Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers
Abstract
:1. Introduction
2. Materials and Methods
Parameter | Moving Grate Burner | Experimental Burner |
---|---|---|
Feeding system | horizontally with stoker | over-fed (gravity) |
Ash removing system | moving grate (deashing possible during working stage) | movable drawer (deashing possible extinguishing mode) |
Firing-up | Electric heater | Electric heater |
Air supply system | blower fan with speed modulation (the air stream is divided for primary and secondary stream) | blower fan with speed modulation (the air stream is divided for primary and secondary stream) |
Fire check-up system | photodiode | photodiode |
- Ignition—At this stage, the fan first removed the ash from the grate after annealing of the char from the previous operating cycle. The initial dose of pellets was then fed onto the grate, and the electric igniter and fan were started. During this stage, the pellets heated up on the grate to the ignition temperature. The igniter operated until a flame appeared and was detected by a photocell installed in the burner. When the flame appeared, the boiler switched to heating mode.
- Operation—During fuel combustion on the grate, the fan operated continuously, and the fuel was cyclically fed in small doses. At this stage, the fan, screw conveyors (in both cases, the screw conveyor installed in the hopper is in operation, and the reference burner had an additional feeder, i.e., a stoker) and ash removal system were all in operation. For the reference burner, the ash removal system operated cyclically during burner operation at intervals of several minutes. For the test burner, the ash removal system operated at longer intervals (before the ash is removed from the grate, the fuel residue must burn out). With the controller used, both burners could operate at three power levels. For each of these levels, the burner manufacturer has implemented appropriate settings for the fuel feeding time, fan output and grate ash removal frequency.
- Shutting down—At this stage, the fan was in operation to provide air for full combustion of the pellets on the grate. For the reference burner, the moving grate system was also activated to transfer ash to the ash pan. For the experimental burner, the grate drawer was opened only after the pellets were fully burned out.
- A heating loop for the stabilization of temperature in the boiler and measures water flow, inlet and outlet temperature and pressure. The was installed for the electromagnetic flow meter, and for the inlet and outlet temperature, the measurements were user temperature transducers with PT100 sensors;
- A flue gas draft stabilization system with a draft fan and draft sensor;
- The flue gas analysing system with analysers Sensonic IR-1 and Sensonic MANOX-CLD, which continuously monitored O2, CO, CO2 and NOx in the flue gas. For the O2 measurement, a para-magnetic sensor was used; for CO and CO2, user NDIR sensors were used; and for NOx, the CLD method was used. For VOCs measurement, an instrument was used with the FID method, which was produced by LAT company. Dust in the flue gas was measured using a Testo 380 fine particle analyser (with measuring ranging from 0 to 300 mg·m−3 and a measurement uncertainty of 40%);
- A platform scale for pellet weighting with the range 0–60 kg, with resolution 20 g;
- The SCADA PROCES2 system was used to set the test parameters (the flow, outlet temperature, flue gas draft) and read and record data from analysers and sensors [51].
- P—heating capacity of the boiler (kW), calculated according to Formula (2);
- B—fuel consumption rate (kg·h−1);
- NCW—net calorific value of fuel (kWh·kg−1).
- V—volumetric flow rate (l·h−1);
- ρ—water density (kg·l−1);
- T2—boiler outlet temperature (°C);
- T1—boiler inlet temperature (°C);
- cw—water specific heat capacity (kJ· (kg·K)−1).
- qA—stack loss [45] calculated according to Formula (4) (%).
- Tgas—flue gas temperature (°C);
- Tamb—boiler inlet air temperature (ambient temperature) (°C);
- CO2—carbon dioxide concentration in flue gas (%);
- A1, B—Siegert’s coefficients characteristic of pellets (dry wood), A1 = 0.65, B = 0.
3. Results and Discussion
- 16 kW (+/−10%) nominal heating capacity (100% output)—moving grate burner and experimental burner;
- 4.8 kW (+/−10%) minimum heating capacity (30% output)—experimental burner.
4. Conclusions and Remarks
- The levels of CO, NOx, dust and VOCs were similar for combustion at full power using the burners tested;
- Taking into account the pollution levels at combustion, it can be said that the difference in CO emissions at full and minimum combustion was lower for the experimental burner compared with the moving grate burner (reference burner);
- It is worth noting that the requirements of EN 303-5:2012 were met by all the samples and configurations tested (pellets A, B and C experimental burner and Uni-Max, and 100% and 30% boiler loading). The combustion efficiencies Ƞc obtained of pellets A, B and C for each of the burners were at a similar level, i.e., approximately 93.5%;
- For the experimental burner and pellets A, the efficiency was 1% about higher, and for the experimental burner and pellets C, the efficiency was about 1% lower.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Friedemann, A.J. Life after Fossil Fuels: A Reality Check on Alternative Energy; Springer International Publishing: London, UK, 2021. [Google Scholar]
- Ryerson, W.N. Population: The Multiplier of Everything Else; Heinberg, R., Lerch, D., Eds.; The Post Carbon Reader Series: Population; Post Carbon Institute: Santa Rosa, CA, USA, 2010. [Google Scholar]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Filipović, S.; Lior, N.; Radovanović, M. The green deal—Just transition and sustainable development goals Nexus. Renew. Sustain. Energy Rev. 2022, 168, 112759. [Google Scholar] [CrossRef]
- Meth, T. The Future of Biomass: Net Zero, 2050 and beyond. Enviva Corporate Headquarters 7272 Wisconsin Avenue Suite 1800 Bethesda, MD 20814 USA. Available online: https://www.envivabiomass.com/wp-content/uploads/2021-WBM-Future-of-Biomass-Article_Enviva.pdf (accessed on 26 December 2022).
- Delivering the European Green Deal. Eurostat. An official website of the European Union. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en (accessed on 26 December 2022).
- World Energy Outlook 2022. International Energy Agency. Available online: https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (accessed on 26 December 2022).
- Renewable Energy Statistics. Eurostat. Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Share_of_renewable_energy_more_than_doubled_between_2004_and_2020 (accessed on 26 December 2022).
- Production of Primary Energy, EU. Eurostat. An Official Website of the European Union. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/images/c/cc/Production_of_primary_energy%2C_EU_2020.png (accessed on 26 December 2022).
- Tzelepi, V.; Zeneli, M.; Kourkoumpas, D.-S.; Karampinis, E.; Gypakis, A.; Nikolopoulos, N.; Grammelis, P. Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review. Energies 2020, 13, 3390. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial distribution of the potential forest biomass availability in Europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- Niedzółka, I.; Szpryngiel, M. Possibilities of using biomass for energy purposes. Agric. Eng. 2014, 18, 155–164. [Google Scholar]
- Patrizio, P.; Fajardy, M.; Bui, M.; Dowell, N.M. CO2 mitigation or removal: The optimal uses of biomass in energy system decarbonization. iScience 2021, 24, 102765. [Google Scholar] [CrossRef]
- Pulles, T.; Gillenwater, M.; Radunsky, K. CO2 emissions from biomass combustion Accounting of CO2 emissions from biomass under the UNFCCC. Carbon Manag. 2022, 13, 181–189. [Google Scholar] [CrossRef]
- Mola-Yudego, B.; Selkimäki, M.; González-Olabarria, J.R. Spatial analysis of the wood pellet production for energy in Europe. Renew. Energy 2014, 63, 76–83. [Google Scholar] [CrossRef]
- Wróbel, M.; Frączek, J.; Jewiarz, M.; Mudryk, K.; Dziedzic, K. Impact of Selected Properties of Raw Material on Quality Features of Granular Fertilizers Obtained from Digestates and ASH Mixtures. Agric. Eng. 2016, 20, 207–217. [Google Scholar] [CrossRef]
- Mirowski, T. Utilization of Biomass for Energy Purpose Versus Reduction of Emission of Air Pollutants from Municipal and Households Sector. Rocz. Ochr. Sr. 2016, 18, 466–477. [Google Scholar]
- Gaur, P.; Mishra, S.; Bhardwaj, S.; Kumar, S.S.; Bajpai, M.; Verma, A.; Verma, N. Recent Developments for Oral Time Controlled Drug Delivery by Pelletization Techniques: An Overview. J. Pharm. Sci. Pharmacol. 2014, 1, 283–295. [Google Scholar] [CrossRef]
- Manoharan, K.; Bhaskaran, N.A.; Kumar, L. Pellets and Techniques of Pelletization. Res. J. Pharm. Tech. 2019, 12, 6157–6164. [Google Scholar] [CrossRef]
- Woo, D.-G.; Kim, S.H.; Kim, T.H. Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder. Energies 2021, 14, 371. [Google Scholar] [CrossRef]
- Cui, X.; Yang, J.; Wang, Z.; Shi, X. Better use of bioenergy: A critical review of co-pelletizing for biofuel manufacturing. Carbon Capture Sci. Technol. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Bioenergy Europe. Wood Pellets: A Modern and Efficient Alternative to Fossil Fuels This Winter. Press Release. Available online: https://bioenergyeurope.org/article/390-wood-pellets-a-modern-and-efficient-alternative-to-fossil-fuels-this-winter.html (accessed on 13 January 2023).
- GUS. Energy Consumption in Households in 2015-Zużycie Energii w Gospodarstwach Domowych w 2015r; GUS, Departament Produkcji: Warszawa, Poland, 2017. [Google Scholar]
- Stala-Szlugaj, K. Analiza sektora drobnych odbiorców węgla kamiennego. Polityka Energetyczna. Energy Policy J. 2017, 20, 117–133. (In Polish) [Google Scholar]
- GUS. Energy Consumption in Households in 2018-Zużycie Energii w Gospodarstwach Domowych w 2018r; GUS, Departament Przedsiębiorstw: Warszawa, Poland, 2019.
- Ministerstwo Klimatu i Środowiska. Polityka Energetyczna Polski do 2040 Roku; Ministerstwo Klimatu i Środowiska: Warszawa, Polska, 2021. Available online: https://www.dziennikustaw.gov.pl/M2021000026401.pdf (accessed on 26 December 2022). (In Polish)
- Ministry of Climate and Environmental the Clean Air Programme Was Launched a Year Ago. Available online: https://www.gov.pl/web/climate/the-clean-air-programme-was-launched-a-year-ago (accessed on 26 December 2022).
- Sakson-Boulet, A. The Clean Air Priority Programme–Evaluation and Perspectives. Srod. Stud. Polit. 2020, 1, 171–192. [Google Scholar] [CrossRef]
- Pytliński, Ł. Stan techniczny budynków jednorodzinnych w Polsce. Potrzeby remontowe, źródła ogrzewania i standardy izolacyjności cieplnej. Raport z badań. In Efektywność Energetyczna w Polsce. Przegląd 2017; Domy jedno-rodzinne. Smog; Walczak, E., Zaborowski, M., Eds.; Instytut Ekonomii Środowiska: Kraków, Poland, 2018. [Google Scholar]
- Mirowski, T.; Orzechowska, M. Wykorzystanie paliw biomasowych w ogrzewnictwie indywidualnym na obszarach zagrożonych niską emisją. Polit. Energy Energy Policy J. 2015, 18, 75–88. [Google Scholar]
- Shen, N.; Wang, Y.; Peng, H.; Hou, Z. Renewable Energy Green Innovation, Fossil Energy Consumption, and Air Pollution—Spatial Empirical Analysis Based on China. Sustainability 2020, 12, 6397. [Google Scholar] [CrossRef]
- Energy Balances, European Commission. Eurostat. An Official Website of the European Union. Brussels, Belgium. 2022. Available online: https://ec.europa.eu/eurostat/web/energy/data/energy-balances (accessed on 26 December 2022).
- SPIUG. Report: Heating Appliances Market in Poland in 2021; Association of Heating Appliances Manufacturers and Importers in Poland: Warszawa, Poland, 2022. [Google Scholar]
- Burchard-Dziubińska, M. Air pollution and health in Poland: Anti-smog movement in the most polluted Polish cities. Ekon. Sr. 2019, 2, 76–90. [Google Scholar]
- Zyśk, J.; Szurlej, A.; Olkuski, T.; Kogut, K.; Cieślik, T.; Mirowski, T. Emission factors for heating technologies used in households. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią Pol. Akad. Nauk 2019, 109, 79–92. (In Polish) [Google Scholar]
- Munsif, R.; Zubair, M.; Aziz, A.; Zafar, M.N. Industrial Air Emission Pollution: Potential Sources and Sustainable Mitigation. In Environmental Emissions; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Bioenergy Europe Pellet. Statistical Report 2020; Bioenergy Europe: Brussels, Belgium, 2020. [Google Scholar]
- Pełka, G.; Wygoda, M.; Luboń, W.; Pachytel, P.; Jachimowski, A.; Paprocki, M.; Wyczesany, P.; Kotyza, J. Analysis of the Efficiency of a Batch Boiler and Emissions of Harmful Substances during Combustion of Various Types of Wood. Energies 2021, 14, 6783. [Google Scholar] [CrossRef]
- WiseEuropa. Renowacja. Panorama Niskoemisyjnych Inwestycji w Sektorze Budynków. Raport z dnia 18.12.2020; WiseEuropa—Fundacja Warszawski Instytut Studiów Ekonomicznych i Europejskich: Warszawa, Poland, 2020. [Google Scholar]
- Bieranowski, J.; Olkowski, T. Comparison of Combustion Gas Emission by Low Power Boilers Fired by Biomass Obtained from Wood-Pellets. Tech. Sci. 2009, 12, 9–16. [Google Scholar] [CrossRef]
- Janhäll, S.; Bäckström, D.; Gustavsson, L. Emissions of Particles and Organic Compounds from Small and Medium Scaled Biomass Combustion; RISE Research Institutes of Sweden: Gothenburg, Sweden, 2018; Available online: http://www.diva-portal.org/smash/get/diva2:1252254/FULLTEXT01.pdf (accessed on 13 January 2023).
- Musil-Schläffer, B.; McCarry, A.; Schmidl, C.; Haslinger, W. European Wood-Heating Technology Survey: An Overview of Combustion Principles and the Energy and Emissions Performance Characteristics of Commercially Available Systems in Austria, Germany, Denmark, Norway and Sweden; NYSERDA New York State Energy Research and Development Authority: New York, NY, USA, 2010.
- Kaczmarczyk, M.; Kaczmarczyk, M.; Pełka, G.; Luboń, W.; Bedkowska, A.; Piechowicz, Ł.; Ciapała, B. Niska Emisja. Od Przyczyn Występowania do Sposobów Eliminacji; Geosystem Burek Kotyza s.c.: Kraków, Poland, 2015. [Google Scholar]
- Commission Regulation (UE) 2015/1189 of 28 April 2015 Implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Solid Fuel Boilers. Available online: http://data.europa.eu/eli/reg/2015/1189/2017-01-09 (accessed on 24 November 2022).
- PN-EN 303-5:2012. Heating Boilers—Part 5: Heating Boilers for Solid Fuels, Manually and Automatically Stoked, Nominal Heat Output of up to 500 kW—Terminology, Requirements, Testing and Marking. Polish Committee for Standardization: Warsaw, Poland, 2012. [Google Scholar]
- EU Parliament. Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for the Setting of Ecodesign Requirements for Energy-Related Products; European Parliament, Council of the European Union: Brussels, Belgium, 2009. [Google Scholar]
- EU Parliament. Commission Delegated Regulation (EU) No 811/2013 of 18 February 2013 Supplementing Directive 2010/30/EU of the European Parliament and of the Council with regard to the Energy Labelling of Space Heaters, Combination Heaters, Packages of Space Heater; European Parliament, Council of the European Union: Brussels, Belgium, 2013. [Google Scholar]
- Durchschnittliche Monatliche Pelletpreise, Preisentwicklungen und Vergleiche. Pelletpreise. November 2022. Available online: https://www.propellets.at/aktuelle-pelletpreise (accessed on 26 December 2022). (In German).
- BUDMET. Boiler Budmet. Available online: https://budmetnocon.pl/forest/ (accessed on 26 December 2022).
- Jach-Nocoń, M.; Pełka, G.; Luboń, W.; Mirowski, T.; Nocoń, A.; Pachytel, P. An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types. Energies 2021, 14, 4465. [Google Scholar] [CrossRef]
- BUDMET. Self-Deashing Burner Budmet, Technical Materials of Company PPUH ZAMECH Zygmunt Nocoń (not published).
- MADUR Electronics. Principles of Calculating Results by the Madur Gas Analysers. Available online: https://www.madur.com/data/download/00_common/manuals/Principles%20of%20calculating%20the%20results_EN.pdf (accessed on 6 October 2022).
- Caillat Sebastien, V.E. Large-scale biomass combustion plants: An overview. In Biomass Combustion Science, Technology and Engineering; Lasse, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 189–224. [Google Scholar]
- Ellner-Schuberth, F.; Hartmann, H.; Turowski, P.; Rossman, P. Partikelemissionen aus Kleinfeuerungen für Holz und Ansätze für Minderungsmaßnahmen Berichte aus dem TFZ; Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe (TFZ): Straubing, Germany, 2010; Volume 22. [Google Scholar]
- Mack, R.; Schön, C.; Kuptz, D.; Hartmann, H.; Brunner, T.; Obernberger, I.; Behr, H.M. Influence of Pellet Length, Content of Fines, and Moisture Content on Emission Behavior of Wood Pellets in a Residential Pellet Stove and Pellet Boiler. Biomass Convers. Biorefin. 2022. [CrossRef]
- Pałaszyńska, K.; Juszczak, M.; Ostrowski, R. Carbon Monoxide and Nitric Oxide Concentrations in Flue Gas during Combustion of Agricultural Biomass in the Residental Boiler. Drewn. Prace Nauk. Donies. Komun. 2021, 64, 125–144. [Google Scholar] [CrossRef]
- Juszczak, M. Experimental Study of Pollutant Concentrations from a Heat Station Supplied with Wood Pellets. Pol. J. Environ. Stud. 2011, 20, 1519–1524. [Google Scholar]
Parameter | Unit | Pellets A | Pellets B | Pellets C | Testing Method |
---|---|---|---|---|---|
Net calorific value | MJ·kg−1 | 17.23 | 17.21 | 17.53 | PN-EN ISO 18125:2017-07 |
Moisture content | % | 8.2 | 8.4 | 7.5 | PN-EN ISO 18134-1:2015-11 |
Ash content | % | 0.53 | 0.41 | 0.31 | PN-EN ISO 18122:2016-01 |
Volatile matter | % | 84.72 | 85.14 | 85.87 | PN-EN ISO 18123:2016-01 |
Bulk density | kg·m−3 | 670 | 630 | 610 | PN-EN ISO 17828:2016-02 |
Type of Wood Pellet and Heating Capacity | Fuel Feeding Time [s] | Fuel Feeding Break Time [s] | Fan Output [%] | Blower Aperture Width [cm] |
---|---|---|---|---|
Type of pellet burner | Moving grate burner | |||
Pellets A 100% | 8 | 6 | 40 | full |
Pellets B 100% | 8 | 6 | 40 | full |
Pellets C 100% | 8 | 6 | 40 | full |
Type of pellet burner | Experimental burner | |||
Pellets A 100% | 8 | 8 | 22 | full |
Pellets A 30% | 2 | 10 | 5 | 5 |
Pellets B 100% | 8 | 6 | 34 | 3 |
Pellets B 30% | 2 | 9 | 5 | 5 |
Pellets C 100% | 8 | 6 | 34 | 3 |
Pellets C 30% | 2 | 9 | 4 | 5 |
Pellets A 100% Uni-Max | Pellets A 100% Exper. | Pellets A 30% Exper. | Pellets B 100% Uni-Max | Pellets B 100% Exper. | Pellets B 30% Exper. | Pellets C 100% Uni-Max | Pellets C 100% Exper. | Pellets C 30% Exper. | |
---|---|---|---|---|---|---|---|---|---|
Outlet temperature [°C] | 72.0 | 70.5 | 71.1 | 71.8 | 71.4 | 70.2 | 71.4 | 70.1 | 70.8 |
Inlet temperature [°C] | 64.0 | 62.7 | 68.7 | 64.1 | 63.2 | 67.8 | 63.9 | 61.9 | 68.5 |
Water flow rate [l·h−1] | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 |
Heating capacity [kW] | 16.7 | 16.2 | 5.1 | 16.3 | 17.1 | 4.9 | 15.7 | 17.3 | 4.8 |
Fuel consumption [kg·h−1] | 4.75 | 4.65 | 1.45 | 4.55 | 4.63 | 1.30 | 4.20 | 4.8 | 1.5 |
Flue gas temperature [°C] | 104.1 | 98.3 | 71.2 | 103.6 | 113.6 | 72.1 | 101.2 | 112.8 | 69.7 |
Outside temperature [°C] | 27.8 | 28.0 | 25.1 | 19.9 | 23.4 | 24.9 | 20.4 | 22.4 | 21.4 |
O2 [%] | 9.5 | 9.6 | 15.2 | 9.2 | 8.8 | 15.0 | 9.8 | 10.6 | 15.6 |
CO2 [%] | 7.3 | 8.7 | 4.3 | 8.8 | 9.2 | 4.4 | 8.3 | 7.8 | 4.1 |
Ƞth [%] | 73.5 | 72.9 | 68.5 | 74.8 | 77.0 | 78.0 | 76.7 | 74.0 | 66.0 |
Ƞc [%] | 93.1 | 94.7 | 92.8 | 93.7 | 93.6 | 93.0 | 93.6 | 92.4 | 92.1 |
CO [mg·m−3, 10% O2] | 62.1 | 143.5 | 175.7 | 37.0 | 78.5 | 180.1 | 55.4 | 201.2 | 270.6 |
NOx [mg·/m−3, 10% O2] | 182.9 | 154.7 | 152.1 | 177.1 | 149.2 | 147.0 | 203.4 | 186.2 | 173.8 |
Dust [mg·m−3, 10% O2] | 21.6 | 18.5 | 15.2 | 12.4 | 27.8 | 23.0 | 13.6 | 32.3 | 26.9 |
VOCs [mg·m−3, 10% O2] | 1.7 | 2.5 | 5.2 | 1.2 | 2.5 | 4.0 | 1.6 | 2.9 | 7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pełka, G.; Jach-Nocoń, M.; Paprocki, M.; Jachimowski, A.; Luboń, W.; Nocoń, A.; Wygoda, M.; Wyczesany, P.; Pachytel, P.; Mirowski, T. Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers. Energies 2023, 16, 1695. https://doi.org/10.3390/en16041695
Pełka G, Jach-Nocoń M, Paprocki M, Jachimowski A, Luboń W, Nocoń A, Wygoda M, Wyczesany P, Pachytel P, Mirowski T. Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers. Energies. 2023; 16(4):1695. https://doi.org/10.3390/en16041695
Chicago/Turabian StylePełka, Grzegorz, Marta Jach-Nocoń, Marcin Paprocki, Artur Jachimowski, Wojciech Luboń, Adam Nocoń, Mateusz Wygoda, Paweł Wyczesany, Przemysław Pachytel, and Tomasz Mirowski. 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers" Energies 16, no. 4: 1695. https://doi.org/10.3390/en16041695
APA StylePełka, G., Jach-Nocoń, M., Paprocki, M., Jachimowski, A., Luboń, W., Nocoń, A., Wygoda, M., Wyczesany, P., Pachytel, P., & Mirowski, T. (2023). Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers. Energies, 16(4), 1695. https://doi.org/10.3390/en16041695