A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems
Abstract
:1. Introduction
- The proposed VDBC circuit implemented MOSFET switches. This reduced stress in the switching process, thus achieving higher output voltage (Vdc) and power.
- As highlighted in the literature, it is developed without employing complex, extraneous circuits and polarity indicators, which leads to lower conversion losses and complexity.
2. PD Internal Characteristics and PEH Circuits
2.1. PD Circuit Model
2.2. VD Circuit
- -
- CP = Charging (PD delivers no output to load)
- -
- CL1 = Not charging
- -
- D1–D2: OFF
- -
- CP = Discharging (PD delivers output to load)
- -
- D1: ON
- -
- D2: OFF
- -
- VPD = Vdc (CL1: Charged)
- -
- CP = Charging (PD delivers no output to load)
- -
- CL1 = Not charging
- -
- D1-D2: OFF
- -
- CP = Discharging (PD delivers output to load)
- -
- D1: OFF
- -
- D2: ON
- -
- VPD = Vdc (CL1: Charged)
2.3. Voltage Doubler Boost Converter Circuit
3. Experimental Results and Discussions
3.1. Varying Excitation Frequency at Fixed Input Voltage
3.2. Varying Input Voltage at Fixed Excitation Frequency
3.3. VDBC Application: Solar Battery Charging
3.4. Comparison of VDBC with the Conventional VD Circuit
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Symbols and Abbreviation
Symbol | Explanation |
Vf | Diode Forward Voltage |
Vdc | DC Voltage |
Vo | Output Voltage |
t | Time Period |
VD | Diode Forward Voltage Losses |
C1, C2, CL1, CL2 | Capacitor |
Po | Rectified Output Power |
D1–D5 | Diodes |
M1–M2 | MOSFET Switches |
B | Base |
E | Emitter |
Tsw | Time Period of Switching Process |
G | Gate |
S | Source |
CL3 | Load Capacitor |
CP | Internal Capacitor of PD |
ω | Angular Frequency |
iac | AC Current |
VPD | Voltage Across PD Electrodes |
u | Polarization Current used to Charge the PD |
Vac | AC Voltage |
R1–R2 | Resistors |
L1–L2 | Inductors |
C | Collector |
RL | Load Resistor |
d1–d2 | Duty Cycles |
D | Drain |
Abbreviation | Explanation |
PD | Piezoelectric Device |
ME | Mechanical Energy |
EE | Electrical Energy |
AC | Alternating Current |
PEH | Piezoelectric Energy Harvesting |
FBR | Full Bridge Rectifier |
PSCAD | Power System Computer Aided Designs |
MOSFET | Metal Oxide Field Effect Transistor |
DSHBR | Dual Stage H-Bridge Rectifier Circuit |
VDBC | Voltage Doubler Boost Converter |
DC | Direct Current |
MPE | Maximum Power Extraction |
HBR | H-Bridge Rectifier |
LCL | Latching Current Limiter |
References
- Edla, M.; Lim, Y.Y.; Deguchi, M.; Padilla, R.V.; Izadgoshasb, I. An improved self-powered H-bridge circuit for voltage rectification of piezoelectric energy harvesting system. IEEE J. Electron Devices Soc. 2020, 8, 1050–1062. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y.; Mikio, D.; Padilla, R.V. Non-Linear Switching Circuit for Active Voltage Rectification and Ripples Reduction of Piezoelectric Energy Harvesters. Energies 2022, 15, 709. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y.; Padilla, R.V.; Mikio, D. Design and application of a self-powered dual-stage circuit for piezoelectric energy harvesting systems. IEEE Access 2021, 9, 86954–86965. [Google Scholar] [CrossRef]
- Garbuio, L.; Lallart, M.; Guyomar, D.; Richard, C.; Audigier, D. Mechanical energy harvester with ultralow threshold rectification based on SSHI non-linear technique. IEEE Trans. Ind. Electron. 2009, 56, 1048–1056. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M.J.S. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Gutowski, T.; Dahmus, J.; Thiriez, A. Electrical energy requirements for manufacturing processes. In Proceedings of the 13th CIRP International Conference on Lfe Cycle Engineering, Leuven, Belgium, 31 May–2 June 2006; pp. 623–638. [Google Scholar]
- Edla, M.; Lim, Y.Y.; Padilla, R.V.; Deguchi, M.J.A.S. An improved rectifier circuit for piezoelectric energy harvesting from human motion. Appl. Sci. 2021, 11, 2008. [Google Scholar] [CrossRef]
- Edla, M.; Deguchi, M.; Izadgoshasb, I.; Mahmud, M.A.P.; Kouzani, A.Z. Self-powered boost-converter for power optimisation and piezo garden lights. Smart Mater. Struct. 2022, 31, 045021. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y. An improved piezoelectric energy harvesting circuit for reducing the internal loss. In Proceedings of the 83rd Researchfora International Conference, New Delhi, India, 29–30 January 2020; pp. 4–8. [Google Scholar]
- Izadgoshasb, I.; Lim, Y.Y.; Lake, N.; Tang, L.; Padilla, R.V.; Kashiwao, T. Optimising orientation of piezoelectric cantilever beam for harvesting energy from human walking. Energy Convers. Manag. 2018, 161, 66–73. [Google Scholar] [CrossRef]
- Izadgoshasb, I.; Lim, Y.Y.; Tang, L.; Padilla, R.V.; Tang, Z.S.; Sedighi, M. Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Convers. Manag. 2019, 184, 559–570. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Islam, R.; Xu, W. Recent Progress in Electrical Generators for Oceanic Wave Energy Conversion. IEEE Access 2020, 8, 138595–138615. [Google Scholar] [CrossRef]
- Xi, S.; Li, W.; Guo, J.; Liang, J. A self-powered piezoelectric energy harvesting interface circuit based on adaptive SSHI with fully integrated switch control. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Spain, 10–21 October 2020; pp. 1–4. [Google Scholar]
- Edla, M.; Lim, Y.Y.; Mikio, D.; Padilla, R.V. A Single-Stage Rectifier-Less Boost Converter Circuit for Piezoelectric Energy Harvesting Systems. IEEE Trans. Energy Convers. 2021, 37, 505–514. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 2009, 18, 025009. [Google Scholar] [CrossRef]
- Du, S.; Jia, Y.; Zhao, C.; Amaratunga, G.A.J.; Seshia, A.A. A Nail-Size Piezoelectric Energy Harvesting System Integrating a MEMS Transducer and a CMOS SSHI Circuit. IEEE Sens. J. 2019, 20, 277–285. [Google Scholar] [CrossRef]
- Du, S.; Jia, Y.; Zhao, C.; Amaratunga, G.A.; Seshia, A.A. A fully integrated split-electrode SSHC rectifier for piezoelectric energy harvesting. IEEE J. Solid-State Circuits 2019, 54, 1733–1743. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y.; Deguchi, M.; Padilla, R.V. A Novel Discontinuous Mode Piezoelectric Energy Harvesting Circuit for Low-Voltage Applications. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021; pp. 1–5. [Google Scholar]
- Huang, Y.-T.; Li, C.-H.; Chen, Y.-M. A Modified Asymmetrical Half-Bridge Flyback Converter for Step-Down AC–DC Applications. IEEE Trans. Power Electron. 2019, 35, 4613–4621. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; He, T.; Zhang, Z.; Lee, C. Programmed-triboelectric nanogenerators—A multi-switch regulation methodology for energy manipulation. Nano Energy 2020, 78, 105241. [Google Scholar] [CrossRef]
- Xia, H.; Xia, Y.; Shi, G.; Ye, Y.; Wang, X.; Chen, Z.; Jiang, Q. A Self-Powered S-SSHI and SECE Hybrid Rectifier for PE Energy Harvesters: Analysis and Experiment. IEEE Trans. Power Electron. 2020, 36, 1680–1692. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Zhang, Z.; Ren, Z.; Shi, Q.; Liu, W.; Lee, C. Continuous direct current by charge transportation for next-generation IoT and real-time virtual reality applications. Nano Energy 2020, 73, 104760. [Google Scholar] [CrossRef]
- Blank, V.; Bormashov, V.; Tarelkin, S.; Buga, S.; Kuznetsov, M.; Teteruk, D.; Kornilov, N.; Terentiev, S.; Volkov, A. Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater. 2015, 57, 32–36. [Google Scholar] [CrossRef]
- Teo, J.; Tan, R.H.; Mok, V.; Ramachandaramurthy, V.K.; Tan, C. Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions. Energy 2020, 191, 116491. [Google Scholar] [CrossRef]
- Shareef, A.; Goh, W.L.; Narasimalu, S.; Gao, Y. A Rectifier-Less AC–DC Interface Circuit for Ambient Energy Harvesting from Low-Voltage Piezoelectric Transducer Array. IEEE Trans. Power Electron. 2018, 34, 1446–1457. [Google Scholar] [CrossRef]
- Tabesh, A.; Fréchette, L.G. A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator. IEEE Trans. Ind. Electron. 2009, 57, 840–849. [Google Scholar] [CrossRef]
- Ammar, M.B.; Bouattour, G.; Bouhamed, A.; Sahnoun, S.; Fakhfakh, A.; Kanoun, O. AC-DC Single Phase Rectifiers for Nanocomposite based Flexible Piezoelectric Energy Harvesters. In Proceedings of the 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 228–234. [Google Scholar]
- Li, D.; Wang, C.; Cui, X.; Chen, D.; Fei, C.; Yang, Y. Recent progress and development of interface integrated circuits for piezoelectric energy harvesting. Nano Energy 2022, 94, 106938. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Montanini, R.; De Caro, S.; Panarello, S.; Scimone, T.; Foti, S.; Testa, A. A New Approach for Impedance Tracking of Piezoelectric Vibration Energy Harvesters Based on a Zeta Converter. Sensors 2020, 20, 5862. [Google Scholar] [CrossRef]
- Srinivasan, R.; Mangalanathan, U.; Gandhi, U.; Karlmarx, L.R. Bridgeless active rectifier for piezoelectric energy harvesting. IET Circuits Devices Syst. 2019, 13, 1078–1085. [Google Scholar] [CrossRef]
- Covaci, C.; Gontean, A. Two-Stage Converter for Piezoelectric Energy Harvesting Using Buck Configuration. In Proceedings of the 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania, 21–24 October 2020; pp. 408–411. [Google Scholar]
- Sarker, M.R.; Julai, S.; Sabri, M.F.M.; Said, S.M.; Islam, M.; Tahir, M. Review of piezoelectric energy harvesting system and application of soptimisation techniques to enhance the performance of the harvesting system. Sens. Actuators A Phys. 2019, 300, 111634. [Google Scholar] [CrossRef]
- Kashiwao, T.; Izadgoshasb, I.; Lim, Y.Y.; Deguchi, M. Optimization of rectifier circuits for a vibration energy harvesting system using a macro-fiber composite piezoelectric element. Microelectron. J. 2016, 54, 109–115. [Google Scholar] [CrossRef]
- Hsieh, J.-C.; Tsai, T.-H. An AC-DC wind energy harvesting circuit with extended input-voltage range and 95% tracking efficiency. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar]
- Dini, M.; Romani, A.; Filippi, M.; Tartagni, M. A nanopower synchronous charge extractor IC for low-voltage piezoelectric energy harvesting with residual charge inversion. IEEE Trans. Power Electron. 2015, 31, 1263–1274. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Addoweesh, K.E. A novel self-power SSHI circuit for piezoelectric energy harvester. IEEE Trans. Power Electron. 2016, 32, 7663–7673. [Google Scholar] [CrossRef]
- Lee, M.; Yang, J.; Park, M.-J.; Jung, S.-Y.; Kim, J. Design and Analysis of Energy-Efficient Single-Pulse Piezoelectric Energy Harvester and Power Management IC for Battery-Free Wireless Remote Switch Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 65, 366–379. [Google Scholar] [CrossRef]
- Lefeuvre, E.; Badel, A.; Brenes, A.; Seok, S.; Woytasik, M.; Yoo, C.-S. Analysis of piezoelectric energy harvesting system with tunable SECE interface. Smart Mater. Struct. 2017, 26, 035065. [Google Scholar] [CrossRef]
- Lu, S.; Boussaid, F. A highly efficient P-SSHI rectifier for piezoelectric energy harvesting. IEEE Trans. Power Electron. 2015, 30, 5364–5369. [Google Scholar] [CrossRef]
- Pollet, B.; Despesse, G.; Costa, F. A New Non-Isolated Low-Power Inductorless Piezoelectric DC–DC Converter. IEEE Trans. Power Electron. 2019, 34, 11002–11013. [Google Scholar] [CrossRef]
- Xia, H.; Xia, Y.; Ye, Y.; Qian, L.; Shi, G.; Chen, R. Analysis and Simulation of Synchronous Electric Charge Partial Extraction Technique for Efficient Piezoelectric Energy Harvesting. IEEE Sensors J. 2018, 18, 6235–6244. [Google Scholar] [CrossRef]
- Liang, J.; Liao, W.H. Improved design and analysis of self-powered ssynchronised switch interface circuit for piezoelectric energy harvesting systems. IEEE Trans. Ind. Electron. 2011, 59, 1950–1960. [Google Scholar] [CrossRef]
- Jeong, J.; Shim, M.; Maeng, J.; Park, I.; Kim, C. An Efficiency-Aware Cooperative Multicharger System for Photovoltaic Energy Harvesting Achieving 14% Efficiency Improvement. IEEE Trans. Power Electron. 2019, 35, 2253–2256. [Google Scholar] [CrossRef]
- Lian, Q.; Han, P.; Mei, N. A Review of Converter Circuits for Ambient Micro Energy Harvesting. Micromachines 2022, 13, 2222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, E.; Han, Y.; Lin, X.; Yang, P.; Blaabjerg, F.; Zalhaf, A.S. Impedance characteristics investigation and oscillation stability analysis for two-stage PV inverter under weak grid condition. Electr. Power Syst. Res. 2022, 209, 108053. [Google Scholar] [CrossRef]
- Han, Y.; Feng, Y.; Yang, P.; Xu, L.; Zalhaf, A.S. An efficient algorithm for atomic decomposition of power quality disturbance signals using convolutional neural network. Electr. Power Syst. Res. 2022, 206, 107790. [Google Scholar] [CrossRef]
- Do, X.-D.; Nguyen, H.-H.; Han, S.-K.; Lee, S.-G. A rectifier for piezoelectric energy harvesting system with series ssynchronised switch harvesting inductor. In Proceedings of the 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 11–13 November 2013; pp. 269–272. [Google Scholar]
- Guilar, N.J.; Amirtharajah, R.; Hurst, P.J. A Full-Wave Rectifier With Integrated Peak Selection for Multiple Electrode Piezoelectric Energy Harvesters. IEEE J. Solid-State Circuits 2008, 44, 240–246. [Google Scholar] [CrossRef]
- Hamlehdar, M.; Kasaeian, A.; Safaei, M.R. Energy harvesting from fluid flow using piezoelectrics: A critical review. Renew. Energy 2019, 143, 1826–1838. [Google Scholar] [CrossRef]
- Bimbhra, P.; Kaur, S. Power Electronics; Khanna publishers: New Delhi, India, 2012; Volume 2. [Google Scholar]
- Rashid, M.H. Power Electronics Handbook; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Kushino, Y.; Koizumi, H. Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 2310–2315. [Google Scholar]
- Lefeuvre, E.; Audigier, D.; Richard, C.; Guyomar, D. Buck-Boost Converter for Sensorless Power Optimization of Piezoelectric Energy Harvester. IEEE Trans. Power Electron. 2007, 22, 2018–2025. [Google Scholar] [CrossRef]
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Das, A.; Gao, Y.; Kim, T.T.-H. A 220-mV Power-on-Reset Based Self-Starter With 2-nW Quiescent Power for Thermoelectric Energy Harvesting Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 64, 217–226. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Y.; Khaligh, A. A Bridgeless Boost Rectifier for Low-Voltage Energy Harvesting Applications. IEEE Trans. Power Electron. 2013, 28, 5206–5214. [Google Scholar] [CrossRef]
- Khan, M.B.; Kim, D.H.; Han, J.H.; Saif, H.; Lee, H.; Lee, Y.; Kim, M.; Jang, E.; Hong, S.K.; Joe, D.J.; et al. Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy 2019, 58, 211–219. [Google Scholar] [CrossRef]
- Du, S.; Amaratunga, G.A.; Seshia, A.A. A cold-startup SSHI rectifier for piezoelectric energy harvesters with increased open-circuit voltage. IEEE Trans. Power Electron. 2018, 34, 263–274. [Google Scholar] [CrossRef]
- Ottman, G.; Hofmann, H.; Lesieutre, G. Optimised piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 2003, 18, 696–703. [Google Scholar] [CrossRef]
- Edla, M.; Deguchi, M.; Lim, Y.Y. A self-powered H-Bridge joule theory circuit for piezoelectric energy harvesting systems. Power Electron. Devices Compon. 2022, 3, 100015. [Google Scholar] [CrossRef]
- Edla, M. Development of High-Efficiency Rectifier Circuits for Piezoelectric Energy Harvesting Systems. Ph.D. Thesis, Southern Cross University, Lismore, Australia, 2021. [Google Scholar]
- Ottman, G.; Hofmann, H.; Bhatt, A.; Lesieutre, G. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 2002, 17, 669–676. [Google Scholar] [CrossRef]
- Hehn, T.; Hagedorn, F.; Maurath, D.; Marinkovic, D.; Kuehne, I.; Frey, A.; Manoli, Y. A fully autonomous integrated interface circuit for piezoelectric harvesters. IEEE J. Solid-State Circuits 2012, 47, 2185–2198. [Google Scholar] [CrossRef]
- Yu, L.; Wang, H.; Khaligh, A. A Discontinuous Conduction Mode Single-Stage Step-Up Rectifier for Low-Voltage Energy Harvesting Applications. IEEE Trans. Power Electron. 2016, 32, 6161–6169. [Google Scholar] [CrossRef]
- Kwon, D.; Rincón-Mora, G.A. A 2-μm BiCMOS Rectifier-Free AC–DC Piezoelectric Energy Harvester-Charger IC. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 400–409. [Google Scholar] [CrossRef] [PubMed]
Sources of Excitation | Test Scenarios | Frequency (Hz) | Input Voltage (Vac) | Load Capacitor (µF) | Types of PD | Load Resistors (KΩ) |
---|---|---|---|---|---|---|
Mechanical Shaker | Test 1 | 5, 10, 15, 20 | 5 | 10 | MFC | R1 = 100 R2 = 300 R3 = 620 R4 = 910 |
Test 2 | 100 | 0.5, 0.7, 1.0, 1.25 | 10 | |||
Test 3 | 5 | 5 | (solar battery) 1.2 Vdc, 4 mA | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseeb, A.; Edla, M.; Ucgul, M.; Santoso, F.; Deguchi, M. A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems. Energies 2023, 16, 1631. https://doi.org/10.3390/en16041631
Haseeb A, Edla M, Ucgul M, Santoso F, Deguchi M. A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems. Energies. 2023; 16(4):1631. https://doi.org/10.3390/en16041631
Chicago/Turabian StyleHaseeb, Abdul, Mahesh Edla, Mustafa Ucgul, Fendy Santoso, and Mikio Deguchi. 2023. "A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems" Energies 16, no. 4: 1631. https://doi.org/10.3390/en16041631
APA StyleHaseeb, A., Edla, M., Ucgul, M., Santoso, F., & Deguchi, M. (2023). A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems. Energies, 16(4), 1631. https://doi.org/10.3390/en16041631