Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective
Abstract
:1. Introduction
Circular Economy—An Incentive to Use WCO as a Feedstock
2. Suitability of WCO as a Feedstock for Biodiesel Production
2.1. WCO as a Feedstock for Biodiesel Production to Address Social Challenges
2.2. WCO as a Feedstock for Biodiesel Production to Address Technological Challenges
2.3. WCO as a Feedstock in Biodiesel Production to Address Economical Challenges
3. Overview of WCO Collection Mechanisms
4. WCO-to-Biodiesel Conversion Technologies
5. Techno-Economic Analysis of WCO Based Biodiesel
6. Discussions
7. Scope for Future Work
7.1. Economical Processing Route for Biofuel Conversion from WCO
7.2. Choice of Bioconversion Methodology
7.3. Role of Nanoparticles in Biofuel Conversion and Performance Characteristics
7.4. Role of Statistical Methods and Artificial Intelligence Techniques in Biofuel Conversion and Performance Improvements
7.5. Cost Benefits of By-products after Biofuel Conversion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thirunavukkarasu, S. “A Study on Street Vendors Usage, Consumption, and Awareness of Reused Cooking Oils in Tamil Nadu,” The Public Newsense October–December 2021 Project Report of the Supporting the Implementation of National Trans Fat Regulations in the State of Tamil Nadu (Phase I). Available online: https://www.cag.org.in/newsletters/public-newsense/study-street-vendors-usage-consumption-and-awareness-reused-cooking (accessed on 1 September 2022).
- Goveas, N.; Kurian, O.C.; Mukhopadhyay, M.A.; Niharika; Sarkar, D. Diversion of Used Cooking Oil into the Food Stream. A Study of Four Indian Cities; Observer Research Foundation: Delhi, India, August 2022. [Google Scholar]
- Gaur, A.; Mishra, S.; Chowdhury, S.; Baredar, P.; Verma, P. A review on factor affecting biodiesel production from waste cooking oil: An Indian perspective. Mater. Today Proc. 2021, 46, 5594–5600. [Google Scholar] [CrossRef]
- Sahar; Sadaf, S.; Iqbal, J.; Ullah, I.; Bhatti, H.N.; Nouren, S.; Nisar, J.; Iqbal, M. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018, 41, 220–226. [Google Scholar] [CrossRef]
- de Araújo, C.D.M.; de Andrade, C.; de Souza e Silva, E.; Dupas, F.A. Biodiesel production from used cooking oil: A review. Renew. Sustain. Energy Rev. 2013, 27, 445–452. [Google Scholar] [CrossRef]
- Mohammadshirazi, A. Energy and cost analyses of biodiesel production from waste cooking oil. Renew. Sustain. Energy Rev. 2014, 33, 44–49. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Ankit Sharma “Biofuels Annual”, Global Agricultural Information Network. 2021. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Biofuels%20Annual_New%20Delhi_India_06-07-2021 (accessed on 14 December 2022).
- Food Safety and Standards Authority of India “Background Note-UCO”. 2021. Available online: https://eatrightindia.gov.in/ruco/file/Background%20Note-UCO.pdf (accessed on 14 December 2022).
- Government of India, Ministry of New and Renewable Energy “NATIONAL_POLICY_ON_BIOFUELS-2018”. Available online: https://eatrightindia.gov.in/ruco/national-biofuel-policy.php (accessed on 14 December 2022).
- Food Safety and Standards Authority of India “Guidelines for UCO Collection”. 2021. Available online: https://eatrightindia.gov.in/ruco/guidelines_for_collection.php (accessed on 14 December 2022).
- Sheinbaum-Pardo, C.; Calderón-Irazoque, A.; Ramírez-Suárez, M. Potential of biodiesel from waste cooking oil in Mexico. Biomass Bioenergy 2013, 56, 230–238. [Google Scholar] [CrossRef]
- Hussain, Z.; Meghavathu, D.; Kumar, R. Glimpses of Dynamic Biodiesel Product Pricing Model. Int. J. Eng. Technol. 2018, 7, 224–227. [Google Scholar] [CrossRef]
- Math, M.C.; Kumar, S.; Chetty, S.V. Technologies for biodiesel production from used cooking oil—A review. Energy Sustain. Dev. 2010, 14, 339–345. [Google Scholar] [CrossRef]
- Balaji, S.J.; Umanath, M.; Arun, G. Welfare gains of inward-looking: An ex-ante assessment of general equilibrium impacts of protectionist tariffs on India’s edible oil imports. Agric. Econ. Res. Rev. 2021, 34, 1–20. [Google Scholar] [CrossRef]
- National Mission on Edible Oils-Oil Palm. Operational Guidelines (2021-22* to 2025-26). Available online: https://nfsm.gov.in/Guidelines/NMEO-OPGUIEDELINES.pdf (accessed on 29 November 2022).
- Goh, B.H.H.; Chong, C.T.; Ge, Y.; Ong, H.C.; Ng, J.-H.; Tian, B.; Ashokkumar, V.; Lim, S.; Seljak, T.; Józsa, V. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy Convers. Manag. 2020, 223, 113296. [Google Scholar] [CrossRef]
- Abed, K.A.; Gad, M.; El Morsi, A.; Sayed, M.; Elyazeed, S.A. Effect of biodiesel fuels on diesel engine emissions. Egypt. J. Pet. 2019, 28, 183–188. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Kalogirou, S.A.; Gupta, V.K.; Park, Y.-K.; Fallahi, A.; Sulaiman, A.; Ranjbari, M.; Rahnama, H.; Aghbashlo, M.; et al. Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renew. Sustain. Energy Rev. 2022, 161, 112411. [Google Scholar] [CrossRef]
- Eremeeva, A.; Kondrasheva, N.; Nelkenbaum, K. Studying the possibility of improving the properties of environmentally friendly diesel fuels. In Scientific and Practical Studies of Raw Material Issues; CRC Press: Boca Raton, FL, USA, 2019; pp. 108–113. [Google Scholar]
- César, A.D.S.; Werderits, D.E.; Saraiva, G.L.D.O.; Guabiroba, R.C.D.S. The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renew. Sustain. Energy Rev. 2017, 72, 246–253. [Google Scholar] [CrossRef]
- Santos, P.S.B.; Villas-Bôas, L.; da Silva Rodrigueiro, M.M.; Lopes, L.; Rodrigues, T.R.; de Amorim, P.D.C.A. Design and development of a low-cost reactor for biodiesel production from waste cooking oil (WCO). Int. J. Innov. Educ. Res. 2019, 7, 56–68. [Google Scholar] [CrossRef]
- Biofuel Support Policies in Europe: Lessons Learnt for the Long Way Ahead-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1364032108000166 (accessed on 29 November 2022).
- Bimpizas-Pinis, M.; Calzolari, T.; Genovese, A. Exploring the transition towards circular supply chains through the arcs of integration. Int. J. Prod. Econ. 2022, 250, 108666. [Google Scholar] [CrossRef]
- Delzeit, R.; Heimann, T.; Schuenemann, F.; Soeder, M. Using Used Cooking Oil (UCO) for biofuel production: Effects on global land use and interlinkages with food and feed production. In Proceedings of the 22nd Annual Conference on Global Economic Analysis, Warsaw, Poland, 19–21 June 2019. [Google Scholar]
- Teixeira, M.R.; Nogueira, R.; Nunes, L.M. Quantitative assessment of the valorisation of used cooking oils in 23 countries. Waste Manag. 2018, 78, 611–620. [Google Scholar] [CrossRef]
- Rabu, R.A.; Janajreh, I.; Honnery, D. Transesterification of waste cooking oil: Process optimization and conversion rate evaluation. Energy Convers. Manag. 2013, 65, 764–769. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Aghbashlo, M.; Tabatabaei, M. Life cycle assessment of bioenergy product systems: A critical review. E-Prime-Adv. Electr. Eng. Electron. Energy 2021, 1, 100015. [Google Scholar] [CrossRef]
- Biodiesel Production in Brazil and Alternative Biomass Feedstocks-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1364032113000142 (accessed on 1 December 2022).
- Sajjadi, B.; Raman, A.; Arandiyan, H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew. Sustain. Energy Rev. 2016, 63, 62–92. [Google Scholar] [CrossRef]
- Janssen, R.; Rutz, D.D. Sustainability of biofuels in Latin America: Risks and opportunities. Energy Policy 2011, 39, 5717–5725. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Zhou, P.; Hou, J.; Qiu, Y. Subsidy modes, waste cooking oil and biofuel: Policy effectiveness and sustainable supply chains in China. Energy Policy 2014, 65, 270–274. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Wu, S.; Xue, J.; Wu, Y.; Li, Y.; Kang, X. Restaurants’ behaviour, awareness, and willingness to submit waste cooking oil for biofuel production in Beijing. J. Clean. Prod. 2018, 204, 636–642. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Mortimer, S.R. Waste cooking oil as an energy resource: Review of Chinese policies. Renew. Sustain. Energy Rev. 2012, 16, 5225–5231. [Google Scholar] [CrossRef]
- Singhabhandhu, A.; Tezuka, T. Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion. Energy 2010, 35, 1839–1847. [Google Scholar] [CrossRef]
- Zhang, H.; Ozturk, U.A.; Zhou, D.; Qiu, Y.; Wu, Q. How to increase the recovery rate for waste cooking oil-to-biofuel conversion: A comparison of recycling modes in China and Japan. Ecol. Indic. 2015, 51, 146–150. [Google Scholar] [CrossRef]
- Zhang, H.; Ozturk, U.A.; Wang, Q.; Zhao, Z. Biodiesel produced by waste cooking oil: Review of recycling modes in China, the US and Japan. Renew. Sustain. Energy Rev. 2014, 38, 677–685. [Google Scholar] [CrossRef]
- Cho, S.; Kim, J.; Park, H.-C.; Heo, E. Incentives for waste cooking oil collection in South Korea: A contingent valuation approach. Resour. Conserv. Recycl. 2015, 99, 63–71. [Google Scholar] [CrossRef]
- Kristiana, T.; Baldino, C.; Searle, S. An estimate of current collection and potential collection of used cooking oil from major Asian exporting countries. Work. Pap. 2022, 21. [Google Scholar]
- Shin, J.-Y.; Kim, G.-W.; Zepernick, J.S.; Kang, K.-Y. A Comparative Study on the RFS Program of Korea with the US and UK. Available online: https://www.mdpi.com/2071-1050/10/12/4618 (accessed on 8 December 2022).
- Ameena, R.N.; Joseph, M. Integrating ‘Eat Right Movement Campaign’ into the school environment. Int. J. Home Sci. 2020, 6, 332–335. [Google Scholar]
- Dhara, D.; Biswas, S.; Das, S.; Biswas, O. Status of food safety and food security in India in the perspective of FSSAI. Indian J. Anim. Health 2021, 60, 167–173. [Google Scholar] [CrossRef]
- File, No. RCD-18/1/2021-Regulatory-FSSAI-Part (2). Food Safety and Standards Authority of India. Available online: https://fssai.gov.in/upload/advisories/2022/01/61ea5b8d0fc5eDirection_RUCO_21_01_2022.pdf (accessed on 8 December 2022).
- Salmani, Y.; Mohammadi-Nasrabadi, F.; Esfarjani, F. A mixed-method study of edible oil waste from farm to table in Iran: SWOT analysis. J. Mater. Cycles Waste Manag. 2022, 24, 111–121. [Google Scholar] [CrossRef]
- Kamilah, H.; Yang, T.; Sudesh, K. The Management of Waste Cooking Oil: A Preliminary Survey. Health Environ. J. 2013, 4, 76–81. [Google Scholar]
- Liu, T.; Liu, Y.; Luo, E.; Wu, Y.; Li, Y.; Wu, S. Who is the most effective stakeholder to incent in the waste cooking oil supply chain? A case study of Beijing, China. Energy Ecol. Environ. 2019, 4, 116–124. [Google Scholar] [CrossRef]
- Yacob, M.R.; Kabir, I.; Radam, A. Households Willingness to Accept Collection and Recycling of Waste Cooking Oil for Biodiesel Input in Petaling District, Selangor, Malaysia. Procedia Environ. Sci. 2015, 30, 332–337. [Google Scholar] [CrossRef] [Green Version]
- FSSAI ropes in Ananda Oil Corporation to Collect Used Cooking Oil. The Times of India, 23 March 2020. Available online: https://fssai.gov.in/upload/media/FSSAI_News_OilTOI_24_03_2020.pdf (accessed on 9 December 2022).
- Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H.K.S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M.M. Reactor technologies for biodiesel production and processing: A review. Prog. Energy Combust. Sci. 2019, 74, 239–303. [Google Scholar] [CrossRef]
- Mansir, N.; Teo, S.H.; Rashid, U.; Saiman, M.I.; Tan, Y.P.; Alsultan, G.A.; Taufiq-Yap, Y.H. Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renew. Sustain. Energy Rev. 2018, 82, 3645–3655. [Google Scholar] [CrossRef]
- Shin, H.-Y.; An, S.-H.; Sheikh, R.; Park, Y.; Bae, S.-Y. Transesterification of used vegetable oils with a Cs-doped heteropolyacid catalyst in supercritical methanol. Fuel 2012, 96, 572–578. [Google Scholar] [CrossRef]
- Yan, S.; Salley, S.; Ng, K.Y.S. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Appl. Catal. Gen. 2009, 353, 203–212. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine learning technology in biodiesel research: A review. Prog. Energy Combust. Sci. 2021, 85, 100904. [Google Scholar] [CrossRef]
- lkelawy, M.; Shenawy, E.A.E.; Bastawissi, H.A.E.; Shennawy, I.A.E. The effect of using the WCO biodiesel as an alternative fuel in compression ignition diesel engine on performance and emissions characteristics. J. Phys. Conf. Ser. 2022, 2299, 012023. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- De Oliveira, F.C.; Coelho, S.T. History, evolution, and environmental impact of biodiesel in Brazil: A review. Renew. Sustain. Energy Rev. 2017, 75, 168–179. [Google Scholar] [CrossRef]
- Lund, M.T.; Berntsen, T.; Fuglestvedt, J.S. Climate Impacts of Short-Lived Climate Forcers versus CO2 from Biodiesel: A Case of the EU on-Road Sector. Environ. Sci. Technol. 2014, 48, 14445–14454. [Google Scholar] [CrossRef] [PubMed]
- Aghbashlo, M.; Tabatabaei, M.; Khalife, E.; Shojaei, T.R.; Dadak, A. Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide. Energy 2018, 149, 967–978. [Google Scholar] [CrossRef]
- Ogunkunle, O.; Ahmed, N.A. Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario. Sustainability 2021, 13, 5465. [Google Scholar] [CrossRef]
- Andreo-Martínez, P.; Ortiz-Martínez, V.; García-Martínez, N.; de los Ríos, A.; Hernández-Fernández, F.; Quesada-Medina, J. Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis. Appl. Energy 2020, 264, 114753. [Google Scholar] [CrossRef]
- Amid, S.; Aghbashlo, M.; Tabatabaei, M.; Hajiahmad, A.; Najafi, B.; Ghaziaskar, H.S.; Rastegari, H.; Hosseinzadeh-Bandbafha, H.; Mohammadi, P. Effects of waste-derived ethylene glycol diacetate as a novel oxygenated additive on performance and emission characteristics of a diesel engine fueled with diesel/biodiesel blends. Energy Convers. Manag. 2019, 203, 112245. [Google Scholar] [CrossRef]
- Changmai, B.; Vanlalveni, C.; Ingle, A.P.; Bhagat, R.; Rokhum, S.L. Widely used catalysts in biodiesel production: A review. RSC Adv. 2020, 10, 41625–41679. [Google Scholar] [CrossRef]
- Bezergianni, S.; Chrysikou, L.P. Oxidative stability of waste cooking oil and white diesel upon storage at room temperature. Bioresour. Technol. 2012, 126, 341–344. [Google Scholar] [CrossRef]
- Agarwal, D.; Agarwal, A.K. Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl. Therm. Eng. 2007, 27, 2314–2323. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A.; Subbarao, D. Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J. Clean. Prod. 2013, 59, 131–140. [Google Scholar] [CrossRef]
- Alves, C.T.; Oliveira, A.; Carneiro, S.; Silva, A.; Andrade, H.; de Melo, S.V.; Torres, E. Transesterification of waste frying oil using a zinc aluminate catalyst. Fuel Process. Technol. 2013, 106, 102–107. [Google Scholar] [CrossRef]
- El Sherbiny, S.A.; Refaat, A.; El Sheltawy, S.T. Production of biodiesel using the microwave technique. J. Adv. Res. 2010, 1, 309–314. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sustain. Energy Rev. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Syazwani, O.N.; Rashid, U.; Yap, Y.H.T. Low-cost solid catalyst derived from waste Cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil. Energy Convers. Manag. 2015, 101, 749–756. [Google Scholar] [CrossRef]
- Biodiesel Production Using Cesium Modified Mesoporous Ordered Silica as Heterogeneous Base Catalyst-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0016236112006187 (accessed on 10 December 2022).
- Transesterification of Oil by Sulfated Zr-Supported Mesoporous Silica. Ind. Eng. Chem. Res. 2011, 50, 7857–7865. Available online: https://pubs.acs.org/doi/10.1021/ie1022817 (accessed on 10 December 2022).
- Tan, Y.H.; Abdullah, M.O.; Nolasco-Hipolito, C.; Taufiq-Yap, Y.H. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Appl. Energy 2015, 160, 58–70. [Google Scholar] [CrossRef]
- Amani, H.; Ahmad, Z.; Asif, M.; Hameed, B.H. Transesterification of waste cooking palm oil by MnZr with supported alumina as a potential heterogeneous catalyst. J. Ind. Eng. Chem. 2014, 20, 4437–4442. [Google Scholar] [CrossRef]
- Ibrahim, M.L.; Rashid, T.D.U.; Moser, B.; Taufiq-Yap, Y.H. Appraisal of Biodiesel Prepared Via Acid Catalysis from Palm Fatty Acid Distillate. Iran. J. Sci. Technol. Trans. Sci. 2018, 43, 2205–2210. [Google Scholar] [CrossRef]
- Sirisomboonchai, S.; Abuduwayiti, M.; Guan, G.; Samart, C.; Abliz, S.; Hao, X.; Kusakabe, K.; Abudula, A. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manag. 2015, 95, 242–247. [Google Scholar] [CrossRef]
- Wong, Y.C.; Tan, Y.; Taufiq-Yap, Y.; Ramli, I.; Tee, H.S. Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel 2015, 162, 288–293. [Google Scholar] [CrossRef]
- India: Promoting Advanced Biofuels Through High Technology. Available online: https://www.adb.org/sites/default/files/project-documents/54222/54222-001-tar-en.pdf (accessed on 10 December 2022).
- World Custom Organization. WCO Annual Report 2021–2022; World Custom Organization: Brussels, Belgium, 2022. [Google Scholar]
- Madadian, E.; Haelssig, J.; Mohebbi, M.; Pegg, M. From biorefinery landfills towards a sustainable circular bioeconomy: A techno-economic and environmental analysis in Atlantic Canada. J. Clean. Prod. 2021, 296, 126590. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, W.; Liu, Z.; Wei, Y.-M.; Guan, D.; Li, Z.; Yan, J.; Gong, P. Five tips for China to realize its co-targets of climate mitigation and Sustainable Development Goals (SDGs). Geogr. Sustain. 2020, 1, 245–249. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Li, C.; Chen, X.; Peng, W.; Aghbashlo, M.; Lam, S.S.; Tabatabaei, M. Managing the hazardous waste cooking oil by conversion into bioenergy through the application of waste-derived green catalysts: A review. J. Hazard. Mater. 2022, 424, 127636. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.V.; Dahiya, S.; Amulya, K.; Katakojwala, R.; Vanitha, T.K. Can circular bioeconomy be fueled by waste biorefineries —A closer look. Bioresour. Technol. Rep. 2019, 7, 100277. [Google Scholar] [CrossRef]
- Ortner, M.E.; Müller, W.; Schneider, I.; Bockreis, A. Environmental assessment of three different utilization paths of waste cooking oil from households. Resour. Conserv. Recycl. 2016, 106, 59–67. [Google Scholar] [CrossRef]
- de Jong, S.; Antonissen, K.; Hoefnagels, R.; Lonza, L.; Wang, M.; Faaij, A.; Junginger, M. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels 2017, 10, 64. [Google Scholar] [CrossRef]
- Khan, H.M.; Ali, C.H.; Iqbal, T.; Yasin, S.; Sulaiman, M.; Mahmood, H.; Raashid, M.; Pasha, M.; Mu, B.-Z. Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: An overview. Chin. J. Chem. Eng. 2019, 27, 2238–2250. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnevale, E. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil. J. Environ. Manag. 2018, 216, 235–245. [Google Scholar] [CrossRef]
- Sobrino, F.H.; Monroy, C.; Pérez, J.L.H. Biofuels and fossil fuels: Life Cycle Analysis (LCA) optimisation through productive resources maximisation. Renew. Sustain. Energy Rev. 2011, 15, 2621–2628. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Hemayati, S.S.; Tabatabaei, M.; Aghbashlo, M.; Mahmoudi, S.B. A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply. Renew. Sustain. Energy Rev. 2019, 103, 423–442. [Google Scholar] [CrossRef]
- Chamkalani, A.; Zendehboudi, S.; Rezaei, N.; Hawboldt, K. A critical review on life cycle analysis of algae biodiesel: Current challenges and future prospects. Renew. Sustain. Energy Rev. 2020, 134, 110143. [Google Scholar] [CrossRef]
- Hussain, Z.; Kumar, R. A Model Framework to Make Biodiesel as Sustainable Alter-Native Fuel: Towards a Dynamic Biodiesel Product Pricing Approach. In Proceedings of the 8th World Petrocoal Congress: International Conference and Exhibition, New Delhi, India, 15–17 February 2018. [Google Scholar] [CrossRef]
- Yari, N.; Mostafaei, M.; Naderloo, L.; Ardebili, S.M.S. Energy indicators for microwave-assisted biodiesel production from waste fish oil. Energy Sources Part Recovery Util. Environ. Eff. 2022, 44, 2208–2219. [Google Scholar] [CrossRef]
- Naderloo, L.; Javadikia, H.; Mostafaei, M. Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS. Renew. Sustain. Energy Rev. 2017, 70, 56–64. [Google Scholar] [CrossRef]
- Amid, S.; Aghbashlo, M.; Tabatabaei, M.; Karimi, K.; Nizami, A.-S.; Rehan, M.; Hosseinzadeh-Bandbafha, H.; Soufiyan, M.M.; Peng, W.; Lam, S.S. Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. Energy Convers. Manag. 2021, 227, 113637. [Google Scholar] [CrossRef]
- Recycling of Used Oils-Tarnow and Malopolska. CHEMWAR. Available online: https://www.chemwar.pl/en/home-2/ (accessed on 25 January 2023).
- Aghbashlo, M.; Tabatabaei, M.; Soltanian, S.; Ghanavati, H. Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis. Renew. Energy 2019, 143, 64–76. [Google Scholar] [CrossRef]
- Linganiso, E.C.; Tlhaole, B.; Magagula, L.P.; Dziike, S.; Linganiso, L.Z.; Motaung, T.E.; Moloto, N.; Tetana, Z.N. Biodiesel Production from Waste Oils: A South African Outlook. Sustainability 2022, 14, 1983. [Google Scholar] [CrossRef]
- Ruhani, B.; Movahedi, P.; Saadi, S.; Ghasemi, A.; Kheradmand, A.; Dibaj, M.; Akrami, M. Comprehensive Techno-Economic Analysis of a Multi-Feedstock Biorefinery Plant in Oil-Rich Country: A Case Study of Iran. Sustainability 2022, 14, 1017. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.; Sher, F.; Farooq, M.; Jamil, M.; Kausar, Z.; Sabah, N.; Shah, M.; Rehman, H.; Rehman, A. Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review. Energies 2021, 14, 2565. [Google Scholar] [CrossRef]
- Pandya, H.N.; Parikh, S.; Shah, M. Comprehensive review on application of various nanoparticles for the production of biodiesel. Energy Sources Part Recovery Util. Environ. Eff. 2022, 44, 1945–1958. [Google Scholar] [CrossRef]
- Pali, H.S.; Sharma, A.; Kumar, M.; Annakodi, V.A.; Nguyen, V.N.; Singh, N.K.; Singh, Y.; Balasubramanian, D.; Deepanraj, B.; Truong, T.H.; et al. Enhancement of combustion characteristics of waste cooking oil biodiesel using TiO2 nanofluid blends through RSM. Fuel 2023, 331, 125681. [Google Scholar] [CrossRef]
- Ponnusamy, M.; Ramani, B.; Sathyamruthy, R. A Parametric Study on a Diesel Engine Fuelled Using Waste Cooking Oil Blended with Al2O3 Nanoparticle—Performance, Emission, and Combustion Characteristics. Sustainability 2021, 13, 7195. [Google Scholar] [CrossRef]
- Eremeeva, A.M.; Ilyashenko, I.S.; Korshunov, G.I. The Possibility of Application of Bioadditives to Diesel Fuel at Mining Enterprises. Personalii.Spmi.Ru. Available online: http://personalii.spmi.ru/ru/details/36105 (accessed on 25 January 2023).
- Channabasavaiah, H.M.; Naidu, D.G.V. Income and Employment Generation through Mining Industry in India. Mukt Shabd J. 2021, X, 780–789. [Google Scholar]
- Prajapati, N.; Kodgire, P.; Kachhwaha, S.S. Comparison of RSM Based FFD and CCD Methods for Biodiesel Production Using Microwave Technique. Mater. Today Proc. 2022, 62, 6985–6991. [Google Scholar] [CrossRef]
- Almohana, A.I.; Almojil, S.F.; Kamal, M.A.; Alali, A.F.; Kamal, M.; Alkhatib, S.E.; Felemban, B.F.; Algarni, M. Theoretical investigation on optimization of biodiesel production using waste cooking oil: Machine learning modeling and experimental validation. Energy Rep. 2022, 8, 11938–11951. [Google Scholar] [CrossRef]
- Xing, Y.; Zheng, Z.; Sun, Y.; Alikhani, M.A. A Review on Machine Learning Application in Biodiesel Production Studies. Int. J. Chem. Eng. 2021, 2021, e2154258. [Google Scholar] [CrossRef]
- Decarpigny, C.; Aljawish, A.; His, C.; Fertin, B.; Bigan, M.; Dhulster, P.; Millares, M.; Froidevaux, R. Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol. Energies 2022, 15, 3381. [Google Scholar] [CrossRef]
- da Silva, C.A.; dos Santos, R.N.; Oliveira, G.G.; Ferreira, T.P.D.S.; de Souza, N.L.G.D.; Soares, A.S.; de Melo, J.F.; Colares, C.J.G.; de Souza, U.J.B.; de Araújo-Filho, R.N.; et al. Biodiesel and Bioplastic Production from Waste-Cooking-Oil Transesterification: An Environmentally Friendly Approach. Energies 2022, 15, 1073. [Google Scholar] [CrossRef]
Country | Strength | Weakness | Opportunity | Challenges |
---|---|---|---|---|
Brazil | Appropriate replacement of high-productivity soybean oil feedstock [28]. | Because of the scattered logistics and collection infrastructure, the cost of WCO might be higher than fossil diesel, especially in urban areas [29,30]. The transport cost of WCO from collection points to biodiesel factories is greater [20]. | WCO meets only 0.5% of the present energy needs [20]. Acts as an additional income source for the low-skilled employee population [20]. Reduces water contamination and improves aquatic life [20]. | Potential to be recirculated to the food supply chain [30]. As low-skilled employees perform the collection in a disordered manner, supply at the required volume for biodiesel plants is not being attained [20]. |
China | Due to the various incentives to the collectors, illegal WCO recycling is reduced [31]. | Many commercial establishments sell their WCO to illegal peddlers for profit [32]. | Incentives are given to restaurants using WCO biodiesel for power generation [32]. | Smaller establishments often pay the fine and send their WCO to sanitation management [32]. |
Japan | Subsidies to the biodiesel producers are provided to reduce production costs [16]. Biodiesel is used as a fuel in transporting WCO [33]. | The difference in pricing between different third-party recyclers using different level of technologies prevails [31]. | Biodiesel producers were given tax waivers to increase their profit level [34,35,36]. Transaction taxes are waived for consumers who use 100% biodiesel [31]. | Advanced recycling technologies must be introduced in all the biodiesel plants to sort out the price difference [36]. |
United States of America | Biodiesel producers can receive 0.5 USD/gallon, resulting in a nearly 100% WCO recycling rate [36]. | Due to the higher incentive than in other countries, strict control is required to stop illegal WCO supply into their biodiesel supply chain [32]. | The federal government imposes stricter control measures on restaurants. Restaurants can obtain better health ratings and attain price subsidies and tax benefits [36]. | A high degree of administration and control is required. The absence of a direct incentive mechanism for restaurants affects the collection of WCO [36]. |
Korea | Command and control measures for households in WCO collection [36,37]. | Local recyclers often neglect households with a small quantity of WCO produced [33,38]. | Only 18% of the household WCO is collected [38]. The Korean government increases the blend ratio from 2.5% to 3% [39]. | Unlike the United States, Korea does not have carbon-saving criteria, even if its transport consumption is about 25%. Therefore, the motivation for WCO in the transport sector is low [39]. |
India | Strict rules are enforced for food business operators (FBO) whose daily edible consumption exceeds 50 litres. Well-structured guidelines formulated for WCO collection from FBOs. Total polar compounds (TPC) in edible oil are fixed at 25%; oil crossing this limit should be documented and given to the biodiesel producers [10]. | Low-level societal awareness among WCO-producing households and restaurants prevails. Poor compliance from FBOs due to the demand for WCO from roadside eateries [2]. | Only 20% of the potential WCO is collected at present. Almost 60% of the WCO makes its way back into the food chain [2]. India has the potential to collect 1.4 billion litres of WCO [39]. | Indifferent policy of allowing the topping of fresh oil to reduce free fatty acid (FFA) levels in restaurants. Ineffective ground-level implementation by FSSAI [2]. |
Competitiveness | Reference |
---|---|
Eco-friendly | [48] |
Increased volatility and reduced viscosity, molecular weight, flash point, and pour point | [52] |
Requires no engine modification | [4,53] |
Better biodegradability, combustion efficiency, and lubricity; higher cetane number; and lower sulphur and aromatic content compared to conventional diesel | [54,55,56] |
Lower hydrocarbon, particulate matter, and unburnt carbon emissions | [57,58] |
Lower stress on the environment and food security | [59] |
Low-cost feedstock with higher yield | [60] |
Wide choice of catalysts for better yield | [61] |
Suitable for catalytic hydrotreating to improve the storage stability | [62] |
Head | Unit | Amount per Litre of Biodiesel | * Energy Equivalent (MJ/L) | |||
---|---|---|---|---|---|---|
India [87] | Iran [89] | Pakistan [81] | India [87] | Iran [89] | ||
Inputs 1. Human Labour 2. WCO 3. Alcohol 4. Catalyst 5. Electricity 6. Machinery | (hours) (L) (L) (kg) (kWh) (hours) | 0.036 1.009 0.271 0.015 0.013 0.240 | 0.033 1.184 0.169 0.012 0.002 0.100 | 0.011 1.027 0.216 0.171 0.165 0.001 | 0.071 25.225 9.125 0.298 0.155 0.24 | 0.065 30.181 5.807 0.239 0.046 0.314 |
Input energy | 35.114 | 36.652 | ||||
Outputs 1. Biodiesel 2. Glycerol, Monoglyceride, and Diglyceride 3. Alcohol | (L) (L) (L) | 1.000 0.205 0.001 | 1.000 0.096 0.085 | 1.000 0.200 0.008 | 37.25 6.9 7.5 | 32.035 3.339 11.392 |
Output energy | 51.65 | 46.76 | ||||
Cost of biodiesel per litre in USD | 0.634 | 0.611 | 0. 660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manikandan, G.; Kanna, P.R.; Taler, D.; Sobota, T. Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective. Energies 2023, 16, 1739. https://doi.org/10.3390/en16041739
Manikandan G, Kanna PR, Taler D, Sobota T. Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective. Energies. 2023; 16(4):1739. https://doi.org/10.3390/en16041739
Chicago/Turabian StyleManikandan, Gurunathan, P. Rajesh Kanna, Dawid Taler, and Tomasz Sobota. 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective" Energies 16, no. 4: 1739. https://doi.org/10.3390/en16041739
APA StyleManikandan, G., Kanna, P. R., Taler, D., & Sobota, T. (2023). Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective. Energies, 16(4), 1739. https://doi.org/10.3390/en16041739