Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Procedure
2.3. Numerical Modeling Methods
3. Results
3.1. Experimental Results
3.2. Results from the Numerical Simulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cozzi, L.; Gould, T. World Energy Outlook 2022; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Löf, G.O.G.; Duffie, J.A.; Smith, C.O. World distribution of solar radiation. Solar Energy 1966, 10, 27–37. [Google Scholar] [CrossRef]
- Vaisi, S.; Pilla, F.; McCormac, D.; McCormack, S.J. Towards urban energy density (UED) definition. In Proceedings of the Energy for Sustainability 2015—Sustainable Cities: Designing for People and the Planet, Coimbra, Portugal, 14–15 May 2015. [Google Scholar]
- Howard, B.; Parshall, L.; Thompson, J.; Hammer, S.; Dickinson, J.; Modi, V. Spatial distribution of urban energy consumption by end use. Energy Build. 2012, 45, 141–151. [Google Scholar] [CrossRef]
- Güneralp, B.; Zhou, Y.; Urge-Vorsatz, D.; Gupta, M.; Sha, Y.; Patel, P.L.; Fragkias, M.; Li, X.; Seto, K.C. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl. Acad. Sci. USA 2017, 114, 8945–8950. [Google Scholar] [CrossRef] [PubMed]
- Daigle, Q.; O’Brien, P.G. Heat Generated Using Luminescent Solar Concentrators for Building Energy Applications. Energies 2020, 13, 5574. [Google Scholar] [CrossRef]
- Saadatian, O.; Sopian, K.; Lim, C.H.; Asim, N.; Sulaiman, M.Y. Trombe walls: A review of opportunities and challenges in research and development. Renew. Sustain. Energy Rev. 2012, 16, 6340–6351. [Google Scholar] [CrossRef]
- Hu, W.; He, J.; Ji, J.; Zhang, S. A review on the application of Trombe wall system in buildings. Renew. Sustain. Energy Rev. 2017, 70, 976–987. [Google Scholar] [CrossRef]
- Sergei, K.; Shen, C.; Jiang, Y. A review of the current work potential of a Trombe wall. Renew. Sustain. Energy Rev. 2020, 130, 109947. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991; pp. 250–330. [Google Scholar]
- Mokni, A.; Lashin, A.; Ammar, M.; Mhiri, H. Thermal analysis of a Trombe wall in various climatic conditions: An experimental study. Solar Energy 2022, 243, 247–263. [Google Scholar] [CrossRef]
- Yang, L.; Dhahad, H.A.; Chen, M.; Huang, Z.; Anqi, A.E.; Rajhi, A.A.; Qader, D.N. Transient analysis of buildings with Trombe wall in a southern envelope and strengthening efficacy by adding phase change material. J. Build. Eng. 2022, 55, 104670. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Yu, B.; Zhang, M.; Tan, Q.; Wang, Y. The performance analysis of high-efficiency dual-channel Trombe wall in winter. Energy 2022, 253, 124087. [Google Scholar] [CrossRef]
- Shen, J.; Lassue, S.; Zalewski, L.; Huang, D. Numerical study of classical and composite solar walls by TRNSYS. J. Therm. Sci. 2007, 16, 46–55. [Google Scholar] [CrossRef]
- Chan, H.Y.; Riffat, S.B.; Zhu, J. Review of passive solar heating and cooling technologies. Renew. Sustain. Energy Rev. 2010, 14, 781–789. [Google Scholar] [CrossRef]
- Stazi, F.; Mastrucci, A.; di Perna, C. The behaviour of solar walls in residential buildings with different insulation levels: An experimental and numerical study. Energy Build. 2012, 47, 217–229. [Google Scholar] [CrossRef]
- Stazi, F.; Mastrucci, A.; di Perna, C. Trombe wall management in summer conditions: An experimental study. Solar Energy 2012, 86, 2839–2851. [Google Scholar] [CrossRef]
- Gan, G. A parametric study of Trombe walls for passive cooling of buildings. Energy Build. 1998, 27, 37–43. [Google Scholar] [CrossRef]
- Jaber, S.; Ajib, S. Optimum design of Trombe wall system in mediterranean region. Solar Energy 2011, 85, 1891–1898. [Google Scholar] [CrossRef]
- Torcellini, P.; Pless, S. Trombe Walls in Low-Energy Buildings: Practical Experiences; National Renewable Energy Lab.: Golden, CO, USA, 2004. [Google Scholar]
- Mohamad, A.; Taler, J.; Oclon, P. Trombe Wall Utilization for Cold and Hot Climate Conditions. Energies 2019, 12, 285. [Google Scholar] [CrossRef]
- Singh, H.; O’Brien, P.G. Semi-transparent water-based Trombe walls for passive air and water heating. Buildings 2022, 12, 1632. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Temaneh-Nyah, C.; Mukwekwe, L. An investigation on the effect of operating temperature on power output of the photovoltaic system at University of Namibia Faculty of Engineering and IT campus. Proceeding of the 2015 Third International Conference on Digital Information, Networking, and Wireless Communications (DINWC), Moscow, Russia, 3–5 February 2015; pp. 22–29. [Google Scholar]
- Rahman, M.M.; Hasanuzzaman, M.; Abd Rahim, N. Effects of operational conditions on the energy efficiency of photovoltaic modules operating in Malaysia. J. Clean. Prod. 2017, 143, 912–924. [Google Scholar] [CrossRef]
- Perraki, V.; Kounavis, P. Effect of temperature and radiation on the parameters of photovoltaic modules. J. Renew. Sustain. Energy 2016, 8, 013102. [Google Scholar] [CrossRef]
- Hu, Z.; He, W.; Hu, D.; Lv, S.; Wang, L.; Ji, J.; Chen, H.; Ma, J. Design, construction and performance testing of a PV blind-integrated Trombe wall module. Appl. Energy 2017, 203, 643–656. [Google Scholar] [CrossRef]
- Koyunbaba, B.K.; Yilmaz, Z.; Ulgen, K. An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system. Energy Build. 2013, 67, 680–688. [Google Scholar] [CrossRef]
- Jie, J.; Hua, Y.; Gang, P.; Jianping, L. Study of PV-Trombe wall installed in a fenestrated room with heat storage. Appl. Therm. Eng. 2007, 27, 1507–1515. [Google Scholar] [CrossRef]
- Ahmed, O.K.; Hamada, K.I.; Salih, A.M. Performance analysis of PV/Trombe with water and air heating system: An experimental and theoretical study. Energy Sour. Part A Recovery Util. Environ. Eff. 2022, 44, 2535–2555. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Bali, T. An experimental analysis of illumination intensity and temperature dependency on photovoltaic cell parameters. Appl. Energy 2013, 111, 374–382. [Google Scholar] [CrossRef]
- NREL. Solar Resource Maps and Data. Available online: https://www.nrel.gov/gis/solar-resource-maps.html (accessed on 27 January 2023).
- Singh, P.; Ravindra, N.M. Temperature Dependence of Solar Cell Performance—An Analysis. Solar Energy Mater. Solar Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Cotfas, D.T.; Cotfas, P.A.; Machidon, O.M. Study of temperature coefficients for parameters of photovoltaic cells. Int. J. Photoenergy 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Marszal-Pomianowska, A.; Jensen, R.L.; Pomianowski, M.; Larsen, O.K.; Jørgensen, J.S.; Knudsen, S.S. Comfort of domestic water in residential buildings: Flow, temperature and energy in draw-off points: Field study in two danish detached houses. Energies 2021, 14, 3314. [Google Scholar] [CrossRef]
- Water Temperature and Burns/Scalds. Available online: https://www.canada.ca/en/public-health/services/water-temperature-burns-scalds.html (accessed on 17 October 2022).
- Schwingshackl, C.; Petitta, M.; Wagner, J.E.; Belluardo, G.; Moser, D.; Castelli, M.; Zebisch, M.; Tetzlaff, A. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia 2013, 40, 77–86. [Google Scholar] [CrossRef]
- Van Sark, W.G.J.H.M. Feasibility of photovoltaic–thermoelectric hybrid modules. Appl. Energy 2011, 88, 2785–2790. [Google Scholar] [CrossRef]
- Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shepherd, R.F.; Nagy, Z.; Hischier, I.; Hofer, J.; Schlueter, A. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat. Energy 2019, 4, 671–682. [Google Scholar] [CrossRef]
- Tabadkani, A.; Roetzel, A.; Li, H.X.; Tsangrassoulis, A. Design approaches and typologies of adaptive facades: A review. Autom. Constr. 2021, 121, 103450. [Google Scholar] [CrossRef]
- Maduru, V.R.; Shaik, S.; Cuce, E.; Afzal, A.; Panchal, H.; Cuce, P.M. UV coated acrylics as a substitute for generic glazing in buildings of Indian climatic conditions: Prospective for energy savings, CO2 abatement, and visual acceptability. Energy Build. 2022, 268, 112231. [Google Scholar] [CrossRef]
- Ghosh, A.; Sundaram, S.; Mallick, T.K. Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing. Appl. Energy 2018, 228, 1591–1600. [Google Scholar] [CrossRef]
- Bailey-Salzman, R.F.; Rand, B.P.; Forrest, S.R. Semitransparent organic photovoltaic cells. Appl. Phys. Lett. 2006, 88, 233502. [Google Scholar] [CrossRef]
- Yang, Y.; O’Brien, P.G.; Ozin, G.A.; Kherani, N.P. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics. Appl. Phys. Lett. 2013, 102, 221109. [Google Scholar] [CrossRef]
- O’Brien, P.G.; Chutinan, A.; Mahtani, P.; Leong, K.; Ozin, G.A.; Kherani, N.P. Selectively transparent and conducting photonic crystal rear-contacts for thin-film silicon-based building integrated photovoltaics. Opt. Express 2011, 19, 17040–17052. [Google Scholar] [CrossRef] [PubMed]
- Alrashidi, H.; Issa, W.; Sellami, N.; Sundaram, S.; Mallick, T. Thermal performance evaluation and energy saving potential of semi-transparent CdTe in Façade BIPV. Solar Energy 2022, 232, 84–91. [Google Scholar] [CrossRef]
- Uddin, M.M.; Wang, C.; Zhang, C.; Ji, J. Investigating the energy-saving performance of a CdTe-based semi-transparent photovoltaic combined hybrid vacuum glazing window system. Energy 2022, 253, 124019. [Google Scholar] [CrossRef]
- Sarkin, A.S.; Ekren, N.; Sağlam, S. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Solar Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Chunxue, J.; Liu, W.; Bao, Y.; Chen, X.; Yang, G.; Wei, B.; Yang, F.; Wang, X. Recent applications of antireflection coatings in solar cells. Photonics 2022, 9, 906. [Google Scholar]
- Loh, J.Y.Y.; Puzzo, D.P.; O’Brien, P.G.; Ozin, G.A.; Kherain, N.P. Enhancing photovoltaics with broadband high-transparency glass using porosity-tuned multilayer silica nanoparticle anti-reflective coatings. RSC Adv. 2014, 4, 31188–31195. [Google Scholar] [CrossRef]
- Vázquez-Guardado, A.; Boroumand, J.; Franklin, D.; Chanda, D. Broadband angle-independent antireflection coatings on nanostructured light trapping solar cells. Phys. Rev. Mater. 2018, 2, 035201. [Google Scholar] [CrossRef]
- Zapałowicz, Z.; Wojnicki, O. Estimation of total solar transmittance for twin-wall polycarbonate sheet with rectangular structure on the basis of experimental research. Energies 2022, 15, 1360. [Google Scholar] [CrossRef]
- Brown, K.W.; Gessesse, B.; Butler, L.J.; MacIntosh, D.L. Potential effectiveness of point-of-use filtration to address risks to drinking water in the United States. Environ. Health Insights 2017, 11. [Google Scholar] [CrossRef]
- Cescon, A.; Jiang, J. Filtration process and alternative filter media material in water treatment. Water 2020, 12, 3377. [Google Scholar] [CrossRef]
Case | Water | Insulation | Trombe Wall | Acrylic Sheet (Tinted) | PV Cell | Abbreviation |
---|---|---|---|---|---|---|
1 | ✓ | W | ||||
2 | ✓ | ✓ | W-A | |||
3 | ✓ | ✓ | W-I | |||
4 | ✓ | ✓ | ✓ | W-I-A | ||
5 | ✓ | ✓ | ✓ | W-I-T | ||
6 | ✓ | ✓ | ✓ | ✓ | W-I-T-A | |
7 | ✓ | ✓ | ✓ | W-I-P | ||
8 | ✓ | ✓ | ✓ | ✓ | W-I-A-P | |
9 | ✓ | ✓ | ✓ | ✓ | W-I-T-P | |
10 | ✓ | ✓ | ✓ | ✓ | ✓ | W-I-T-A-P |
11 | ✓ | ✓ | I-P | |||
12 | ✓ | ✓ | ✓ | I-T-P |
CASE | T3 at the End of the Charging Phase (°C) | ∆T3 at the End of the Charging Phase (°C) | T of the PV Cell at the End of the Charging Phase (°C) | ∆T for the PV Cell at the End of the Charging Phase (°C) | Voc at the End of the Charging Phase (V) | ∆Voc at the end of the Charging Phase (V) |
---|---|---|---|---|---|---|
7 (W-I-P) | 30.2 | 9.3 | 48.0 | 27.1 | 0.680 | 0.034 |
8 (W-I-A-P) | 30.6 | 9.5 | 48.2 | 27.4 | 0.679 | 0.036 |
9 (W-I-T-P) | 32.5 | 11.1 | 48.7 | 27.6 | 0.670 | 0.028 |
10 (W-I-T-A-P) | 34.8 | 13.3 | 49.7 | 28.5 | 0.668 | 0.024 |
11 (I-P) | — | — | 71.4 | 50.5 | 0.642 | 0.038 |
12 (I-T-P) | — | — | 88.8 | 68.2 | 0.600 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhadra, S.; Sen, N.; K, A.K.; Singh, H.; O’Brien, P.G. Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall. Energies 2023, 16, 1618. https://doi.org/10.3390/en16041618
Bhadra S, Sen N, K AK, Singh H, O’Brien PG. Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall. Energies. 2023; 16(4):1618. https://doi.org/10.3390/en16041618
Chicago/Turabian StyleBhadra, Sheel, Niloy Sen, Akshay K K, Harmeet Singh, and Paul G. O’Brien. 2023. "Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall" Energies 16, no. 4: 1618. https://doi.org/10.3390/en16041618
APA StyleBhadra, S., Sen, N., K, A. K., Singh, H., & O’Brien, P. G. (2023). Design and Evaluation of a Water-Based, Semitransparent Photovoltaic Thermal Trombe Wall. Energies, 16(4), 1618. https://doi.org/10.3390/en16041618