Study on Artificial Neural Network for Predicting Gas-Liquid Two-Phase Pressure Drop in Pipeline-Riser System
Abstract
:1. Introduction
2. ANN Model
2.1. Fundamentals of ANN
2.2. ANN Architecture
2.3. Training
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pedersen, S.; Durdevic, P.; Yang, Z. Challenges in slug modeling and control for offshore oil and gas productions: A review study. Int. J. Multiph. Flow 2017, 88, 270–284. [Google Scholar] [CrossRef]
- Li, W.; Guo, L.; Xie, X. Effects of a long pipeline on severe slugging in an S-shaped riser. Chem. Eng. Sci. 2017, 171, 379–390. [Google Scholar] [CrossRef]
- Amundsen, L. An experimental Study of Oil–Water Flow in Horizontal and Inclined Pipes. Ph.D. Thesis, The Norwegian University of Sciences and Technology, Trondheim, Norway, 2011. [Google Scholar]
- Shao, N.; Gavriilidis, A.; Angeli, P. Flow regimes for adiabatic gas–liquid flow in microchannels. Chem. Eng. Sci. 2009, 64, 2749–2761. [Google Scholar]
- Yaqub, M.W.; Marappagounder, R.; Rusli, R.; Prasad, D.M.; Pendyala, R. Review on gas-liquid-liquid three-phase flow patterns, pressure drop, and liquid holdup in pipelines. Chem. Eng. Res. Des. 2020, 159, 505–528. [Google Scholar]
- Wang, B.; Hu, J.G.; Chen, W.X.; Cheng, Z.Z.; Gao, F. Flow pattern and resistance characteristics of gas-liquid two-phase flow with foam under low gas-liquid flow rate. Energies 2021, 14, 3722. [Google Scholar]
- Kumar, A.; Das, G.; Ray, S. Void fraction and pressure drop in gas-liquid downflow through narrow vertical conduits-experiments and analysis. Chem. Eng. Sci. 2017, 171, 117–130. [Google Scholar]
- Brandt, A.; Czernek, K.; Placzek, M.; Witczak, S. Downward annular flow of air-oil-water mixture in a vertical pipe. Energies 2021, 14, 30. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, P.K. Characterisation and classification of gas-liquid two-phase flow using conductivity probe and multiple optical sensors. Int. J. Multiph. Flow 2020, 124, 103193. [Google Scholar]
- Zhang, Z.; Bieberle, M.; Barthel, F.; Szalinski, L.; Hampel, U. Investigation of upward cocurrent gas-liquid pipe flow using ultrafast x-ray tomography and wire-mesh sensor. Flow Meas. Instrum. 2013, 32, 111–118. [Google Scholar]
- Szalinski, L.; Abdulkareem, L.A.; Da Silva, M.J.; Thiele, S.; Beyer, M.; Lucas, D.; Perez, V.; Hampel, U.; Azzopardi, B.J. Comparative study of gas–oil and gas–water two-phase flow in a vertical pipe. Chem. Eng. Sci. 2010, 65, 3836–3848. [Google Scholar]
- Schmidt, Z.; Doty, D.R.; Dutta-Roy, K. Severe slugging in offshore pipeline riser-pipe systems. SPE J. 1985, 25, 27–38. [Google Scholar]
- Taitel, Y.; Vierkandt, S.; Shoham, O.; Brill, J.P. Severe slugging in a riser system: Experiments and modeling. Int. J. Multiph. Flow 2017, 16, 57–68. [Google Scholar] [CrossRef]
- Malekzadeh, R.; Henkes, R.; Mudde, R.F. Severe slugging in a long pipeline-riser system: Experiments and predictions. Int. J. Multiph. Flow 2012, 46, 9–21. [Google Scholar] [CrossRef]
- Tin, V. Severe slugging in flexible riser. In Proceedings of the 5th International Conference on Multiphase Production, Cannes, France, 1–3 June 1991. [Google Scholar]
- Montgomery, J.A. Severe Slugging and Unstable Flows in an S-Shaped Riser. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2002. [Google Scholar]
- Li, N.L.; Guo, L.J.; Li, W.S. Gas–liquid two-phase flow regimes in a pipeline–riser system with an S-shaped riser. Int. J. Multiph. Flow 2013, 55, 1–10. [Google Scholar]
- Blaney, S.; Yeung, H. Investigation of the exploitation of a fast-sampling single gamma densitometer and regime recognition to resolve the superficial phase velocities and liquid phase water cut of vertically upward multiphase flows. Flow Meas. Instrum. 2008, 19, 57–66. [Google Scholar] [CrossRef]
- Ye, J.; Guo, L.J. Multiphase flow regime recognition in pipeline–riser system by statistical feature clustering of pressure fluctuations. Chem. Eng. Sci. 2013, 102, 486–501. [Google Scholar] [CrossRef]
- Zou, S.F.; Guo, L.J.; Xie, C. Fast recognition of global flow regime in pipeline-riser system by spatial correlation of differential pressures. Int. J. Multiph. Flow 2017, 88, 222–237. [Google Scholar] [CrossRef]
- Xu, Q.; Li, W.S.; Liu, W.Z.; Zhang, X.M.; Yang, C.Y.; Guo, L.J. Intelligent recognition of severe slugging in a long-distance pipeline-riser system. Exp. Therm. Fluid Sci. 2020, 131, 110022. [Google Scholar]
- Lockhart, R.W.; Martinelli, R.C. Proposed correlation of data for isothermal two phase, two component flow in pipes. Chem. Eng. Prog. 1949, 45, 39–48. [Google Scholar]
- Chisholm, D. Pressure gradients due to the friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int. J. Heat Mass Transf. 1973, 16, 347–358. [Google Scholar]
- Kim, W.S.; Lee, J.B.; Kim, K.H. Development of empirical correlation of two-phase pressure drop in moisture separator based on separated flow model. Energies 2021, 14, 4448. [Google Scholar]
- Hoang, H.N.; Agustiarini, N.; Oh, J.T. Experimental investigation of two-phase flow boiling heat transfer coefficient and pressure drop of R448A inside multiport mini-channel tube. Energies 2022, 15, 4331. [Google Scholar] [CrossRef]
- Mishima, K.; Hibiki, T. Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiph. Flow 1996, 22, 703–712. [Google Scholar]
- Yao, C.; Li, H.; Xue, Y.; Liu, X.; Hao, C. Investigation on the frictional pressure drop of gas liquid two-phase flows in vertical downward tubes. Int. Commun. Heat Mass Transf. 2018, 91, 138–149. [Google Scholar]
- McAdams, W.H.; Wood, W.K.; Bryan, R.L. Vaporization inside horizontal tubes. II benzene-oil mixture. Trans. ASME 1942, 66, 671–684. [Google Scholar]
- Akers, W.W.; Deans, A.; Crosssee, O.K. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. 1959, 55, 171–176. [Google Scholar]
- Dukler, A.E.; Wicks, W.; Cleveland, R.G. Friction pressure drop in two-phase flow. AICHE J. 1964, 10, 38–43. [Google Scholar] [CrossRef]
- Beattie, D.H.; Whalley, P.B. A simple two-phase frictional pressure drop calculation method. Int. J. Multiph. Flow 1982, 8, 83–87. [Google Scholar] [CrossRef]
- Lin, S.; Kwork, C.K.; Li, R.; Chen, Z.; Chen, Z. Local frictional pressure drop during vaporization of R12 through capillary tubes. Int. J. Multiph. Flow 1991, 17, 95–102. [Google Scholar]
- Shannak, B.A. Frictional pressure drop of gas liquid two-phase flow in pipes. Nucl. Eng. Des. 2008, 238, 3277–3284. [Google Scholar]
- Spedding, P.L.; Benard, E. Gas-liquid two phase flow through a vertical 90 elbow bend. Exp. Therm. Fluid Sci. 2007, 31, 761–769. [Google Scholar]
- Liu, Y.; Miwa, S.; Hibiki, T.; Ishii, M.; Morita, H.; Kondoh, Y.; Tanimoto, K. Experimental study of internal two-phase flow induced fluctuating force on a 90 elbow. Chem. Eng. Sci. 2012, 76, 173–187. [Google Scholar] [CrossRef]
- Kim, S.; Kojasoy, G.; Guo, T. Two-phase minor loss in horizontal bubbly flow with elbows: 45 and 90 elbows. Nucl. Eng. Des. 2010, 240, 284–289. [Google Scholar]
- Dang, Z.R.; Yang, Z.J.; Yang, X.H.; Ishii, M. Experimental study on void fraction, pressure drop and flow regime analysis in a large ID piping system. Int. J. Multiph. Flow 2019, 111, 31–41. [Google Scholar]
- Khosravi, A.; Pabon, J.; Koury, R.; Machado, L. Using machine learning algorithms to predict the pressure drop during evaporation of R407C. Appl. Therm. Eng. 2018, 133, 361–370. [Google Scholar]
- Du, X.P.; Chen, Z.J.; Meng, Q.; Song, Y. Experimental analysis and ANN prediction on performances of finned oval-tube heat exchanger under different air inlet angles with limited experimental data. Open Phys. 2020, 18, 968–980. [Google Scholar]
- Soibam, J.; Rabhi, A.; Aslanidou, I.; Kyprianidis, K.; Fdhila, R.B. Derivation and uncertainty quantification of a data-driven subcooled boiling model. Energies 2021, 13, 5987. [Google Scholar]
- Khalaj, G.; Pouraliakbar, H.; Arab, N.; Nazerfakhari, M. Correlation of passivation current density and potential by using chemical composition and corrosion cell characteristics in HSLA steels. Measurement 2015, 75, 5–11. [Google Scholar]
- Khalaj, G.; Pouraliakbar, H.; Mamaghani, K.R.; Khalaj, M.J. Modeling the correlation between heat treatment, chemical composition and bainite fraction of pipeline steels by means of artifcial neural networks. Neural Netw. World 2013, 4, 351–368. [Google Scholar]
- Khalaj, G.; Nazari, A.; Pouraliakbar, H. Prediction of martensite fraction of microalloyed steel by artificial neural networks. Neural Netw. World 2013, 2, 117–130. [Google Scholar] [CrossRef]
- Khalaj, G.; Azimzadegan, T.; Khoeini, M.; Etaat, M. Artificial neural networks application to predict the ultimate tensile strength of X70 pipeline steels. Neural Comput. Appl. 2013, 23, 2301–2308. [Google Scholar] [CrossRef]
- Shirazi, A.S.; Frigaard, I. SlurryNet: Predicting critical velocities and frictional pressure drops in oilfield suspension flows. Energies 2021, 14, 1263. [Google Scholar] [CrossRef]
- Sajjad, U.; Hussain, I.; Hamid, K.; Ali, H.M.; Wang, C.; Yan, W. Liquid-to-vapor phase change heat transfer evaluation and parameter sensitivity analysis of nanoporous surface coatings. Int. J. Heat Mass Transf. 2022, 194, 123088. [Google Scholar]
- Sajjad, U.; Hussain, I.; Raza, W.; Sultan, M.; Alarifi, I.M.; Wang, C. On the Critical Heat Flux Assessment of Micro- and Nanoscale Roughened Surfaces. Nanomaterials 2022, 12, 3256. [Google Scholar] [CrossRef]
- Luo, X.; He, L.; Ma, H. Flow pattern and pressure fluctuation of severe slugging in pipeline-riser system. Chin. J. Chem. Eng. 2011, 19, 26–32. [Google Scholar]
- Zhou, H.; Guo, L.; Yan, H.; Kuang, S. Investigation and prediction of severe slugging frequency in pipeline-riser systems. Chem. Eng. Sci. 2018, 184, 72–84. [Google Scholar] [CrossRef]
Literature | D (mm) | β (°) | Working Fluids | Riser Hight (m) | Riser Type | USG (m/s) | USL (m/s) | Data Point |
---|---|---|---|---|---|---|---|---|
Li et al. [2] | 46 | −7 | Air, water | 11.2 | S-shaped | 0.06–9.9 | 0.02–1.0 | 158 |
Luo et al. [48] | 51 | −1, −2, −4 | Air, water | 4.1 | Vertical | 0.02–1.0 | 0.02–1.0 | 225 |
Zhou et al. [49] | 46 | −5 | Air, water | 16.3 | Vertical | 0.19–2.5 | 0.03–1.8 | 32 |
Literature | β (°) | Min (Pa) | Max (Pa) | Mean (Pa) | STD (Pa) |
---|---|---|---|---|---|
Li et al. [2] | −7 | 219.5 | 6347.3 | 2659.4 | 1615.2 |
Luo et al. [48] | −1 | 243.9 | 6829.3 | 3521.9 | 2028.3 |
−2 | 245.1 | 7073.2 | 3480.8 | 2013.7 | |
−4 | 487.1 | 11,703.3 | 4452.9 | 2490.3 | |
Zhou et al. [49] | −5 | 4192.6 | 9045.5 | 7279.1 | 1452.5 |
Datasets | R2 | MSE | AAPE (%) | Data Point |
---|---|---|---|---|
Training | 0.996 | 0.00022 | 2.81 | 270 |
Validation | 0.991 | 0.00039 | 4.08 | 62 |
Testing | 0.994 | 0.00031 | 3.87 | 83 |
All | 0.995 | 0.00026 | 3.35 | 415 |
Flow Pattern | USG (m/s) | USL (m/s) | AAPE (%) | Data Points |
---|---|---|---|---|
Severe slugging | 0.02–1.0 | 0.02–1.0 | 3.41 | 290 |
Transitional flow | 0.368–2.46 | 0.042–0.855 | 2.32 | 20 |
Oscillation flow | 0.401 | 0.794 | 0.91 | 31 |
Bubbly flow | 0.062–0.299 | 0.799–2.1 | 4.77 | 9 |
Slug flow | 0.23–1.67 | 0.79–2.1 | 3.86 | 13 |
Churn flow | 1.3–10 | 0.12–2.1 | 5.56 | 43 |
Annular flow | 6.99–10 | 0.21–0.16 | 7.22 | 9 |
Total | 0.02–10 | 0.022.1 | 3.35 | 415 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, N.; Lei, X.; Liu, R.; Fang, Q.; Chen, B. Study on Artificial Neural Network for Predicting Gas-Liquid Two-Phase Pressure Drop in Pipeline-Riser System. Energies 2023, 16, 1686. https://doi.org/10.3390/en16041686
Li X, Li N, Lei X, Liu R, Fang Q, Chen B. Study on Artificial Neural Network for Predicting Gas-Liquid Two-Phase Pressure Drop in Pipeline-Riser System. Energies. 2023; 16(4):1686. https://doi.org/10.3390/en16041686
Chicago/Turabian StyleLi, Xinping, Nailiang Li, Xiang Lei, Ruotong Liu, Qiwei Fang, and Bin Chen. 2023. "Study on Artificial Neural Network for Predicting Gas-Liquid Two-Phase Pressure Drop in Pipeline-Riser System" Energies 16, no. 4: 1686. https://doi.org/10.3390/en16041686
APA StyleLi, X., Li, N., Lei, X., Liu, R., Fang, Q., & Chen, B. (2023). Study on Artificial Neural Network for Predicting Gas-Liquid Two-Phase Pressure Drop in Pipeline-Riser System. Energies, 16(4), 1686. https://doi.org/10.3390/en16041686