Spontaneous Imbibition and Core Flooding Experiments of Enhanced Oil Recovery in Tight Reservoirs with Surfactants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Core Samples and Surfactants
2.2. SEM and XRD Analyses of Samples
2.3. Imbibition and Core-Flooding Experiments
3. Results and Discussion
3.1. Rock Characterizations
3.2. Enhanced Oil Recovery by Surfactant Imbibition
3.3. Enhanced Oil Recovery by Core Flooding
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Ge, H.; Wei, Y.; Wang, Y.; Jia, K.; Xu, N.; Zhang, Y.; Du, S. Characterizing the Microscopic Anisotropic Permeabilities of Tight Oil Reservoirs Impacted by Heterogeneous Minerals. Energies 2022, 15, 6552. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Wu, S.; Pan, S. Key Issues and Development Direction of Petroleum Geology Research on Source Rock Strata in China. Adv. Geo-Energy Res. 2021, 5, 121–126. [Google Scholar] [CrossRef]
- Sonnenberg, S.A.; Pramudito, A. Petroleum Geology of the Giant Elm Coulee Field, Williston Basin. AAPG Bull. 2009, 93, 1127–1153. [Google Scholar] [CrossRef]
- Zhang, S.; Jia, B.; Zhao, J.; Pu, H. A Diffuse Layer Model for Hydrocarbon Mass Transfer between Pores and Organic Matter for Supercritical CO2 Injection and Sequestration in Shale. Chem. Eng. J. 2021, 406, 126746. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Zou, J.; Gentzis, T.; Rezaee, R.; Bubach, B.; Carvajal-Ortiz, H. Multifractal Analysis of Gas Adsorption Isotherms for Pore Structure Characterization of the Bakken Shale. Fuel 2018, 219, 296–311. [Google Scholar] [CrossRef]
- Cho, Y.; Eker, E.; Uzun, I.; Yin, X.; Kazemi, H. Rock Characterization in Unconventional Reservoirs: A Comparative Study of Bakken, Eagle Ford, and Niobrara Formations; Society of Petroleum Engineers: Richardson, TX, USA, 2016. [Google Scholar]
- Xu, F.; Chen, Q.; Ma, M.; Wang, Y.; Yu, F.; Li, J. Displacement Mechanism of Polymeric Surfactant in Chemical Cold Flooding for Heavy Oil Based on Microscopic Visualization Experiments. Adv. Geo-Energy Res. 2020, 4, 77–85. [Google Scholar] [CrossRef]
- Zhu, G.; Li, A. Interfacial Dynamics with Soluble Surfactants: A Phase-Field Two-Phase Flow Model with Variable Densities. Adv. Geo-Energy Res. 2020, 4, 86–98. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, J.J.; Wang, X.; Ge, H.; Yao, E. Experimental Study of Wettability Alteration and Spontaneous Imbibition in Chinese Shale Oil Reservoirs Using Anionic and Nonionic Surfactants. J. Pet. Sci. Eng. 2019, 175, 624–633. [Google Scholar] [CrossRef]
- Gao, L.; Yang, Z.; Shi, Y. Experimental Study on Spontaneous Imbibition Characteristics of Tight Rocks. Adv. Geo-Energy Res. 2018, 2, 292–304. [Google Scholar] [CrossRef]
- Mirzaei-Paiaman, A. Analysis of Counter-Current Spontaneous Imbibition in Presence of Resistive Gravity Forces: Displacement Characteristics and Scaling. J. Unconv. Oil Gas Resour. 2015, 12, 68–86. [Google Scholar] [CrossRef]
- Morrow, N.R.; Mason, G. Recovery of Oil by Spontaneous Imbibition. Curr. Opin. Colloid Interface Sci. 2001, 6, 321–337. [Google Scholar] [CrossRef]
- Haugen, Å.; Fernø, M.A.; Mason, G.; Morrow, N.R. Capillary Pressure and Relative Permeability Estimated from a Single Spontaneous Imbibition Test. J. Pet. Sci. Eng. 2014, 115, 66–77. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, L.; Cao, R.; Jia, P.; Wu, J. Simulation of Counter-Current Imbibition in Single Matrix and Field Scale Using Radical Integral Boundary Element Method. J. Pet. Sci. Eng. 2017, 156, 125–133. [Google Scholar] [CrossRef]
- Mattax, C.C.; Kyte, J.R. Imbibition Oil Recovery from Fractured, Water-Drive Reservoir. Soc. Pet. Eng. J. 1962, 2, 177–184. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, J.J. Spontaneous Imbibition Analysis in Shale Reservoirs Based on Pore Network Modeling. J. Pet. Sci. Eng. 2018, 169, 663–672. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Butler, R.; Koskella, D.; Rabun, R.; Clark, A. Flow Rate Behavior and Imbibition Comparison Between Bakken and Niobrara Formationsrch. In Proceedings of the Unconventional Resources Technology Conference, Denver, Colorado, USA, 25 August 2014. [Google Scholar]
- Olatunji, K.; Zhang, J.; Wang, D. Effect of the Rock Dimension on Surfactant Imbibition Rate in the Middle Member of Bakken: Creating a Model for Frac Design. J. Pet. Sci. Eng. 2018, 169, 416–420. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Q.; Wang, W.; Xie, Q.; Su, Y.; Zafar, A. Capillary and Viscous Forces during CO2 Flooding in Tight Reservoirs. Capillarity 2022, 5, 105–114. [Google Scholar] [CrossRef]
- Mahmud, W.M. Impact of Salinity and Temperature Variations on Relative Permeability and Residual Oil Saturation in Neutral-Wet Sandstone. Capillarity 2022, 5, 23–31. [Google Scholar] [CrossRef]
- Chowdhury, S.; Shrivastava, S.; Kakati, A.; Sangwai, J.S. Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process. Ind. Eng. Chem. Res. 2022, 61, 21–64. [Google Scholar] [CrossRef]
- Li, J.; Niu, L.; Lu, X. Performance of ASP Compound Systems and Effects on Flooding Efficiency. J. Pet. Sci. Eng. 2019, 178, 1178–1193. [Google Scholar] [CrossRef]
- Sidiq, H.; Abdulsalam, V.; Nabaz, Z. Reservoir Simulation Study of Enhanced Oil Recovery by Sequential Polymer Flooding Method. Adv. Geo-Energy Res. 2019, 3, 115–121. [Google Scholar] [CrossRef]
- Ghosh, P.; Sharma, H.; Mohanty, K.K. ASP Flooding in Tight Carbonate Rocks. Fuel 2019, 241, 653–668. [Google Scholar] [CrossRef]
- Zallaghi, M.; Khaz’ali, A.R. Experimental and Modeling Study of Enhanced Oil Recovery from Carbonate Reservoirs with Smart Water and Surfactant Injection. Fuel 2021, 304, 121516. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Taleb, M.A.M.; Wen, Z.; Chen, X. A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding. Energies 2022, 15, 8397. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Esfandeh, S. 3D Numerical Simulation of the Enhanced Oil Recovery Process Using Nanoscale Colloidal Solution Flooding. J. Mol. Liq. 2020, 301, 112094. [Google Scholar] [CrossRef]
- Pal, N.; Mandal, A. Numerical Simulation of Enhanced Oil Recovery Studies for Aqueous Gemini Surfactant-Polymer-Nanoparticle Systems. AIChE J. 2020, 66, e17020. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A. Core-Scale Modelling and Numerical Simulation of Zwitterionic Surfactant Flooding: Designing of Chemical Slug for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2020, 192, 107333. [Google Scholar] [CrossRef]
- Daripa, P.; Dutta, S. Modeling and Simulation of Surfactant–Polymer Flooding Using a New Hybrid Method. J. Comput. Phys. 2017, 335, 249–282. [Google Scholar] [CrossRef]
- Ma, J. Wetting Collapse Analysis on Partially Saturated Oil Chalks by a Modified Cam Clay Model Based on Effective Stress. J. Pet. Sci. Eng. 2018, 167, 44–53. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, G.; Khalili, N. A Fully Coupled Flow Deformation Model for Elasto-Plastic Damage Analysis in Saturated Fractured Porous Media. Int. J. Plast. 2016, 76, 29–50. [Google Scholar] [CrossRef]
- Wang, D.; Butler, R.; Zhang, J.; Seright, R. Wettability Survey in Bakken Shale With Surfactant-Formulation Imbibition. SPE Reserv. Eval. Eng. 2012, 15, 695–705. [Google Scholar] [CrossRef]
- Nordeng, S.H. Estimating Modern Equilibrium Temperatures in the Bakken Formation of North Dakota, USA: Application of an Analytical Solution to Depth Dependent Changes in Thermal Conductivity. Mar. Pet. Geol. 2020, 116, 104313. [Google Scholar] [CrossRef]
- Sheng, J.J. Critical Review of Low-Salinity Waterflooding. J. Pet. Sci. Eng. 2014, 120, 216–224. [Google Scholar] [CrossRef]
- Cardoso, O.R.; de Balaban, R.C. Comparative Study between Botucatu and Berea Sandstone Properties. J. S. Am. Earth Sci. 2015, 62, 58–69. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Q.; Wang, S.; Xing, X. Oil Diffusion in Shale Nanopores: Insight of Molecular Dynamics Simulation. J. Mol. Liq. 2019, 290, 111183. [Google Scholar] [CrossRef]
- Cui, R.; Hassanizadeh, S.M.; Sun, S. Pore-Network Modeling of Flow in Shale Nanopores: Network Structure, Flow Principles, and Computational Algorithms. Earth-Sci. Rev. 2022, 234, 104203. [Google Scholar] [CrossRef]
- Zhan, S.; Su, Y.; Jin, Z.; Wang, W.; Cai, M.; Li, L.; Hao, Y. Molecular Insight into the Boundary Conditions of Water Flow in Clay Nanopores. J. Mol. Liq. 2020, 311, 113292. [Google Scholar] [CrossRef]
- Salehi, M.; Johnson, S.J.; Liang, J.-T. Enhanced Wettability Alteration by Surfactants with Multiple Hydrophilic Moieties. J. Surfactants Deterg. 2010, 13, 243–246. [Google Scholar] [CrossRef]
- Jarrahian, K.; Seiedi, O.; Sheykhan, M.; Sefti, M.V.; Ayatollahi, S. Wettability Alteration of Carbonate Rocks by Surfactants: A Mechanistic Study. Colloids Surf. Physicochem. Eng. Asp. 2012, 410, 1–10. [Google Scholar] [CrossRef]
- Zhong, X.; Li, C.; Pu, H.; Zhou, Y.; Zhao, J.X. Increased Nonionic Surfactant Efficiency in Oil Recovery by Integrating with Hydrophilic Silica Nanoparticle. Energy Fuels 2019, 33, 8522–8529. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, H.; Wang, J. A Critical Review on Fundamental Mechanisms of Spontaneous Imbibition and the Impact of Boundary Condition, FLuid Viscosity and Wettability. Adv. Geo-Energy Res. 2017, 1, 1–17. [Google Scholar] [CrossRef]
- Li, C.; Singh, H.; Cai, J. Spontaneous Imbibition in Shale: A Review of Recent Advances. Capillarity 2019, 2, 17–32. [Google Scholar] [CrossRef]
- Zhong, X.; Pu, H.; Zhou, Y.; Zhao, J.X. Static Adsorption of Surfactants on Bakken Rock Surfaces in High Temperature, High Salinity Conditions; Society of Petroleum Engineers: Richardson, TX, USA, 2019. [Google Scholar]
- Li, S.; Hou, S. A Brief Review of the Correlation between Electrical Properties and Wetting Behaviour in Porous Media. Capillarity 2019, 2, 53–56. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, H.; Zhao, J.X. Experimental and Numerical Studies of Spontaneous Imbibition with Different Boundary Conditions: Case Studies of Middle Bakken and Berea Cores. Energy Fuels 2019, 33, 5135–5146. [Google Scholar] [CrossRef]
- Hou, J.; Han, M.; Wang, J. Manipulation of Surface Charges of Oil Droplets and Carbonate Rocks to Improve Oil Recovery. Sci. Rep. 2021, 11, 14518. [Google Scholar] [CrossRef]
- Mohammed, I.; Al Shehri, D.; Mahmoud, M.; Kamal, M.S.; Arif, M.; Alade, O.S.; Patil, S. Investigation of Surface Charge at the Mineral/Brine Interface: Implications for Wettability Alteration. Front. Mater. 2022, 9, 891455. [Google Scholar] [CrossRef]
Samples | Length (cm) | Diameter (cm) | Permeability (mD) | Porosity (%) |
---|---|---|---|---|
B1 | 3.19 | 3.96 | 0.004 | 0.042 |
B2 | 3.17 | 3.95 | 0.002 | 0.038 |
B3 | 3.14 | 3.96 | 0.002 | 0.036 |
B4 | 3.32 | 3.95 | 0.005 | 0.068 |
B5 | 4.07 | 3.75 | 0.051 | 0.053 |
B6 | 2.37 | 3.78 | 0.064 | 0.057 |
B7 | 5.53 | 3.83 | 0.030 | 0.065 |
B8 | 5.26 | 3.84 | 0.030 | 0.065 |
A1 | 6.68 | 3.96 | 57.60 | 0.200 |
A2 | 6.94 | 3.95 | 64.10 | 0.190 |
Samples | Kaolonite (wt%) | Illite (wt%) | Mx I/S (wt%) | Chlorite (wt%) | Quartz (wt%) | Calcite (wt%) | Dolomite (wt%) | Feldspar (wt%) | Pyrite (wt%) |
---|---|---|---|---|---|---|---|---|---|
B1 | - | 7 | 1 | - | 36 | 20 | 20 | 15 | 1 |
B2, B3 | - | 16 | 1 | 1 | 33 | 3 | 24 | 19 | 3 |
B4 | - | 6 | 1 | 1 | 42 | 5 | 25 | 19 | 1 |
B5, B6 | 11 | 2 | 1 | 30 | 14 | 28 | 12 | 2 | 11 |
B7, B8 | 12 | 2 | 1 | 29 | 11 | 25 | 18 | 2 | 12 |
A1, A2 | 5 | - | - | - | 88 | - | 2 | 5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhu, F.; Xu, J.; Liu, P.; Chen, S.; Wang, Y. Spontaneous Imbibition and Core Flooding Experiments of Enhanced Oil Recovery in Tight Reservoirs with Surfactants. Energies 2023, 16, 1815. https://doi.org/10.3390/en16041815
Zhang S, Zhu F, Xu J, Liu P, Chen S, Wang Y. Spontaneous Imbibition and Core Flooding Experiments of Enhanced Oil Recovery in Tight Reservoirs with Surfactants. Energies. 2023; 16(4):1815. https://doi.org/10.3390/en16041815
Chicago/Turabian StyleZhang, Shaojie, Feng Zhu, Jin Xu, Peng Liu, Shangbin Chen, and Yang Wang. 2023. "Spontaneous Imbibition and Core Flooding Experiments of Enhanced Oil Recovery in Tight Reservoirs with Surfactants" Energies 16, no. 4: 1815. https://doi.org/10.3390/en16041815
APA StyleZhang, S., Zhu, F., Xu, J., Liu, P., Chen, S., & Wang, Y. (2023). Spontaneous Imbibition and Core Flooding Experiments of Enhanced Oil Recovery in Tight Reservoirs with Surfactants. Energies, 16(4), 1815. https://doi.org/10.3390/en16041815