The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review
Abstract
:1. Introduction
2. Identification of Multiscale Laminae
3. Descriptive Classification of Shale Laminae
4. The Role of Laminae for Shale Oil Enrichment and High Yield
4.1. Control of Laminae on Reservoir Property
4.2. Influence of Laminae on Oil-Bearing Property
4.3. Effect of Laminae on Shale Oil Mobility
4.4. Impact of Laminae on Shale Fracability
5. Conclusions
- (1)
- Sedimentary lamination is the most important visible sedimentary structure in fine-grained shales. The scales and types of laminae are also multiple. The multiscale laminar structure ranges from macroscopic lithology changes to microcosmic mineral superimposition and can be identified from shale systems. The combination of various probe techniques provides a method for the fine evaluation of multiscale laminae.
- (2)
- The development of laminae facilitates the formation of microfractures in the shale along the laminar direction. In particular, laminated shales have been identified as generally possessing a greater TOC content and, therefore, superior hydrocarbon generation capacity. These two factors allow the laminated shale to retain and store considerable petroleum even with a higher hydrocarbon expulsion efficiency. In addition, the large pore diameter and good pore connectivity increase the proportion of movable oil. Collectively, the laminated texture controls the shale oil enrichment characteristics.
- (3)
- The laminar structure also plays an important role in controlling shale fracability. Specifically, fracability declines with increasing laminar number and continuity, but increases with the improvement of laminar thickness. Notably, the high oil content and mobility in the laminated shale allow for high production even if only simple fractures are formed during the fracturing process.
- (4)
- The laminar structure impacts scale exploration and efficient development of oil. Thus, it is important to strengthen the research on the genetic mechanism and development distribution of laminar for the prediction of shale oil sweet spots. Furthermore, the recognition methods of seismic and logging for the identification and prediction of shale laminae should receive more attention in future work.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katz, B.; Lin, F. Lacustrine basin unconventional resource plays: Key differences. Mar. Pet. Geol. 2014, 56, 255–265. [Google Scholar] [CrossRef]
- Li, H. Research progress on evaluation methods and factors influencing shale brittleness: A review. Energy Rep. 2022, 8, 4344–4358. [Google Scholar] [CrossRef]
- Li, H.; Zhou, J.; Mou, X.; Guo, H.; Wang, X.; An, H.; Mo, Q.; Long, H.; Dang, C.; Wu, J.; et al. Pore structure and fractal characteristics of the marine shale of the Longmaxi Formation in the Changning Area, Southern Sichuan Basin, China. Front. Earth Sci. 2022, 10, 1018274. [Google Scholar] [CrossRef]
- Fan, C.; Li, H.; Qin, Q.; He, S.; Zhong, C. Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi Formation of southeastern Sichuan Basin, China. J. Pet. Sci. Eng. 2020, 191, 107138. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Yang, C.; Wu, Y.; Gao, Z.; Jiang, S. Geological characteristics and controlling factors of deep shale gas enrichment of the Wufeng-Longmaxi Formation in the southern Sichuan Basin, China. Lithosphere 2022, 12, 4737801. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Lu, Y.; Shu, Z.; Lu, Y.; Wang, Z.; Wang, Y. Evaluation of the exploration prospect and risk of marine gas shale, southern China: A case study of Wufeng-Longmaxi shales in the Jiaoshiba area and Niutitang shales in the Cen’gong area. GSA Bull. 2022, 134, 1585–1602. [Google Scholar] [CrossRef]
- Zou, C.; Pan, S.; Horsfield, B.; Yang, Z.; Hao, S.; Liu, E.; Zhang, L. Oil retention and intrasource migration in the organic-rich lacustrine Chang 7 shale of the Upper Triassic Yanchang Formation, Ordos Basin, central China. AAPG Bull. 2019, 103, 2627–2663. [Google Scholar] [CrossRef]
- Jin, Z.; Zhu, R.; Liang, X.; Shen, Y. Several issues worthy of attention in current lacustrine shale oil exploration and development. Pet. Explor. Dev. 2021, 48, 1471–1484. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, G.; Liu, G.; Gao, B.; Liu, Q.; Wang, H.; Liang, X.; Wang, R. Research progress and key scientific issues of continental shale oil in China. Acta Pet. Sin. 2021, 42, 821–835, (In Chinese with English abstract). [Google Scholar]
- Wang, X.; Zhang, G.; Tang, W.; Wang, D.; Wang, K.; Liu, J.; Du, D. A review of commercial development of continental shale oil in China. Energy Geosci. 2022, 3, 282–289. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, R.; Luo, Z.; Yang, Z.; Jiang, X.; Lin, M.; Su, L. Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China. China Pet. Explor. 2022, 27, 62–72, (In Chinese with English abstract). [Google Scholar]
- Li, Y.; Zhao, Q.; Lyu, Q.; Xue, Z.; Cao, X.; Liu, Z. Evaluation technology and practice of continental shale oil development in China. Pet. Explor. Dev. 2022, 49, 1098–1109. [Google Scholar] [CrossRef]
- Zhao, W.; Zhu, R.; Liu, W.; Bian, C.; Wang, K. Enrichment conditions and occurrence features of lacustrine mid-high matured shale oil in onshore China. Earth Sci. Front. 2023, 30, 116–127, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Bohacs, K.M.; Carroll, A.R.; Neal, J.E.; Mankiewicz, P.J. Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic-geochemical framework. In Lake Basins through Space and Time; American Association of Petroleum Geologists: Tulsa, OK, USA, 2000; pp. 3–34. [Google Scholar]
- Shi, J.; Jin, Z.; Liu, Q.; Fan, T.; Gao, Z. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China. Glob. Planet. Change 2021, 205, 103614. [Google Scholar] [CrossRef]
- Liang, C.; Cao, Y.; Jiang, Z.; Wu, J.; Song, G.; Wang, Y. Shale oil potential of lacustrine black shale in the Eocene Dongying depression: Implications for geochemistry and reservoir characteristics. AAPG Bull. 2017, 101, 1835–1858. [Google Scholar] [CrossRef]
- Li, L.; Huang, B.; Li, Y.; Hu, R.; Li, X. Multi-scale modeling of shale laminas and fracture networks in the Yanchang formation, Southern Ordos Basin, China. Eng. Geol. 2018, 243, 231–240. [Google Scholar] [CrossRef]
- Wang, M.; Guan, Y.; Li, C.; Liu, Y.; Liu, W. Qualitative description and full-pore-size quantitative evaluation of pores in lacustrine shale reservoir of Shahejie Formation, Jiyang Depression. Oil Gas Geol. 2018, 39, 1107–1119. [Google Scholar]
- Zhang, L.; Chen, Z.; Li, Z.; Zhang, S.; Li, J.; Liu, Q.; Zhu, R.; Zhang, J.; Bao, Y. Structural features and genesis of microscopic pores in lacustrine shale in an oil window: A case study of the Dongying depression. AAPG Bull. 2019, 103, 1889–1924. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, X.; Pu, X.; Han, W.; Shi, Z.; Tian, J.; Zhang, B.; Xin, B.; Guo, P. Characteristics and Control Mechanism of Lacustrine Shale Oil Reservoir in the Member 2 of Kongdian Formation in Cangdong Sag, Bohai Bay Basin, China. Front. Earth Sci. 2021, 9, 783042. [Google Scholar] [CrossRef]
- Xin, B.; Zhao, X.; Hao, F.; Jin, F.; Pu, X.; Han, W.; Xu, Q.; Guo, P.; Tian, J. Laminae characteristics of lacustrine shales from the Paleogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China: Why do laminated shales have better reservoir physical properties? Int. J. Coal Geol. 2022, 260, 104056. [Google Scholar] [CrossRef]
- Shi, J.; Jin, Z.; Liu, Q.; Zhang, T.; Fan, T.; Gao, Z. Laminar characteristics of lacustrine organic-rich shales and their significance for shale reservoir formation: A case study of the Paleogene shales in the Dongying Sag, Bohai Bay Basin, China. J. Asian Earth Sci. 2022, 223, 104976. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, L.; Pu, X.; Jin, F.; Han, W.; Xiao, D.; Chen, S.; Shi, Z.; Zhang, W.; Yang, F. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China. Pet. Explor. Dev. 2018, 45, 377–388. [Google Scholar] [CrossRef]
- Li, M.; Wu, S.; Hu, S.; Zhu, R.; Meng, S.; Yang, J. Lamination Texture and Its Effects on Reservoir and Geochemical Properties of the Palaeogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China. Minerals 2021, 11, 1360. [Google Scholar] [CrossRef]
- Pang, X.J.; Wang, G.W.; Kuang, L.C.; Lai, J.; Gao, Y.; Zhao, Y.; Li, H.; Wang, S.; Bao, M.; Liu, S.; et al. Prediction of multiscale laminae structure and reservoir quality in fine-grained sedimentary rocks: The Permian Lucaogou Formation in Jimusar Sag, Junggar Basin. Pet. Sci. 2022, 19, 2549–2571. [Google Scholar] [CrossRef]
- Ingram, R.L. Terminology for the thickness of stratification and parting units in sedimentary rocks. GSA Bull. 1954, 65, 937–938. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Yang, Y.; Zhang, S. Sedimentary environment and lithofacies of fine-grained hybrid in Dongying Sag: A case of fine-grained sedimentary system of the Es4. Earth Sci. 2020, 45, 3543–3555. [Google Scholar]
- Anderson, R.Y. Seasonal sedimentation: A framework for reconstructing climatic and environmental change. Geological Society, London. Spec. Publ. 1996, 116, 1–15. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Liu, H.; Yan, J. Discussion on mixing of fine-grained sediments in lacustrine deep water. J. Palaeogeogr. 2017, 19, 271–284. [Google Scholar]
- Wang, S.; Wang, G.; Huang, L.; Song, L.; Zhang, Y.; Li, D.; Huang, Y. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China. Mar. Pet. Geol. 2021, 133, 105299. [Google Scholar] [CrossRef]
- Rickman, R.; Mullen, M.J.; Petre, J.E.; Grieser, B.; Kundert, D. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21—24 September 2008; p. SPE-115258-MS. [Google Scholar] [CrossRef]
- Aplin, A.C.; Macquaker, J.H.S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull. 2011, 95, 2031–2059. [Google Scholar] [CrossRef]
- Ji, W.; Song, Y.; Jiang, Z.; Chen, L.; Li, Z.; Yang, X.; Meng, M. Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China. Mar. Pet. Geol. 2015, 68, 94–106. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Fan, Z.; Chen, J.; Wang, S.; Fan, X. Sedimentary characterization of a braided delta using well logs: The Upper Triassic Xujiahe formation in central Sichuan basin, China. J. Pet. Sci. Eng. 2017, 154, 172–193. [Google Scholar] [CrossRef]
- Campbell, C.V. Lamina, laminaset, bed and bedset. Sedimentology 1967, 8, 7–26. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, D.; Qiu, L.; Liang, H.; Ma, J. Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China. Sedimentology 2007, 54, 265–292. [Google Scholar] [CrossRef]
- Lazar, O.R.; Bohacs, K.M.; Macquaker, J.H.S.; Schieber, J.; Demko, T.M. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines. J. Sediment. Res. 2015, 85, 230–246. [Google Scholar] [CrossRef]
- Liu, G.; Huang, Z.; Jiang, Z.; Chen, J.; Chen, C.; Gao, X. The characteristic and reservoir significance of lamina in shale from Yanchang Formation of Ordos Basin. Nat. Gas Geosci. 2015, 26, 408–411, (In Chinese with English abstract). [Google Scholar]
- Shi, Z.; Qiu, Z. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development. Acta Sedimentol. Sin. 2021, 39, 181–196, (In Chinese with English abstract). [Google Scholar]
- Liang, C.; Wu, J.; Cao, Y.; Liu, K.; Khan, D. Storage space development and hydrocarbon occurrence model controlled by lithofacies in the Eocene Jiyang Sub-basin, East China: Significance for shale oil reservoir formation. J. Pet. Sci. Eng. 2022, 2015, 110631. [Google Scholar] [CrossRef]
- Dong, C.; Ma, C.; Lin, C.; Sun, X.; Yuan, M. A method of classification of shale set. J. China Univ. Pet. 2015, 39, 1–7, (In Chinese with English abstract). [Google Scholar]
- Hua, G.L.; Wu, S.T.; Qiu, Z.; Jing, Z.; Xu, J.; Guan, M. Lamination texture and its effect on reservoir properties: A case study of Longmaxi Shale, Sichuan Basin. Acta Sedimentol. Sin. 2021, 32, 1–22. [Google Scholar]
- Xing, M.; Chen, L.; Chen, X.; Ji, Y.; Wu, P.; Hu, Y.; Wang, G.; Peng, H. Characteristics, genetic mechanism of marine shale laminae and its significance of shale gas accumulation. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 3490–3508, (In Chinese with English abstract). [Google Scholar]
- Jarvie, D.M. Shale resource systems for oil and gas: Part 2—Shale-oil resource systems. In Shale Reservoirs—Giant Resources for the 21st Century: AAPG Memoir 97; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; pp. 89–119. [Google Scholar]
- Liu, X.; Zhang, D. A review of phase behavior simulation of hydrocarbons in confined space: Implications for shale oil and shale gas. J. Nat. Gas Sci. Eng. 2019, 68, 102901. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, W.; Li, Y.; Gong, H.; Sheng, J.; Dong, M. Effect of occurrence states of fluid and pore structures on shale oil movability. Fuel 2021, 288, 119847. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, X.; Wang, E.; Sun, J.; Gao, P. Oil retention in shales: A review of the mechanism, controls and assessment. Front. Earth Sci. 2021, 9, 720839. [Google Scholar] [CrossRef]
- Chen, G.; Lu, S.; Zhang, J.; Pervukhina, M.; Liu, K.; Wang, M.; Han, T.; Tian, S.; Li, J.; Zhang, Y.; et al. A method for determining oil-bearing pore size distribution in shales: A case study from the Damintun Sag, China. J. Pet. Sci. Eng. 2018, 166, 673–678. [Google Scholar] [CrossRef]
- Zou, C.; Jin, X.; Zhu, R.; Gong, G.; Sun, L.; Dai, J.; Meng, D.; Wang, X.; Li, J.; Wu, S.; et al. Do shale pore throats have a threshold diameter for oil storage? Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Wu, S.T.; Zou, C.N.; Zhu, R.K.; Yuan, X.; Yao, J.; Yang, Z.; Liang, S.; Bai, B. Reservoir quality characterization of upper triassic Chang 7 shale in Ordos basin. Earth Sci. 2015, 40, 1810–1823. [Google Scholar]
- Johnson, R.C.; Birdwell, J.E.; Mercier, T.J.; Brownfield, M.E. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming. US Geol. Surv. 2016. [Google Scholar] [CrossRef]
- Schimmelmann, A.; Lange, C.B.; Schieber, J.; Francus, P.; Ojala, A.E.K.; Zolitschka, B. Varves in marine sediments: A review. Earth-Sci. Rev. 2016, 159, 215–246. [Google Scholar] [CrossRef]
- Wang, M.; Ma, R.; Li, J.; Lu, S.; Li, C.; Guo, Z.; Li, Z. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2019, 46, 833–846. [Google Scholar] [CrossRef]
- Ma, C.; Elsworth, D.; Dong, C.; Lin, C.; Luan, G.; Chen, B.; Liu, X.; Muhammad, J.M.; Muhammad, A.Z.; Shen, Z.; et al. Controls of hydrocarbon generation on the development of expulsion fractures in organic-rich shale: Based on the Paleogene Shahejie Formation in the Jiyang Depression, Bohai Bay Basin, East China. Mar. Pet. Geol. 2017, 86, 1406–1416. [Google Scholar] [CrossRef]
- Li, H.; Tang, H.; Qin, Q.; Zhou, J.; Qin, Z.; Fan, C.; Su, P.; Wang, Q.; Zhong, C. Characteristics, formation periods and genetic mechanisms of tectonic fractures in the tight gas sandstones reservoir: A case study of Xujiahe Formation in YB area, Sichuan Basin, China. J. Pet. Sci. Eng. 2019, 178, 723–735. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, G.; Cao, Y.; Liang, C.; Li, M.; Shi, X.; Zhang, B.; Li, J.; Fu, Y. Controlling effect of texture on fracability in lacustrine fine-grained sedimentary rocks. Mar. Pet. Geol. 2019, 101, 195–210. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Song, G.; Liu, H.; Zhu, D.; Zhu, D.; Ding, J.; Yang, W.; Yin, Y.; Zhang, S.; et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin. Pet. Explor. Dev. 2016, 43, 759–768. [Google Scholar] [CrossRef]
- Ning, F.; Wang, X.; Hao, X.; Yang, W.; Yin, Y.; Ding, J.; Zhu, D.; Zhu, D.; Zhu, J. Occurrence mechanism of shale oil with different lithofacies in Jiyang Depression. Acta Pet. Sin. 2017, 38, 185–195. [Google Scholar]
- Sun, H.Q. Exploration practice and cognitions of shale oil in Jiyang depression. China Pet. Explor. 2017, 22, 1–14. [Google Scholar]
- Bao, Y.S. Effective reservoir spaces of Paleogene shale oil in the Dongying Depression, Bohai Bay Basin. Pet. Geol. Expepiment 2018, 40, 480–484, (In Chinese with English abstract). [Google Scholar]
- Zhang, L.; Bao, Y.S. Xi, C. Pore Structure Characteristics and Pore Connectivity of Paleogene Shales in Dongying Depression. Xinjiang Pet. Geol. 2018, 39, 134–139, (In Chinese with English abstract). [Google Scholar]
- Hu, Q.; Zhang, X.; Meng, X.; Li, Z.; Xie, Z.; Li, M. Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China. Pet. Explor. Dev. 2017, 44, 720–730. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, H.; Li, M.; Li, Z.; Yang, R.; Zhang, Y.; Sun, M. Wettability, pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying sag of Bohai Bay Basin, East China. Acta Pet. Sin. 2018, 39, 278–289. [Google Scholar]
- Teng, J.; Liu, H.; Qiu, L.; Zhang, S.; Hao, Y.; Tian, F.; Zhu, L.; Fang, Z. Control law of material components of shale oil reservoir on oil-bearing characteristics in Jiyang Depression. Editor. Dep. Pet. Geol. Recovery Effic. 2019, 26, 80–87, (In Chinese with English abstract). [Google Scholar]
- Song, M.S. Practice and current status of shale oil exploration in Jiyang Depression. Editorial Dep. Pet. Geol. Recovery Effic. 2019, 26, 1–12, (In Chinese with English abstract). [Google Scholar]
- Li, T.; Jiang, Z.; Su, P.; Zhang, X.; Chen, W.; Wang, X.; Ning, C.; Wang, Z.; Xue, Z. Effect of laminae development on pore structure in the lower third member of the Shahejie Shale, Zhanhua Sag, Eastern China. Interpretation 2020, 8, T103–T114. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Wang, Y.; Tan, M. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks Dongying Sag, Bohai Bay Basin, China. Pet. Explor. Dev. 2016, 43, 218–229. [Google Scholar] [CrossRef]
- Liu, H.M.; Zhang, S.; Bao, S.Y.; Fang, Z.; Yao, S.; Wang, Y. Geological characteristics and effectiveness of the shale oil reservoir in Dongying sag. Oil Gas Geol. 2019, 40, 512–523. [Google Scholar]
- Song, M.; Liu, H.; Wang, Y.; Liu, Y. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2020, 47, 225–235. [Google Scholar] [CrossRef]
- Hu, S.; Zhao, W.; Hou, L.; Yan, Z.; Zhu, R.; Wu, S.; Bai, B.; Jin, X. Development potential and technical strategy of continental shale oil in China. Pet. Explor. Dev. 2020, 47, 877–887. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, T.; Gong, H.; Jiang, T.; Chang, J.; Ning, C.; Su, S.; Chen, W. Characteristics of low-mature shale reservoirs in Zhanhua Sag and their influence on the mobility of shale oil. Acta Pet. Sin. 2020, 41, 1587–1600. [Google Scholar]
- Zhang, S. Shale oil enrichment elements and geological dessert types in Jiyang Depression. Sci. Technol. Eng. 2021, 21, 504–511, (In Chinese with English abstract). [Google Scholar]
- Gou, Q.; Xu, S.; Hao, F.; Yang, F.; Zhang, B.; Shu, Z.; Zhang, A.; Wang, Y.; Cheng, X.; Qing, J.; et al. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: A case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China. Fuel 2019, 253, 167–179. [Google Scholar] [CrossRef]
- Gou, Q.; Xu, S.; Hao, F.; Yang, F.; Shu, Z.; Liu, R. The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation. Energy 2021, 219, 119579. [Google Scholar] [CrossRef]
- Guan, M.; Liu, X.; Jin, Z.; Lai, J.; Liu, J.; Sun, B.; Liu, T.; Hua, Z.; Xu, W.; Shu, H.; et al. Quantitative characterization of various oil contents and spatial distribution in lacustrine shales: Insight from petroleum compositional characteristics derived from programed pyrolysis. Mar. Pet. Geol. 2022, 138, 105522. [Google Scholar] [CrossRef]
- Liu, X.; Lai, J.; Fan, X.; Shu, H.; Wang, G.; Ma, X.; Liu, M.; Guan, M.; Luo, Y. Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin, China. Mar. Pet. Geol. 2020, 114, 104228. [Google Scholar] [CrossRef]
- Xu, Y.; Lun, Z.M.; Pan, Z.J.; Wang, H.; Zhou, X.; Zhao, C.; Zhang, D. Occurrence space and state of shale oil: A review. J. Pet. Sci. Eng. 2022, 211, 110183. [Google Scholar] [CrossRef]
- Li, Z.; Qian, M.; Li, M.; Jiang, Q.; Liu, P.; Rui, X.; Cao, T.; Pan, Y. Oil content and occurrence in low-medium mature organic-rich lacustrine shales: A case from the 1st member of the Eocene-Oligocene Shahejie Formation in Well Luo-63 and Yi-21, Bonan Subsag, Bohai Bay Basin. Oil Gas Geol. 2017, 38, 448–456. [Google Scholar]
- Zeng, X.; Cai, J.; Dong, Z.; Wang, X.; Hao, Y. Sedimentary characteristics and hydrocarbon generation potential of mudstone and shale: A case study of Middle Submember of Member 3 and Upper Submember of Member 4 in Shahejie Formation in Dongying sag. Acta Pet. Sin 2017, 38, 31–43. [Google Scholar]
- Nikolaev, M.Y.; Kazak, A.V. Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review. Earth Sci. Rev. 2019, 194, 327–349. [Google Scholar] [CrossRef]
- Zhao, X.; Pu, X.; Zhou, L.; Jin, F.; Han, G.; Shi, Z.; Han, W.; Ding, Y.; Zhang, W.; Wang, G.; et al. Enrichment theory, exploration technology and prospects of shale oil in lacustrine facies zone of deep basin: A case study of the Paleogene in Huanghua Depression, Bohai Bay Basin. Acta Pet. Sin. 2021, 42, 143–162. [Google Scholar]
- Du, J.; Hu, S.; Pang, Z.; Lin, S.; Hou, L.; Zhu, R. The types, potentials and prospects of continental shale oil in China. China Pet. Explor. 2019, 24, 560–568. [Google Scholar]
- Zhou, L.; Zhao, X.; Chai, G.; Jiang, W.; Pu, X.; Wang, X.; Han, W.; Guan, Q.; Feng, J.; Liu, X. Key exploration & development technologies and engineering practice of continental shale oil: A case study of Member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China. Pet. Explor. Dev. 2020, 47, 1138–1146. [Google Scholar]
- Zhao, W.; Zhu, R.; Hu, S.; Hou, L.; Wu, S. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation. Pet. Explor. Dev. 2020, 47, 1160–1171. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, K.; Liu, D.; Xiong, Y. Laminar algal distribution characteristics of lower Cretaceous and the relation to oil-gas of Jiuquan Basin. Acta Sedimentol. Sin. 2007, 25, 147–153, (In Chinese with English abstract). [Google Scholar]
- Zhang, S.C.; Zhang, L.Y.; Zha, M. Research on simulation of hydrocarbon expulsion difference in lacustrine source rocks: A case study of Paleogene Es3 member in the Dongying Depression. Pet. Geol. Recovery Effic. 2009, 16, 32–35, (In Chinese with English abstract). [Google Scholar]
- Jin, Q.; Zhang, H.J.; Cheng, F.Q.; Xu, J. Stimulations on generation, expulsion and retention of liquid hydrocarbons in source rocks deposited in lacustrine basin and their significance in petroleum geology. J. China Univ. Pet. (Ed. Nat. Sci.) 2019, 43, 44–52, (In Chinese with English abstract). [Google Scholar]
- Xi, K.; Li, K.; Cao, Y.; Lin, M.; Niu, X.; Zhu, R.; Wei, X.; You, Y.; Liang, X.; Feng, S. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2020, 47, 1342–1353. [Google Scholar] [CrossRef]
- Han, W.; Zhao, X.; Jin, F.; Pu, X.; Chen, S.; Mou, L.; Zhang, W.; Shi, Z.; Wang, H. Sweet spots evaluation and exploration of lacustrine shale oil of the 2nd member of Paleogene Kongdian Formation in Cangdong sag, Dagang Oilfield, China. Pet. Explor. Dev. 2021, 48, 1–10. [Google Scholar] [CrossRef]
- Li, M.; Chen, Z.; Ma, X.; Cao, T.; Qian, M.; Jiang, Q.; Tao, G.; Li, Z.; Song, G. Shale oil resource potential and oil mobility characteristics of the eocene-oligocene Shahejie Formation, Jiyang super-depression, Bohai Bay Basin of China. Int. J. Coal Geol. 2019, 204, 130–143. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Lin, Z.; Duan, H.; Chang, X.; Qiu, Y.; Fu, Q.; Zhi, Q.; Wang, J.; Huang, H. Key Oil Content Parameter Correction of Shale Oil Resources: A Case Study of the Paleogene Funing Formation, Subei Basin, China. Energy Fuels 2022, 36, 5316–5326. [Google Scholar] [CrossRef]
- Wang, E.; Li, C.; Feng, Y.; Song, Y.; Guo, T.; Li, M.; Chen, Z. Novel method for determining the oil moveable threshold and an innovative model for evaluating the oil content in shales. Energy 2022, 239, 121848. [Google Scholar] [CrossRef]
- Teklu, T.W.; Alharthy, N.; Kazemi, H.; Yin, X.; Graves, R.M. Phase behavior and minimum miscibility pressure in nanopores. SPE Reserv. Eval. Eng. 2014, 17, 396–403. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, S.; Wang, Q.; Zheng, X.; Ding, X.; Zhao, Y.; Zhu, C.; Li, H. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: A case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China. Fuel 2018, 221, 196–205. [Google Scholar] [CrossRef]
- Sobecki, N.; Nieto-Draghi, C.; Di Lella, A.; Ding, D.Y. Phase behavior of hydrocarbons in nano-pores. Fluid Phase Equilibria 2019, 497, 104–121. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, J.; Liu, Q.; Li, Z.; Zhang, X. Thresholds of petroleum content and pore diameter for petroleum mobility in shale. AAPG Bull. 2019, 103, 605–617. [Google Scholar] [CrossRef]
- Liang, C.; Cao, Y.; Liu, K.; Jiang, Z.; Wu, J.; Hao, F. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation. Geochim. Cosmochim. Acta 2018, 229, 112–128. [Google Scholar] [CrossRef]
- Ribeiro, R.C.; Correia, J.C.G.; Seidl, P.R. The influence of different minerals on the mechanical resistance of asphalt mixtures. J. Pet. Sci. Eng. 2009, 65, 171–174. [Google Scholar] [CrossRef]
- Mohammadi, M.; Sedighi, M. Modification of Langmuir isotherm for the adsorption of asphaltene or resin onto calcite mineral surface: Comparison of linear and non-linear methods. Prot. Met. Phys. Chem. Surf. 2013, 49, 460–470. [Google Scholar] [CrossRef]
- Tian, S.; Erastova, V.; Lu, S.; Greenwell, H.C.; Underwood, T.R.; Xue, H.; Zeng, F.; Chen, G.; Wu, C.; Zhao, R. Understanding model crude oil component interactions on kaolinite silicate and aluminol surfaces: Toward improved understanding of shale oil recovery. Energy Fuels 2018, 32, 1155–1165. [Google Scholar] [CrossRef]
- Jarvie, D.M. Components and processes affecting producibility and commerciality of shale resource systems. Geol. Acta 2014, 12, 307–325. [Google Scholar]
- Fan, B.; Shi, L. Deep-lacustrine shale heterogeneity and its impact on hydrocarbon generation, expulsion, and retention: A case study from the upper triassic Yanchang Formation, Ordos Basin, China. Nat. Resour. Res. 2019, 28, 241–257. [Google Scholar] [CrossRef]
- Dillinger, A.; Esteban, L. Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field nuclear magnetic resonance. Mar. Pet. Geol. 2014, 57, 455–469. [Google Scholar] [CrossRef]
- Ning, C.; Ma, Z.; Jiang, Z.; Su, S.; Li, T.; Zheng, L.; Wang, G.; Li, F. Effect of shale reservoir characteristics on shale oil movability in the lower third member of the Shahejie Formation, Zhanhua Sag. Acta Geol. Sin. Engl. Ed. 2020, 94, 352–363. [Google Scholar] [CrossRef]
- Sun, C.; Yao, S.; Li, J.; Liu, B.; Liu, H.; Xie, Z. Characteristics of pore structure and effectiveness of shale oil reservoir space in Dongying Sag, Jiyang Depression, Bohai Bay Basin. J. Nanosci. Nanotechnol. 2017, 17, 6781–6790. [Google Scholar] [CrossRef]
- Pan, Y.; Huang, Z.; Guo, X.; Liu, B.; Wang, G.; Xu, X. Study on the pore structure, fluid mobility, and oiliness of the lacustrine organic-rich shale affected by volcanic ash from the Permian Lucaogou Formation in the Santanghu Basin, Northwest China. J. Pet. Sci. Eng. 2022, 208, 109351. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Javadpour, F.; Xia, T.; Li, Z. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. Int. J. Coal Geol. 2015, 147, 9–24. [Google Scholar] [CrossRef]
- Cui, J.; Cheng, L. A theoretical study of the occurrence state of shale oil based on the pore sizes of mixed Gaussian distribution. Fuel 2017, 206, 564–571. [Google Scholar] [CrossRef]
- Tan, P.; Jin, Y.; Han, K.; Hou, B.; Chen, M.; Guo, X.; Gao, J. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation. Fuel 2017, 206, 482–493. [Google Scholar] [CrossRef]
- Ma, C.; Dong, C.; Lin, C.; Elsworth, D.; Luan, G.; Sun, X.; Liu, X. Influencing factors and fracability of lacustrine shale oil reservoirs. Mar. Pet. Geol. 2019, 110, 463–471. [Google Scholar] [CrossRef]
- Sheng, Q.; Li, W. Evaluation method of shale fracability and its application in Jiaoshiba area. Prog. Geophys. 2016, 31, 1473–1479. [Google Scholar]
- Osiptsov, A.A. Fluid mechanics of hydraulic fracturing: A review. J. Pet. Sci. Eng. 2017, 156, 513–535. [Google Scholar] [CrossRef]
- Chong, K.K.; Grieser, W.V.; Passman, A.; Tamayo, C.H.; Modeland, N.; Burke, B. A completions guide book to shale-play development: A review of successful approaches towards shale-play stimulation in the last two decades. In Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, Calgary, AB, Canada, 19–21 October 2010; pp. SPE-133874-MS. [Google Scholar] [CrossRef]
- Xiong, Z.; Cao, Y.; Wang, G.; Liang, C.; Shi, X.; Li, M.; Fu, Y.; Zhao, S. Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks. Acta Pet. Sin. 2019, 40, 74–85. [Google Scholar]
- Zhao, W.; Hou, G.; Zhang, J.; Feng, S.; Ju, W.; You, Y.; Yu, X.; Zhan, Y. Study on the development law of structural fractures of Yanchang Formation in Longdong Area, Ordos Basin. Acta Sci. Nat. Univ. Pekin. 2015, 51, 1047–1058, (In Chinese with English abstract). [Google Scholar]
- Heng, S.; Yang, C.; Guo, Y.; Wang, C.; Wang, L. Influence of bedding planes on hydraulic fracture propagation in shale formation. J. Rock Mech. Eng. 2015, 34, 228–237, (In Chinese with English abstract). [Google Scholar]
- Gao, H.; Zhang, X.; He, M.; Xu, C.; Dou, L.; Zhu, G.; Li, Y. Study on evaluation of shale oil reservoir fracability based on well logging data volume. Prog. Geophys. 2018, 33, 603–612, (In Chinese with English abstract). [Google Scholar]
- Wang, G.; Xiong, Z.; Zhang, J. The impact of lithology differences to shale fracturing. J. Jilin Univ. 2016, 46, 1080–1089, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.; Hou, B.; Wang, D.; Jia, Z. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs. Pet. Explor. Dev. 2021, 48, 469–479. [Google Scholar] [CrossRef]
- Xu, D.; Hu, R.; Gao, W.; Xia, J. Effects of laminated structure on hydraulic fracture propagation in shale. Pet. Explor. Dev. 2015, 42, 573–579. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, L.; Pu, X.; Jin, F.; Han, W.; Shi, Z.; Chen, C.; Jiang, W.; Guan, Q.; Xu, J.; et al. Theories, technologies and practices of lacustrine shale oil exploration and development: A case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin, China. Pet. Explor. Dev. 2022, 49, 707–718. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Gou, Q. The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review. Energies 2023, 16, 1661. https://doi.org/10.3390/en16041661
Xu S, Gou Q. The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review. Energies. 2023; 16(4):1661. https://doi.org/10.3390/en16041661
Chicago/Turabian StyleXu, Shang, and Qiyang Gou. 2023. "The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review" Energies 16, no. 4: 1661. https://doi.org/10.3390/en16041661
APA StyleXu, S., & Gou, Q. (2023). The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review. Energies, 16(4), 1661. https://doi.org/10.3390/en16041661