Advanced Applications of Torrefied Biomass: A Perspective View
Abstract
:1. Introduction
2. Torrefaction Process
3. Perspective Applications of Torrefied Biomass
3.1. Fermentation of Torrefied Biomass
3.2. As an Adsorbent
3.3. As a Reducing Agent in Metallurgy
4. Challenges and Future Opportunities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosillo-Calle, F.; Woods, J. Overview of Biomass Energy. In The Biomass Assessment Handbook; Rosillo-Calle, F., de Groot, P., Hemstock, S., Woods, J., Eds.; Taylor & Francis: Abingdon, UK, 2012. [Google Scholar]
- Doddapaneni, T.R.K.C.; Pärn, L.; Kikas, T. Torrefaction of pulp industry sludge to enhance its fuel characteristics. Energies 2022, 15, 6175. [Google Scholar] [CrossRef]
- Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Madissoo, M.; Pärn, L.; Virro, I.; Kikas, T. Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics. Energies 2021, 14, 2774. [Google Scholar] [CrossRef]
- Thrän, D.; Witt, J.; Schaubach, K.; Kiel, J.; Carbo, M.; Maier, J.; Ndibe, C.; Koppejan, J.; Alakangas, E.; Majer, S.; et al. Moving torrefaction towards market introduction—Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy 2016, 89, 184–200. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Praveenkumar, R.; Tolvanen, H.; Rintala, J.; Konttinen, J. Techno-economic evaluation of integrating torrefaction with anaerobic digestion. Appl. Energy 2018, 213, 272–284. [Google Scholar] [CrossRef]
- Thengane, S.K.; Kung, K.S.; Gomez-Barea, A.; Ghoniem, A.F. Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market. Prog. Energy Combust. Sci. 2022, 93, 101040. [Google Scholar] [CrossRef]
- Doddapaneni, T.R.K.C.; Cahyanti, M.N.; Orupõld, K.; Kikas, T. Integrating Torrefaction of Pulp Industry Sludge with Anaerobic Digestion to Produce Biomethane and Volatile Fatty Acids: An Example of Industrial Symbiosis for Circular Bioeconomy. Fermentation 2022, 8, 453. [Google Scholar] [CrossRef]
- Wild, M.; Calderón, C. Torrefied Biomass and Where Is the Sector Currently Standing in Terms of Research, Technology Development, and Implementation. Front. Energy Res. 2021, 9, 1–6. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, X.; Zhang, H.; Ai, F.; Jiao, Y.; Zhang, Q.; Zhang, Z. Pretreatment of corn stover by torrefaction for improving reducing sugar and biohydrogen production. Bioresour. Technol. 2022, 351, 126905. [Google Scholar] [CrossRef]
- Tripathi, J.; Richard, T.L.; Memis, B.; Demirci, A.; Ciolkosz, D. Interactions of Torrefaction and Alkaline Pretreatment with Respect to Glucose Yield of Hydrolyzed Wheat Straw. Biomass 2022, 2, 264–278. [Google Scholar] [CrossRef]
- Normark, M.; Pommer, L.; Gräsvik, J.; Hedenström, M.; Gorzsás, A.; Winestrand, S.; Jönsson, L.J. Biochemical Conversion of Torrefied Norway Spruce After Pretreatment with Acid or Ionic Liquid. Bioenergy Res. 2015, 9, 355–368. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Rizzo, A.M.; Prussi, M.; Tedeschi, S.; Zimbardi, F.; Braccio, G.; Viola, E.; Pardelli, P.T. 2nd generation lignocellulosic bioethanol: Is torrefaction a possible approach to biomass pretreatment? Biomass Convers. Biorefinery 2011, 1, 9–15. [Google Scholar] [CrossRef]
- Sheikh, M.I.; Kim, C.H.; Park, H.J.; Kim, S.H.; Kim, G.C.; Lee, J.Y.; Sim, S.W.; Kim, J.W. Effect of torrefaction for the pretreatment of rice straw for ethanol production. J. Sci. Food Agric. 2013, 93, 3198–3204. [Google Scholar] [CrossRef]
- Chaluvadi, S.; Ujjwal, A.; Singh, R.K. Effect of Torrefaction Prior to Biomass Size Reduction on Ethanol Production. Waste Biomass Valorization 2018, 10, 3567–3577. [Google Scholar] [CrossRef]
- Weiss, N.D.; Felby, C.; Thygesen, L.G. Enzymatic hydrolysis is limited by biomass-water interactions at high-solids: Improved performance through substrate modifications 09 Engineering 0904 Chemical Engineering 09 Engineering 0915 Interdisciplinary Engineering. Biotechnol. Biofuels 2019, 12, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Ru, B.; Zhao, Y.; Wang, X.; Xiao, G.; Luo, Z. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy 2017, 120, 864–871. [Google Scholar] [CrossRef]
- Fan, Z. Chapter 7—Consolidated Bioprocessing for Ethanol Production. In Materials for Biofuels; Qureshi, N., Hodge, D.B., Vertès, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 141–160. [Google Scholar] [CrossRef]
- Lee, K.T.; Cheng, C.L.; Lee, D.S.; Chen, W.H.; Vo, D.V.N.; Ding, L.; Lam, S.S. Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel. Energy 2021, 239, 122467. [Google Scholar] [CrossRef]
- Lu, Q.; Dai, L.; Li, L.; Huang, H.; Zhu, W. Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control. J. Environ. Chem. Eng. 2021, 9, 105397. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.; Lu, Q.; Zhu, W.; Ma, H.; Dai, L. Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control. Bioresour. Technol. 2019, 294, 122142. [Google Scholar] [CrossRef] [PubMed]
- Kekik, B.; Yakışık, H.; Özveren, U. Investigation of light crude oil removal using biocoal from torrefaction of biomass waste. Bioresour. Technol. Rep. 2022, 19, 101139. [Google Scholar] [CrossRef]
- TORrefying wood with Ethanol as a Renewable Output: Large-Scale Demonstration. 2017. Available online: https://cordis.europa.eu/project/id/745810 (accessed on 1 February 2023).
- Konishi, H.; Ichikawa, K.; Usui, T. Effect of residual volatile matter on reduction of iron oxide in semi-charcoal composite pellets. ISIJ Int. 2010, 50, 386–389. [Google Scholar] [CrossRef]
- Ubando, A.T.; Chen, W.H.; Ong, H.C. Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions. Energy 2019, 180, 968–977. [Google Scholar] [CrossRef]
- Dufourny, A.; Van De Steene, L.; Humbert, G.; Guibal, D.; Martin, L.; Blin, J. Influence of pyrolysis conditions and the nature of the wood on the quality of charcoal as a reducing agent. J. Anal. Appl. Pyrolysis 2018, 137, 1–13. [Google Scholar] [CrossRef]
- Adrados, A.; De Marco, I.; López-Urionabarrenechea, A.; Solar, J.; Caballero, B.M.; Gastelu, N. Biomass pyrolysis solids as reducing agents: Comparison with commercial reducing agents. Materials 2015, 9, 3. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doddapaneni, T.R.K.C.; Kikas, T. Advanced Applications of Torrefied Biomass: A Perspective View. Energies 2023, 16, 1635. https://doi.org/10.3390/en16041635
Doddapaneni TRKC, Kikas T. Advanced Applications of Torrefied Biomass: A Perspective View. Energies. 2023; 16(4):1635. https://doi.org/10.3390/en16041635
Chicago/Turabian StyleDoddapaneni, Tharaka Rama Krishna C., and Timo Kikas. 2023. "Advanced Applications of Torrefied Biomass: A Perspective View" Energies 16, no. 4: 1635. https://doi.org/10.3390/en16041635
APA StyleDoddapaneni, T. R. K. C., & Kikas, T. (2023). Advanced Applications of Torrefied Biomass: A Perspective View. Energies, 16(4), 1635. https://doi.org/10.3390/en16041635