Global Potentials and Costs of Synfuels via Fischer–Tropsch Process
Abstract
:1. Introduction
2. Methods
2.1. Energy System Modelling
2.2. Toolchain
2.3. Renewable Energy Potential
2.4. Optimisation
2.5. Scope and Assumptions
Technology | CAPEX | OPEX of CAPEX (%) | Efficiency (-) | Lifetime (a) | Source | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2030 | 2040 | 2050 | 2020 | 2030 | 2040 | 2050 | ||||
PV (EUR/kW) | 703 | 395 | 340 | 326 | 1.0 | 1.00 | 1.00 | 1.00 | 1.00 | 25 | [27] |
Wind (EUR/kW) | 1 257 | 1 137 | 987 | 923 | 3.0 | 1.00 | 1.00 | 1.00 | 1.00 | 25 | [27] |
Biomass (EUR/kW) | 2 037 | 1 954 | 1 892 | 1 826 | 3.5 | 1.00 | 1.00 | 1.00 | 1.00 | 25 | [28,29] |
PEM (EUR/kW) | 1 023 | 795 | 653 | 511 | 1.5 | 0.64 | 0.69 | 0.72 | 0.74 | 19 | [26] |
DAC (EUR/(t a)) | 800 | 350 | 270 | 220 | 3.7 | - | - | - | - | 25 | [13] |
FT (EUR/kW) | 1 011 | 864 | 864 | 642 | 4.0 | 0.73 | 0.73 | 0.73 | 0.73 | 25 | [26] |
Turbine (EUR/kW) | 220 | 220 | 220 | 220 | 2.0 | 1.00 | 1.00 | 1.00 | 1.00 | 20 | - |
Compr. (EUR/kW) | 1 100 | 1 100 | 1 100 | 1 100 | 2.0 | 0.87 | 0.87 | 0.87 | 0.87 | 20 | [30,31] |
Desalin. (EUR/(kg a)) | 43 | 43 | 43 | 43 | 2.0 | - | - | - | - | 20 | [32,33] |
Liquef. (EUR/kW) | 1 332 | 1 332 | 1 332 | 1 3320 | 2.0 | 0.68 | 0.68 | 0.68 | 0.68 | 20 | [34] |
Battery (EUR/kWh) | 277 | 147 | 124 | 102 | 2.5 | 0.95 | 0.95 | 0.95 | 0.95 | 15 | [35] |
LH2-Storage (EUR/kWh) | 0.85 | 0.85 | 0.85 | 0.85 | 2.0 | 1.00 | 1.00 | 1.00 | 1.00 | 20 | [26] |
3. Results
3.1. Global Renewable Potential
3.2. Supply Curves
3.3. Energy Flow
3.4. Technology Utilisation
3.5. Process Costs’ Allocation and Development
4. Summary and Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CAPEX | Capital Expenditures |
CCS | Carbon Capture and Storage |
DAC | Direct Air Capture |
FT | Fischer–Tropsch |
IEA | International Energy Agency |
HP | High Pressure |
LP | Low Pressure |
OPEX | Operational Expenditures |
PEM | Polymer Electrolyte Membrane (electrolysis) |
PV | Photovoltaics |
pyGRETA | python Generator of REnewable Time series and mAps |
TIAM | Times Integrated Assessment Model |
TUM | Technical University of Munich |
urbs | linear optimisation model for distributed energy systems |
Appendix A
Appendix A.1
Appendix A.2
Open-Field PV | Onshore Wind | Biomass | ||||
Country | Power (GW) | Energy (TWh) | Power (GW) | Energy (TWh) | Energy (TWh) | Emissions (Million Tons of CO2 Eq.) |
Libya | 139,492.2 | 292,928.7 | 10,447.6 | 15,407.1 | 1.7 | 0.6 |
Namibia | 16,316.4 | 35,750.6 | 3222.3 | 4326.6 | 2.0 | 0.7 |
Australia | 35,0320.8 | 734,414.7 | 36,612.9 | 67,927.4 | 87.2 | 44.1 |
Canada | 109,452.9 | 96,253.7 | 39,656.4 | 46,159.1 | 185.7 | 72.9 |
China | 137,741.6 | 240,150.8 | 40,990.2 | 45,890.5 | 1772.4 | 717.9 |
Argentina | 102,489.7 | 177,895.8 | 14,387.2 | 26,840.9 | 192.9 | 79.5 |
Chile | 22,494.2 | 48,753.5 | 2831.3 | 2477.0 | 23.5 | 8.5 |
Peru | 12,192.4 | 27,279.8 | 5101.6 | 738.8 | 28.9 | 15.2 |
Germany | 341.6 | 394.6 | 284.8 | 558.8 | 127.6 | 49.6 |
Bulgaria | 137.6 | 215.4 | 276.7 | 192.3 | 26.1 | 10.1 |
Poland | 259.1 | 315.4 | 412.8 | 860.8 | 62.9 | 24.6 |
Estonia | 120.5 | 127.0 | 164.0 | 367.3 | 7.7 | 2.8 |
Lithuania | 120.1 | 133.2 | 214.2 | 288.4 | 13.9 | 5.4 |
Latvia | 183.2 | 195.8 | 255.6 | 442.7 | 9.6 | 3.7 |
RUS | 88,953.9 | 73,842.7 | 82,489.3 | 80,540.8 | 272.2 | 107.4 |
Turkmenistan | 29,444.2 | 50,251.3 | 2793.8 | 3752.8 | 3.6 | 1.5 |
India | 17,410.8 | 31,611.9 | 11,124.2 | 8690.6 | 1349.7 | 646.5 |
Japan | 268.3 | 404.7 | 795.4 | 834.0 | 39.0 | 15.9 |
South Korea | 50.9 | 81.7 | 184.0 | 192.9 | 15.0 | 6.0 |
Oman | 24,995.3 | 52,113.9 | 1856.3 | 1995.8 | 0.1 | 0.0 |
Saudi Arabia | 141,952.6 | 294,594.0 | 10,671.5 | 13,803.3 | 3.4 | 1.3 |
Mexico | 47,235.8 | 93,199.4 | 8840.0 | 6096.1 | 150.4 | 75.1 |
Pakistan | 21,365.4 | 42,249.9 | 3592.6 | 3032.5 | 165.4 | 84.2 |
USA | 111,868.7 | 188,404.2 | 35,491.8 | 49,294.8 | 992.6 | 385.2 |
United Kingdom | 604.6 | 606.3 | 330.7 | 850.1 | 1.8 | 0.7 |
Ireland | 141.9 | 153.0 | 145.1 | 423.5 | 4.9 | 1.9 |
Iceland | 1617.9 | 1286.8 | 353.8 | 904.5 | 0.0 | 0.0 |
Norway | 2392.1 | 1917.8 | 965.5 | 944.0 | 4.3 | 1.6 |
References
- IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 29 January 2023).
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Cardella, U.; Decker, L.; Klein, H. Economically viable large-scale hydrogen liquefaction. IOP Conf. Ser. Mater. Sci. Eng. 2017, 171, 012013. [Google Scholar] [CrossRef]
- Ortiz Cebolla, R.; Dolci, F.; Weidner Ronnefeld, E. Assessment of Hydrogen Delivery Options: SCIENCE FOR POLIY BRIEFS. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC130442 (accessed on 29 January 2023).
- Uhrig, R.E.; Schultz, K.R.; Bogart, S.L. Implementing the “Hydrogen Economy” with Synfuels. 2007. Available online: https://www.watergas.nu/uploaded/Fischer%20Tropsch_Su07Uhrig_3.pdf (accessed on 29 January 2023).
- Steinberg, M.; Dang, V.D. Production of Synthetic Methanol from Air and Water Using Controlled Thermonuclear Reactor Power—I. Technology and Energy Requirement. In Energy Conversion; Elsevier: Amsterdam, The Netherlands, 1977; pp. 97–112. Available online: https://www.sciencedirect.com/science/article/abs/pii/0013748077900808 (accessed on 29 January 2023).
- Lewis, J.G.; Martin, A.J. Method for Obtaining Carbon Dioxide from the Atmosphere and for Production of Fuels. U.S. Patent 4,140,602, 30 March 1976. [Google Scholar]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the transport sector: A review of production costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Schemme, S.; Breuer, J.L.; Köller, M.; Meschede, S.; Walman, F.; Samsun, R.C.; Peters, R.; Stolten, D. H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. Int. J. Hydrogen Energy 2020, 45, 5395–5414. [Google Scholar] [CrossRef]
- Christensen, A.; Petrenko, C. CO2-Based Synthetic Fuel: Assessment of Potential European Capacity and Environmental Performance. Available online: https://theicct.org/publication/co2-based-synthetic-fuel-assessment-of-potential-european-capacity-and-environmental-performance/ (accessed on 29 January 2023).
- Verkehrswende, A. The Future Cost of Electricity-Based Synthetic Fuels. Available online: https://www.agora-energiewende.de/fileadmin/Projekte/2017/SynKost_2050/Agora_SynKost_Study_EN_WEB.pdf (accessed on 29 January 2023).
- Loulou, R.; Labriet, M. ETSAP-TIAM: The TIMES integrated assessment model Part I: Model structure. Comput. Manag. Sci. 2008, 5, 7–40. [Google Scholar] [CrossRef]
- Schemme, S. Techno-ökonomische Bewertung von Verfahren zur Herstellung von Kraftstoffen aus H2 und CO2; Schriften des Forschungszentrums Jülich; Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag: Jülich, Germany, 2020; Volume 511. [Google Scholar]
- Houmy, H.; Siala, K.; Buchenberg, P.; Addanki, T.; Odersky, L.; Candas, S. tum-ens/pyGRETA: Multiple Updates. 2022. Available online: https://zenodo.org/record/6472409#.Y-3GCq1By3A (accessed on 29 January 2023). [CrossRef]
- Dorfner, J.; Schönleber, K.; Dorfner, M.; Candas, S. tum-ens/urbs: urbs v1.0.1. 2019. Available online: https://zenodo.org/record/3265960#.Y-3GK61By3A (accessed on 29 January 2023). [CrossRef]
- GADM. GADM Maps and Data, 2018–2022. Available online: https://gadm.org/ (accessed on 29 January 2023).
- Global Modeling and Assimilation Office. MERRA-2 tavg1_2d_rad_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Radiation Diagnostics, Version 5.12.4. 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2T1NXRAD_5.12.4/summary (accessed on 29 January 2023). [CrossRef]
- Global Modeling and Assimilation Office. tavg1_2d_slv_Nx: MERRA 2D IAU Diagnostic, Single Level Meteorology, Time Average 1-Hourly Version 5.2.0. 2015. Available online: https://disc.gsfc.nasa.gov/datasets/MAT1NXSLV_5.2.0/summary (accessed on 29 January 2023). [CrossRef]
- GWA. Global Wind Atlas 3.0, a Free, Web-Based Application Developed, Owned and Operated by the Technical University of Denmark (DTU). The Global Wind Atlas 3.0 Is Released in Partnership with the World Bank Group, Utilizing data Provided by Vortex, Using Funding Provided by the Energy Sector Management Assistance Program (ESMAP). 2022. Available online: https://windenergy.dtu.dk/english/news/nyhed?id=3f952ab8-0be0-4ab5-8962-0b787f84503a (accessed on 29 January 2023).
- Ryberg, D.S.; Tulemat, Z.; Stolten, D.; Robinius, M. Uniformly constrained land eligibility for onshore European wind power. Renew. Energy 2020, 146, 921–931. [Google Scholar] [CrossRef]
- ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. 2017. Available online: https://www.esa-landcover-cci.org/?q=webfm_send/84 (accessed on 29 January 2023).
- OpenStreetMap contributors. (2015) Planet Dump [Data file from 2021]. Available online: https://planet.openstreetmap.org/ (accessed on 29 January 2023).
- UNEP-WCMC; IUCN. Protected Planet: The World Database on Protected Areas (WDPA)/The World Database on Other Effective Area-Based Conservation Measures (WD-OECM)/The Global Database on Protected Areas Management Effectiveness (GD-PAME). 2021. Available online: https://www.protectedplanet.net/en/thematic-areas/protected-areas-management-effectiveness-pame?tab=Results (accessed on 29 January 2023).
- Stich, J.; Ramachandran, S.; Hamacher, T.; Stimming, U. Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia. Energy 2017, 135, 930–942. [Google Scholar] [CrossRef]
- Franzmann, D.; Heinrichs, H.; Lippkau, F.; Addanki, T.; Winkler, C.; Buchenberg, P.; Hamacher, T.; Blesl, M.; Linßen, J.; Stolten, D. Future Projections of Global Green Liquid Hydrogen Cost-Potentials for Export Needs. 2023. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 29 January 2023).
- IEA. The Future of Hydrogen: Seizing Today’s Opportunities: Report Prepared by the IEA for the G20, Japan. Available online: https://www.iea.org/events/the-future-of-hydrogen-seizing-todays-opportunities (accessed on 29 January 2023).
- Pietzcker, R.C.; Osorio, S.; Rodrigues, R. Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector. Appl. Energy 2021, 293, 116914. [Google Scholar] [CrossRef]
- Ausfelder, F.; Du Tran, D.; Cadavid Isaza, A.; de La Rua, C.; Gawlick, J.; Hamacher, T.E.A. 4. Roadmap des Kopernikus-Projektes P2X Phase II—OPTIONEN FÜR EIN NACHHALTIGES ENERGIE- SYSTEM MIT POWER-TO-X- TECHNOLOGIEN. Transformation–Anwendungen–Potenziale. 2022. Available online: https://juser.fz-juelich.de/record/910351/files/220821_DEC_P2X4_komplett_V04_Web.pdf (accessed on 29 January 2023).
- IEA. World Energy Outlook 2018. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 29 January 2023).
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Nel ASA. M Series Containerized: Proton PEM Hydrogen Generation Systems. Model MC250. 2020. Available online: https://nelhydrogen.com/product/m-series-containerized/ (accessed on 29 January 2023).
- A-ETSAP; IRENA. Water Desalination Using Renewable Energy: Technology Brief. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/IRENA-ETSAP-Tech-Brief-I12-Water-Desalination.pdf (accessed on 29 January 2023).
- FICHTNER. MENA Regional Water Outlook: Part II Desalination Using Renewable Energy: FINAL REPORT. Available online: https://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/projects/MENA_regional_water_outlook.pdf (accessed on 29 January 2023).
- Angloher, J.; Dreier, T. Techniken und Systeme zur Wasserstoffbereitstellung: Perspektiven einer Wasserstoff-Energiewirtschaft (Teil 1). Available online: https://www.ffe.de/wp-content/uploads/2015/10/wiba1_Wasserstoffbereitstellung-red.pdf (accessed on 29 January 2023).
- NREL. Annual Technology Baseline. 2021. Available online: https://atb.nrel.gov/ (accessed on 29 January 2023).
- Saadi, F.H.; Lewis, N.S.; McFarland, E.W. Relative costs of transporting electrical and chemical energy. Energy Environ. Sci. 2018, 11, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Lippkau, F.; Blesl, M.; Franzmann, D.; Addanki, T.; Buchenberg, P.; Heinrichs, H.; Kuhn, P.; Hamacher, T. Global Hydrogen and Synfuel Exchanges in an Emission free Energy System. Available online: https://www.slideshare.net/IEA-ETSAP/global-hydrogen-and-synfuel-exchanges-in-an-emission-free-energy-system (accessed on 29 January 2023).
- Blesl, M.; Lippkau, F.; Franzmann, D.; Addanki, T.; Buchenberg, P.; Heinrichs, H.; Kuhn, P.; Hamacher, T. Final Report—Verbundvorhaben ETSAP-Deutschland: Deutsche Wissenschaftliche Begleitung des IEA Technology Collaboration Programm on Energy Technology System Analysis (ETSAP TCP)—Teilprojekt: Modellierung von synthetischen Kraftstoffen und des Stromtransports. Available online: https://www.enargus.de/pub/bscw.cgi/?op=enargus.eps2&q=%2201225878/1%22&v=10&s=8&id=2000924 (accessed on 29 January 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchenberg, P.; Addanki, T.; Franzmann, D.; Winkler, C.; Lippkau, F.; Hamacher, T.; Kuhn, P.; Heinrichs, H.; Blesl, M. Global Potentials and Costs of Synfuels via Fischer–Tropsch Process. Energies 2023, 16, 1976. https://doi.org/10.3390/en16041976
Buchenberg P, Addanki T, Franzmann D, Winkler C, Lippkau F, Hamacher T, Kuhn P, Heinrichs H, Blesl M. Global Potentials and Costs of Synfuels via Fischer–Tropsch Process. Energies. 2023; 16(4):1976. https://doi.org/10.3390/en16041976
Chicago/Turabian StyleBuchenberg, Patrick, Thushara Addanki, David Franzmann, Christoph Winkler, Felix Lippkau, Thomas Hamacher, Philipp Kuhn, Heidi Heinrichs, and Markus Blesl. 2023. "Global Potentials and Costs of Synfuels via Fischer–Tropsch Process" Energies 16, no. 4: 1976. https://doi.org/10.3390/en16041976
APA StyleBuchenberg, P., Addanki, T., Franzmann, D., Winkler, C., Lippkau, F., Hamacher, T., Kuhn, P., Heinrichs, H., & Blesl, M. (2023). Global Potentials and Costs of Synfuels via Fischer–Tropsch Process. Energies, 16(4), 1976. https://doi.org/10.3390/en16041976