvial facies data learning without transfer learning | 16 | 961 | 100 | 81.58% |
borehole fluvial facies data learning with transfer learning | 16 | 856 | 50 | 94.74% |
Exploration Well Number | The True Location of the Identification | Position of the Markers in Figure 11 |
---|---|---|
Jin_4 | channel subfacies | flood plain subfacies |
Jin_9 | levee subfacies | channel subfacies |
Jin_53 | levee subfacies | channel subfacies |
Jin_123 | channel subfacies | flood plain subfacies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xu, Q.; Li, X.; Zhan, W.; Guo, J.; Xiao, J. A Small-Sample Borehole Fluvial Facies Identification Method Using Generative Adversarial Networks in the Context of Gas-Fired Power Generation, with the Hangjinqi Gas Field in the Ordos Basin as an Example. Energies 2023, 16, 1361. https://doi.org/10.3390/en16031361
Liu Y, Xu Q, Li X, Zhan W, Guo J, Xiao J. A Small-Sample Borehole Fluvial Facies Identification Method Using Generative Adversarial Networks in the Context of Gas-Fired Power Generation, with the Hangjinqi Gas Field in the Ordos Basin as an Example. Energies. 2023; 16(3):1361. https://doi.org/10.3390/en16031361
Chicago/Turabian StyleLiu, Yong, Qingjie Xu, Xingrui Li, Weiwen Zhan, Jingkai Guo, and Jun Xiao. 2023. "A Small-Sample Borehole Fluvial Facies Identification Method Using Generative Adversarial Networks in the Context of Gas-Fired Power Generation, with the Hangjinqi Gas Field in the Ordos Basin as an Example" Energies 16, no. 3: 1361. https://doi.org/10.3390/en16031361
APA StyleLiu, Y., Xu, Q., Li, X., Zhan, W., Guo, J., & Xiao, J. (2023). A Small-Sample Borehole Fluvial Facies Identification Method Using Generative Adversarial Networks in the Context of Gas-Fired Power Generation, with the Hangjinqi Gas Field in the Ordos Basin as an Example. Energies, 16(3), 1361. https://doi.org/10.3390/en16031361