Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO2–Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO2 Storage Efficiency
Abstract
:1. Introduction
2. Motivation and Organization for This Study
3. Methodology
3.1. Digital Rock Reconstruction and REV Analysis
3.2. Single-Phase LB Model
3.3. Multiphase Color LB Model
3.4. Two-Phase Flow Parameters and Steady-State LBPM
4. Results and Discussions
4.1. Single-Phase LB Simulation and Extraction of Tighter REV
4.2. Threshold Pressure Gradient and Optimization of Differential Pressure
4.3. CO2 Relative Permeability and Storage Efficiency
5. Conclusions
- When examining the effect of the capillary number (Ca) on CO2 relative permeability, it can be divided into high and low values. At high Ca, the CO2 relative permeability is globally higher and the relative permeability curve of CO2 is more linear, resulting in less restricted CO2 flow across the computational domain due to weaker pore confinement. This leads to significantly lower CO2 storage efficiency, as indicated by extremely smaller estimates of CO2 residual saturation compared to those at low Ca.
- The viscosity ratio (M) is another parameter that influences CO2 relative permeability and facilitates CO2 flow in the pore space through the lubrication effect as it decreases. Lower M leads to more favorable CO2 flow in the imbibition process and thus less residual CO2 in the pores when other conditions are controlled, implying a negative impact on storage efficiency. However, the impact of the viscosity ratio on relative permeability is significantly less than that of the capillary number. At low capillary number, the lubrication effect is overpowered by the pore confinement effect in the relative permeability curves, while at high capillary number, the reduced viscosity contrast between the two phases may result in a finite improvement in CO2 flow capacity and lower storage efficiency. However, this difference is not considerably observable because the viscous force in the pores, already dominant compared to the capillary force, masks it.
- Wettability only affects CO2 relative permeabilities in the initial saturation range before the curves converge to zero. Under stronger water-wet conditions, CO2 has an easier time passing through the domain due to less affinity to the surface, but its storage efficiency is relatively insensitive to changes in wettability when other conditions are controlled.
6. Limitations and Expectations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.; Zhou, W.; Xu, H.; Wang, L.; Zou, J.; Zhou, Q. Dynamic fluid states in organic-inorganic nanocomposite: Implications for shale gas recovery and CO2 sequestration. Chem. Eng. J. 2021, 411, 128423. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC Sixth Assessment Report 2022; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Matos, S.; Viardot, E.; Sovacool, B.K.; Geels, F.W.; Xiong, Y. Innovation and climate change: A review and introduction to the Special Issue. Technovation 2022, 117, 102612. [Google Scholar] [CrossRef]
- Liu, B.; Qin, J.; Shi, J.; Jiang, J.; Wu, X.; He, Z. New perspectives on utilization of CO2 sequestration technologies in cement-based materials. Constr. Build. Mater. 2021, 272, 121660. [Google Scholar] [CrossRef]
- McClure, J.E.; Li, Z.; Berrill, M.; Ramstad, T. The LBPM software package for simulating multiphase flow on digital images of porous rocks. Comput. Geosci. 2021, 25, 871–895. [Google Scholar] [CrossRef]
- Lichtschlag, A.; Pearce, C.R.; Suominen, M.; Blackford, J.; Borisov, S.M.; Bull, J.M.; de Beer, D.; Dean, M.; Esposito, M.; Flohr, A. Suitability analysis and revised strategies for marine environmental carbon capture and storage (CCS) monitoring. Int. J. Greenh. Gas Control 2021, 112, 103510. [Google Scholar] [CrossRef]
- Paltsev, S.; Morris, J.; Kheshgi, H.; Herzog, H. Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Appl. Energy 2021, 300, 117322. [Google Scholar] [CrossRef]
- Mouahid, A.; Bombarda, I.; Claeys-Bruno, M.; Amat, S.; Myotte, E.; Nisteron, J.-P.; Crampon, C.; Badens, E. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. J. CO2 Util. 2021, 46, 101458. [Google Scholar] [CrossRef]
- Bakhshian, S.; Hosseini, S.A. Pore–scale analysis of supercritical CO2–brine immiscible displacement under fractional–wettability conditions. Adv. Water Resour. 2019, 126, 96–107. [Google Scholar] [CrossRef]
- Ershadnia, R.; Hajirezaie, S.; Amooie, A.; Wallace, C.D.; Gershenzon, N.I.; Hosseini, S.A.; Sturmer, D.M.; Ritzi, R.W.; Soltanian, M.R. CO2 geological sequestration in multiscale heterogeneous aquifers: Effects of heterogeneity, connectivity, impurity, and hysteresis. Adv. Water Resour. 2021, 151, 103895. [Google Scholar] [CrossRef]
- Hou, L.; Yu, Z.; Luo, X.; Wu, S. Self-sealing of caprocks during CO2 geological sequestration. Energy 2022, 252, 124064. [Google Scholar] [CrossRef]
- Ali, M.; Al-Yaseri, A.; Awan, F.U.R.; Arif, M.; Keshavarz, A.; Iglauer, S. Effect of water-soluble organic acids on wettability of sandstone formations using streaming zeta potential and NMR techniques: Implications for CO2 geo-sequestration. Fuel 2022, 329, 125449. [Google Scholar] [CrossRef]
- Teng, Y.; Wang, P.; Xie, H.; Zhu, J. Capillary trapping characteristics of CO2 sequestration in fractured carbonate rock and sandstone using MRI. J. Nat. Gas Sci. Eng. 2022, 108, 104809. [Google Scholar] [CrossRef]
- Abd Rahman, I.; Hasbollah, D.A.; Yunus, N.M.; Kasiman, E.; Mazlan, A. In Carbon Dioxide Storage Potential in Malaysian Sandstone Aquifer: An Overview. IOP Conf. Series: Earth Environ. Sci. 2022, 971, 012022. [Google Scholar] [CrossRef]
- Gorecki, C.D.; Sorensen, J.A.; Bremer, J.M.; Knudsen, D.J.; Smith, S.A.; Steadman, E.N.; Harju, J.A. Development of storage coefficients for determining the effective CO2 storage resource in deep saline formations. In Proceedings of the SPE International Conference on CO2 Capture, Storage, and Utilization, San Diego, CA, USA, 2–4 November 2009; OnePetro: Richardson, TX, USA, 2009. [Google Scholar]
- Page, S.; Williamson, A.; Mason, I. Carbon capture and storage: Fundamental thermodynamics and current technology. Energy Policy 2009, 37, 3314–3324. [Google Scholar] [CrossRef]
- Jin, C.; Liu, L.; Li, Y.; Zeng, R. Capacity assessment of CO2 storage in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. Energy Sci. Eng. 2017, 5, 81–89. [Google Scholar] [CrossRef]
- Yanzhong, W.; Nianmin, Z.; Xu, C.; Yingchang, C.; Guanghui, Y.; Gluyas, J.G.; Miruo, L. Geologic CO2 storage in arkosic sandstones with CaCl2-rich formation water. Chem. Geol. 2020, 558, 119867. [Google Scholar] [CrossRef]
- Koukouzas, N.; Kypritidou, Z.; Purser, G.; Rochelle, C.A.; Vasilatos, C.; Tsoukalas, N. Assessment of the impact of CO2 storage in sandstone formations by experimental studies and geochemical modeling: The case of the Mesohellenic Trough, NW Greece. Int. J. Greenh. Gas Control 2018, 71, 116–132. [Google Scholar] [CrossRef]
- Alemu, B.L.; Aagaard, P.; Munz, I.A.; Skurtveit, E. Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine. Appl. Geochem. 2011, 26, 1975–1989. [Google Scholar] [CrossRef]
- Huq, F.; Blum, P.; Marks, M.A.; Nowak, M.; Haderlein, S.B.; Grathwohl, P. Chemical changes in fluid composition due to CO2 injection in the Altmark gas field: Preliminary results from batch experiments. Environ. Earth Sci. 2012, 67, 385–394. [Google Scholar] [CrossRef]
- García-Rios, M.; Luquot, L.; Soler, J.M.; Cama, J. Laboratory-scale interaction between CO2-rich brine and reservoir rocks (limestone and sandstone). Procedia Earth Planet. Sci. 2013, 7, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhu, D.; Jin, Z.; Tian, H.; Zhou, B.; Jiang, P.; Meng, Q.; Wu, X.; Xu, H.; Hu, T. Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs. Renew. Sustain. Energy Rev. 2023, 171, 113000. [Google Scholar] [CrossRef]
- Ning, Y.; Tura, A. Wellbore Integrity Impact on Carbon Leakage to Ensure Safe Geological Sequestration. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 3–5 October 2022; OnePetro: Richardson, TX, USA, 2022. [Google Scholar]
- Ding, K.; Wang, L.; Ren, B.; Li, Z.; Wang, S.; Jiang, C. Experimental study on relative permeability characteristics for CO2 in sandstone under high temperature and overburden pressure. Minerals 2021, 11, 956. [Google Scholar] [CrossRef]
- Gholami, R.; Raza, A.; Iglauer, S. Leakage risk assessment of a CO2 storage site: A review. Earth-Sci. Rev. 2021, 223, 103849. [Google Scholar] [CrossRef]
- Moradi, B.; Hosseini Moghadam, A.; Rasaei, M.R.; Papi, A. Pore-scale characterization of CO2 front progress through a porous medium using a free energy model based on Phase-Field Lattice Boltzmann Method. J. Pet. Sci. Eng. 2022, 210, 110008. [Google Scholar] [CrossRef]
- Kohanpur, A.H.; Rahromostaqim, M.; Valocchi, A.J.; Sahimi, M. Two-phase flow of CO2-brine in a heterogeneous sandstone: Characterization of the rock and comparison of the lattice-Boltzmann, pore-network, and direct numerical simulation methods. Adv. Water Resour. 2020, 135, 103469. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Sahimi, M.; Kohanpur, A.H.; Valocchi, A. Pore-scale simulation of flow of CO2 and brine in reconstructed and actual 3D rock cores. J. Pet. Sci. Eng. 2017, 155, 21–33. [Google Scholar] [CrossRef]
- Akbarabadi, M.; Piri, M. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: An experimental study at reservoir conditions. Adv. Water Resour. 2013, 52, 190–206. [Google Scholar] [CrossRef]
- Liu, F.; Lu, P.; Griffith, C.; Hedges, S.W.; Soong, Y.; Hellevang, H.; Zhu, C. CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. Int. J. Greenh. Gas Control 2012, 7, 153–167. [Google Scholar] [CrossRef]
- Tsakiroglou, C.; Avraam, D.; Payatakes, A. Transient and steady-state relative permeabilities from two-phase flow experiments in planar pore networks. Adv. Water Resour. 2007, 30, 1981–1992. [Google Scholar] [CrossRef]
- Suwandi, N.; Jiang, F.; Tsuji, T. Relative Permeability Variation Depending on Viscosity Ratio and Capillary Number. Water Resour. Res. 2022, 58, e2021WR031501. [Google Scholar] [CrossRef]
- Fan, M.; Dalton, L.E.; McClure, J.; Ripepi, N.; Westman, E.; Crandall, D.; Chen, C. Comprehensive study of the interactions between the critical dimensionless numbers associated with multiphase flow in 3D porous media. Fuel 2019, 252, 522–533. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, H. Pore-scale modeling of immiscible two-phase flow in complex porous media. Appl. Therm. Eng. 2016, 93, 1394–1402. [Google Scholar] [CrossRef]
- Müller, N. Supercritical CO2-brine relative permeability experiments in reservoir rocks—Literature review and recommendations. Transp. Porous Media 2011, 87, 367–383. [Google Scholar] [CrossRef]
- Carrillo, F.J.; Bourg, I.C.; Soulaine, C. Multiphase flow modeling in multiscale porous media: An open-source micro-continuum approach. J. Comput. Phys. X 2020, 8, 100073. [Google Scholar] [CrossRef]
- Wang, J. Continuum theory for dense gas-solid flow: A state-of-the-art review. Chem. Eng. Sci. 2020, 215, 115428. [Google Scholar] [CrossRef]
- Papp, J.; Wilmoth, R.; Chartrand, C.; Dash, S. Simulation of high-altitude plume flow fields using a hybrid continuum CFD/DSMC approach. In Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, USA, 9–12 July 2006; p. 4412. [Google Scholar]
- Wang, S.; Ruspini, L.C.; Øren, P.E.; Van Offenwert, S.; Bultreys, T. Anchoring Multi-Scale Models to Micron-Scale Imaging of Multiphase Flow in Rocks. Water Resour. Res. 2022, 58, e2021WR030870. [Google Scholar] [CrossRef]
- Masalmeh, S.K.; Jing, X.; Roth, S.; Wang, C.; Dong, H.; Blunt, M. Towards predicting multi-phase flow in porous media using digital rock physics: Workflow to test the predictive capability of pore-scale modeling. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 9–12 November 2015; OnePetro: Richardson, TX, USA, 2015. [Google Scholar]
- Dinariev, O.; Evseev, N. Multiphase flow modeling with density functional method. Comput. Geosci. 2016, 20, 835–856. [Google Scholar] [CrossRef]
- Koroteev, D.; Dinariev, O.; Evseev, N.; Klemin, D.; Nadeev, A.; Safonov, S.; Gurpinar, O.; Berg, S.; Van Kruijsdijk, C.; Armstrong, R. Direct hydrodynamic simulation of multiphase flow in porous rock. Petrophysics-SPWLA J. Form. Eval. Reserv. Descr. 2014, 55, 294–303. [Google Scholar]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Øren, P.-E.; Bakke, S. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects. J. Pet. Sci. Eng. 2003, 39, 177–199. [Google Scholar] [CrossRef]
- Valvatne, P.H.; Blunt, M.J. Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 2004, 40, W07406. [Google Scholar] [CrossRef] [Green Version]
- Blunt, M.J.; Jackson, M.D.; Piri, M.; Valvatne, P.H. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 2002, 25, 1069–1089. [Google Scholar] [CrossRef]
- Ramstad, T.; Øren, P.-E.; Bakke, S. Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method. SPE J. 2010, 15, 917–927. [Google Scholar] [CrossRef]
- Kelly, S.; El-Sobky, H.; Torres-Verdín, C.; Balhoff, M.T. Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 2016, 95, 302–316. [Google Scholar] [CrossRef]
- Liang, Z.; Fernandes, C.; Magnani, F.; Philippi, P. A reconstruction technique for three-dimensional porous media using image analysis and Fourier transforms. J. Pet. Sci. Eng. 1998, 21, 273–283. [Google Scholar] [CrossRef]
- Zhou, X.-P.; Xiao, N. 3D numerical reconstruction of porous sandstone using improved simulated annealing algorithms. Rock Mech. Rock Eng. 2018, 51, 2135–2151. [Google Scholar] [CrossRef]
- Lin, W.; Li, X.; Yang, Z.; Xiong, S.; Luo, Y.; Zhao, X. Modeling of 3D rock porous media by combining X-ray CT and Markov chain Monte Carlo. J. Energy Resour. Technol. 2020, 142, 013001. [Google Scholar] [CrossRef]
- Xie, Y.; Luo, Z.; Cheng, L.; Zhao, L.; Chen, X.; Zhang, N.; Ren, D.; Cao, Y. Numerical modeling and analysis of the matrix acidizing process in fractured sandstone rocks with the Extended–FEM. J. Pet. Sci. Eng. 2023, 220, 111215. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Z.-f. Simulation of solute transport using a coupling model based on finite volume method in fractured rocks. J. Hydrodyn. 2010, 22, 129–136. [Google Scholar] [CrossRef]
- Alpak, F.; Samardžić, A.; Frank, F. A distributed parallel direct simulator for pore-scale two-phase flow on digital rock images using a finite difference implementation of the phase-field method. J. Pet. Sci. Eng. 2018, 166, 806–824. [Google Scholar] [CrossRef]
- Gresho, P.M. Some current CFD issues relevant to the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 1991, 87, 201–252. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Israeli, M.; Orszag, S.A. High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 1991, 97, 414–443. [Google Scholar] [CrossRef]
- Soleimani, R.; Norouzi, S.; Rasaei, M.R. Investigation of gas condensate drop-out effect on gas relative permeability by Lattice Boltzmann modelling. Can. J. Chem. Eng. 2019, 97, 1921–1930. [Google Scholar] [CrossRef]
- Xu, A.; Shi, L.; Zhao, T. Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Int. J. Heat Mass Transf. 2017, 109, 577–588. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.-J.; Lu, X.-Y. Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 2014, 93, 164–172. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Q.; Mu, Y.; He, Y.-L.; Tao, W.-Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass Transf. 2014, 76, 210–236. [Google Scholar] [CrossRef]
- Pooley, C.; Furtado, K. Eliminating spurious velocities in the free-energy lattice Boltzmann method. Phys. Rev. E 2008, 77, 046702. [Google Scholar] [CrossRef]
- Huang, H.; Wang, L.; Lu, X.-y. Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 2011, 61, 3606–3617. [Google Scholar] [CrossRef]
- Tian, Z.; Xing, H.; Tan, Y.; Gao, J. A coupled lattice Boltzmann model for simulating reactive transport in CO2 injection. Phys. A: Stat. Mech. Its Appl. 2014, 403, 155–164. [Google Scholar] [CrossRef]
- Cameron, K.C.; Buchan, G.D. Darcys Law. In SW Encyclopedia of Water Science; Trimple: Westminster, CO, USA, 2008; pp. 143–146. [Google Scholar]
- Gasmi, H.; Khan, U.; Zaib, A.; Ishak, A.; Eldin, S.M.; Raizah, Z. Analysis of Mixed Convection on Two-Phase Nanofluid Flow Past a Vertical Plate in Brinkman-Extended Darcy Porous Medium with Nield Conditions. Mathematics 2022, 10, 3918. [Google Scholar] [CrossRef]
- Zhang, Q.; Choo, J.; Borja, R.I. On the preferential flow patterns induced by transverse isotropy and non-Darcy flow in double porosity media. Comput. Methods Appl. Mech. Eng. 2019, 353, 570–592. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, Y.; Shi, Y.; Zou, G.; Zhang, Q.; Kong, D. Effect of dynamic threshold pressure gradient on production performance in water-bearing tight gas reservoir. Adv. Geo-Energy Res. 2022, 6, 286. [Google Scholar] [CrossRef]
- Lu, C.; Qin, X.; Ma, C.; Yu, L.; Geng, L.; Bian, H.; Zhang, K.; Zhou, Y. Investigation of the impact of threshold pressure gradient on gas production from hydrate deposits. Fuel 2022, 319, 123569. [Google Scholar] [CrossRef]
- Li, D.; Zha, W.; Liu, S.; Wang, L.; Lu, D. Pressure transient analysis of low permeability reservoir with pseudo threshold pressure gradient. J. Pet. Sci. Eng. 2016, 147, 308–316. [Google Scholar] [CrossRef]
- Hao, F.; Cheng, L.; Hassan, O.; Hou, J.; Liu, C.; Feng, J. Threshold pressure gradient in ultra-low permeability reservoirs. Pet. Sci. Technol. 2008, 26, 1024–1035. [Google Scholar] [CrossRef]
- Christopoulou, M.A.; Koutsovitis, P.; Kostoglou, N.; Paraskevopoulou, C.; Sideridis, A.; Petrounias, P.; Rogkala, A.; Stock, S.; Koukouzas, N. Evaluation of the CO2 Storage Capacity in Sandstone Formations from the Southeast Mesohellenic trough (Greece). Energies 2022, 15, 3491. [Google Scholar] [CrossRef]
- Ni, P.; Wang, S.; Wang, C.; Zhang, S. Estimation of REV size for fractured rock mass based on damage coefficient. Rock Mech. Rock Eng. 2017, 50, 555–570. [Google Scholar] [CrossRef]
- Min, K.-B.; Jing, L.; Stephansson, O. Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK. Hydrogeol. J. 2004, 12, 497–510. [Google Scholar] [CrossRef]
- Boek, E.S.; Venturoli, M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 2010, 59, 2305–2314. [Google Scholar] [CrossRef]
- Xing, H.; Gao, J.; Zhang, J.; Liu, Y. Towards an integrated simulator for enhanced geothermal reservoirs. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010. [Google Scholar]
- Ziegler, D.P. Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 1993, 71, 1171–1177. [Google Scholar] [CrossRef]
- Ju, Y.; Wang, J.; Gao, F.; Xie, H. Lattice-Boltzmann simulation of microscale CH4 flow in porous rock subject to force-induced deformation. Chin. Sci. Bull. 2014, 59, 3292–3303. [Google Scholar] [CrossRef]
- Zhao, W.; Jia, C.; Zhang, T.; Jiang, L.; Li, X.; Jiang, Z.; Zhang, F. Effects of nanopore geometry on confined water flow: A view of lattice Boltzmann simulation. Chem. Eng. Sci. 2021, 230, 116183. [Google Scholar] [CrossRef]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 1991, 43, 4320–4327. [Google Scholar] [CrossRef]
- Iglauer, S.; Pentland, C.; Busch, A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour. Res. 2015, 51, 729–774. [Google Scholar] [CrossRef]
- Vasheghani Farahani, M.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Heat transfer in unfrozen and frozen porous media: Experimental measurement and pore-scale modeling. Water Resour. Res. 2020, 56, e2020WR027885. [Google Scholar] [CrossRef]
Scenario No. | Capillary Number (Ca) | Viscosity Ratio (M) | Wettability (WI) |
---|---|---|---|
1 | 1 × 10−3 | 1 | 0.3 |
2 | 1 × 10−4 | 1 | 0.3 |
3 | 1 × 10−5 | 1 | 0.3 |
4 | 1 × 10−3 | 1 | 0.7 |
5 | 1 × 10−4 | 1 | 0.7 |
6 | 1 × 10−5 | 1 | 0.7 |
7 | 1 × 10−3 | 1 | 0.9 |
8 | 1 × 10−4 | 1 | 0.9 |
9 | 1 × 10−5 | 1 | 0.9 |
10 | 1 × 10−3 | 10 | 0.3 |
11 | 1 × 10−4 | 10 | 0.3 |
12 | 1 × 10−5 | 10 | 0.3 |
13 | 1 × 10−3 | 10 | 0.7 |
14 | 1 × 10−4 | 10 | 0.7 |
15 | 1 × 10−5 | 10 | 0.7 |
16 | 1 × 10−3 | 10 | 0.9 |
17 | 1 × 10−4 | 10 | 0.9 |
18 | 1 × 10−5 | 10 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Jia, C.; Zhao, W.; Jiang, L.; Chen, Z. Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO2–Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO2 Storage Efficiency. Energies 2023, 16, 1547. https://doi.org/10.3390/en16031547
Wan Y, Jia C, Zhao W, Jiang L, Chen Z. Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO2–Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO2 Storage Efficiency. Energies. 2023; 16(3):1547. https://doi.org/10.3390/en16031547
Chicago/Turabian StyleWan, Yidi, Chengzao Jia, Wen Zhao, Lin Jiang, and Zhuxin Chen. 2023. "Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO2–Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO2 Storage Efficiency" Energies 16, no. 3: 1547. https://doi.org/10.3390/en16031547
APA StyleWan, Y., Jia, C., Zhao, W., Jiang, L., & Chen, Z. (2023). Micro-Scale Lattice Boltzmann Simulation of Two-Phase CO2–Brine Flow in a Tighter REV Extracted from a Permeable Sandstone Core: Implications for CO2 Storage Efficiency. Energies, 16(3), 1547. https://doi.org/10.3390/en16031547