Analysis of Selected Dielectric Properties of Epoxy-Alumina Nanocomposites Cured at Stepwise Increasing Temperatures
Abstract
:1. Introduction
2. Experiment Description
2.1. Materials for Tested Samples
2.2. Preparation of Samples
2.3. Experimental Setup and Measuring Instruments
2.4. Experiment Procedure
3. Results of Dielectric Parameters Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nelson, J.K. Dielectric Polymer Nanocomposites; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Pleşa, I.; Noţingher, P.V.; Schlögl, S.; Sumereder, C.; Muhr, M. Properties of polymer composites used in high-voltage applications. Polymers 2016, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Shao-Long, Z.; Zhi-Min, D.; Wen-Ying, Z.; Hui-Wu, C. Past and future on nanodielectrics. IET Nanodielectr. 2018, 1, 41–47. [Google Scholar] [CrossRef]
- Hassan, Y.A.; Hu, H. Current status of polymer nanocomposite dielectrics for high-temperature applications. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106064. [Google Scholar] [CrossRef]
- Guastavino, F.; Ratto, A.; Torello, E.; Biondi, G. Aging tests on nanostructured enamels for winding wire insulation. IEEE Trans. Industr. Electron. 2014, 61, 5550–5557. [Google Scholar] [CrossRef]
- Hornak, J.; Mentlík, V.; Trnka, P.; Šutta, P. Synthesis and diagnostics of nanostructured micaless microcomposite as a prospective insulation material for rotating machines. Appl. Sci. 2019, 9, 2926. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Peng, S.; Hu, J.; He, J. Polymeric insulation materials for HVDC cables: Development, challenges and future perspective. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1308–1318. [Google Scholar] [CrossRef]
- Guo, M.; Fréchette, M.; David, É.; Demarquette, N.R.; Daigle, J.-C. Polyethylene/polyhedral oligomeric silsesquioxanes composites: Electrical insulation for high voltage power cables. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Mansour, D.-E.A.; Elsaeed, A.M.; Izzularab, M.A. The role of interfacial zone in dielectric properties of transformer oil-based nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3364–3372. [Google Scholar] [CrossRef]
- Primo, V.A.; García, B.; Burgos, J.C.; Pérez-Rosa, D. Investigation of the lightning impulse breakdown voltage of mineral oil based Fe3O4 nanofluids. Coatings 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xie, Y.; Liu, J.; Zhang, Z.; Zhuang, Q.; Kong, J. Improved energy storage performance of linear dielectric polymer nanodielectrics with polydopamine coated BN nanosheets. Polymers 2018, 10, 1349. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, K.A.; Kutz, R.B.; Miranda, M.; Curry, R.D. Design and testing of a compact 40 kV capacitor based on nanodielectric composites. In Proceedings of the 2019 IEEE Pulsed Power & Plasma Science (PPPS), Orlando, FL, USA, 23–29 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Chi, X.; Liu, W.; Li, S.; Zhang, X. The effect of humidity on dielectric properties of PP-based nano-dielectric. Materials 2019, 12, 1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.; Du, B.X. Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt. 2016, 1, 34–42. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Zha, J.-W.; Li, C.-Q.; Li, W.-K.; Wang, S.-J.; Wen, Y.; Dang, Z.-M. High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites. Compos. Sci. Technol. 2017, 144, 36–42. [Google Scholar] [CrossRef]
- Rybak, A.; Jarosinski, L.; Gaska, K.; Kapusta, C. Graphene nanoplatelet-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity. Polym. Compos. 2018, 39, E1682–E1691. [Google Scholar] [CrossRef]
- Rybak, A. Processing influence on thermal conductivity of polymer nanocomposites. In Processing of the Polymer Nanocomposites; Kenig, S., Ed.; Carl Hanser Verlag GmbH & Co.: Munich, Germany, 2019; pp. 463–487. [Google Scholar] [CrossRef]
- Lewis, T.J. Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 812–825. [Google Scholar] [CrossRef]
- Couderc, H.; Fréchette, M.F.; Savoie, S.; David, E. Nanofiller effect during post-heat treatment of micro-loaded epoxy. In Proceedings of the 2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), West Lafayette, IN, USA, 17–20 October 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Lewis, T.J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 739–753. [Google Scholar] [CrossRef]
- Fréchette, M.F.; Preda, I.; Castellon, J.; Krivda, A.; Veillette, R.; Trudeau, M.; David, E. Polymer composites with a large nanofiller content: A case study involving epoxy. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 434–443. [Google Scholar] [CrossRef]
- Adnan, M.M.; Tveten, E.G.; Glaum, J.; Ese, M.-H.G.; Hvidsten, S.; Glomm, W.; Einarsrud, M.-A. Epoxy-based nanocomposites for high-voltage insulation: A review. Adv. Electron. Mater. 2018, 5, 1800505. [Google Scholar] [CrossRef]
- Kuruvilla, S.P.; Renukappa, N.M.; Rajan, J.S. Development of epoxy with nano and micro fillers for core insulation of composite insulators. In Proceedings of the 2019 International Conference on High Voltage Engineering and Technology (ICHVET), Hyderabad, India, 7–8 February 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Li, Z.; Okamoto, K.; Ohki, Y.; Tanaka, T. The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 675–681. [Google Scholar] [CrossRef]
- Parmar, A.K.; Patel, R.R. Dielectric properties of alumina based epoxy composites for electrical insulation. In Proceedings of the 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India, 4–5 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Castellon, J.; Nguyen, H.N.; Agnel, S.; Toureille, A.; Fréchette, M.F.; Savoie, S.; Krivda, A.; Schmidt, L.E. Electrical properties analysis of micro and nano composite epoxy resin materials. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 651–658. [Google Scholar] [CrossRef]
- Yanashima, R.; Hirai, N.; Ohki, Y. Effects of addition of MgO fillers with various sizes and co-addition of nano-sized SiO2 fillers on the dielectric properties of epoxy resin. In Proceedings of the 2017 International Symposium on Electrical Insulating Materials (ISEIM), Toyohashi, Japan, 11–15 September 2017; pp. 650–653. [Google Scholar] [CrossRef]
- Faiza Khattak, A.; Alahamdi, A.A.; Iqbal, M.B. Degradation performance investigation of hydrothermally stressed epoxy micro and nanocomposites for high voltage insulation. Polymers 2022, 14, 1094. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Gao, N.; Jun, H.; Zhang, G.; Peng, Z. Investigation of the effects of nano-filler on dielectric properties of epoxy based composites. In Proceedings of the 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, China, 19–23 July 2009; pp. 804–807. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M.J. Dielectric properties of epoxy-Al2O3 nanocomposite system for packaging applications. IEEE Trans. Compon. Packag. Technol. 2010, 33, 373–385. [Google Scholar] [CrossRef]
- Jiang, P.; Yu, J.; Huang, X. Influence of interface chemistry on dielectric properties of epoxy/alumina nanocomposites. In Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA, 7–10 June 2015; pp. 621–624. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, H.; Guo, Z.; Peng, Z. Dielectric properties of epoxy-Al2O3 nanocomposites. In Proceedings of the 2016 IEEE International Conference on Dielectrics, Montpellier, France, 3–7 July 2016; pp. 1081–1084. [Google Scholar] [CrossRef]
- Samuel, J.G.C.; Lafon-Placette, S.; Fu, M.; Howard, P.J.; Perrot, F. Epoxy-alumina nanocomposites: Advanced materials for high-voltage insulation? In Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Montreal, QC, Canada, 14–17 October 2012; pp. 573–576. [Google Scholar] [CrossRef]
- Kozako, M.; Yamano, S.; Kido, R.; Ohki, Y.; Kohtoh, M.; Okabe, S.; Tanaka, T. Preparation and preliminary characteristic evaluation of epoxy/alumina nanocomposites. In Proceedings of the 2005 International Symposium on Electrical Insulating Materials, (ISEIM 2005), Kitakyushu, Japan, 5–9 June 2005; Volume 1, pp. 231–234. [Google Scholar] [CrossRef]
- Peihong, Z.; Lingyun, G.; Gang, L.; Qingquan, L. Study on dielectric characteristics of nano-Al2O3 composite polyimide film. In Proceedings of the 2006 IEEE 8th International Conference on Properties & Applications of Dielectric Materials, Bali, Indonesia, 26–30 June 2006; pp. 759–762. [Google Scholar] [CrossRef]
- Li, Z.; Okamoto, K.; Ohki, Y.; Tanaka, T. Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of micro-Al2O3 epoxy composite. IEEE Trans. Dielectr. Electr. Insul 2010, 17, 653–661. [Google Scholar] [CrossRef]
- Yu, S.; Yu, X.; Lian, Z.; Wang, S.; Nie, Y.; Li, S. Effect of nano-Al2O3 and micro-Al(OH)3 co-doping on epoxy resin properties. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Dąda, A.; Błaut, P. Research on dielectric parameters of epoxy resin based nanocomposites using the impedance spectroscopy method. Prz. Elektrotech. 2021, 97, 234–237. [Google Scholar] [CrossRef]
- Elantas Europe. Epoxylite 235SG Trickle Impregnating Resin; Product information; Elantas Europe: Hamburg, Germany, 2007. [Google Scholar]
- May, C.A. Epoxy Resins: Chemistry and Technology, 2nd ed.; Marcel Dekker Inc.: New York, NY, USA, 1988. [Google Scholar]
- Ellis, B. Chemistry and Technology of Epoxy Resins; Springer Science+Business Media: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Alhabill, F.N.; Ayoob, R.; Andritsch, T.; Vaughan, A.S. Effect of resin/hardener stoichiometry on electrical behavior of epoxy networks. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3739–3749. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, I.A.; Chalashkanov, N.; Dissado, L.A.; Vaughan, A.S.; Andritsch, T. The nature of the gamma dielectric relaxation in diglycidyl ether Bisphenol-A (DGEBA) based epoxies. Polymer 2022, 249, 124861. [Google Scholar] [CrossRef]
- Li, J.; Guo, P.; Kong, X.; Wang, Y.; Li, F.; Du, B. Curing degree dependence of dielectric properties of bisphenol-A-based epoxy resin cured with methyl hexahydrophthalic anhydride. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 2072–2079. [Google Scholar] [CrossRef]
- Li, J.; Aung, H.H.; Du, B. Curing regime-modulating insulation performance of anhydride-cured epoxy resin: A review. Molecules 2023, 28, 547. [Google Scholar] [CrossRef]
- Sigma-Aldrich Corp. Aluminum Oxide Nanopowder, 13 nm Primary Particle Size-Product Specification; Sigma-Aldrich Corp.: St. Louis, MS, USA, 2022. [Google Scholar]
- Sigma-Aldrich Corp. Aluminum Oxide Nanopowder, <50 nm Particle Size (TEM)-Product Specification; Sigma-Aldrich Corp.: St. Louis, MS, USA, 2022. [Google Scholar]
- Preetha, P.; Thomas, M.J. AC breakdown characteristics of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1526–1534. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer: Berlin, Germany, 2003. [Google Scholar]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy. Theory, Experiment, and Applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Solartron Analytical. 1260A Impedance/Gain-Phase Analyzer; Operating Manual; Solartron Analytical: Wokingham, UK, 1996. [Google Scholar]
- Solartron Analytical. 1296A Dielectric Interface; User guide; Solartron Analytical: Wokingham, UK, 2003. [Google Scholar]
- IEC 62631-2-1:2018; Dielectric and Resistive Properties of Solid Insulating Materials-Part 2-1: Relative Permittivity and Dissipation Factor-Technical Frequencies (0.1 Hz–10 MHz)-AC Methods. IEC: Geneva, Switzerland, 2018.
- ASTM D150-18; Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation. ASTM: West Conshohocken, PA, USA, 2018.
- IEC 60085:2007; Electrical Insulation-Thermal Evaluation and Designation. IEC: Geneva, Switzerland, 2007.
- Jungang, G.; Shigang, S.; Yangfang, L.; Deling, L. Curing kinetics and thermal property characterization of bisphenol-F epoxy resin and DDS system. Int. J. Polym. Mater. Polym. Biomater. 2004, 53, 341–354. [Google Scholar] [CrossRef]
- Saeedi, I.A.; Vaughan, A.S.; Andritsch, T.; Virtanen, S. The effect of curing conditions on the electrical properties of an epoxy resin. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 461–464. [Google Scholar] [CrossRef] [Green Version]
- Preda., I.; Couderc, H.; Fréchette, M.; Savoie, S.; Gao, F.; Nigmatullin, R.; Thompson, S.; Castellon, J. Dielectric response of various partially cured epoxy nanocomposites. In Proceedings of the 2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico, 16–19 October 2011; pp. 660–663. [Google Scholar] [CrossRef]
- Kochetov, R.; Andritsch, T.; Morshuis, P.H.F.; Smit, J.J. Anomalous behaviour of the dielectric spectroscopy response of nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 107–117. [Google Scholar] [CrossRef]
- Eloundou, J.P. Dipolar relaxations in an epoxy–amine system. Eur. Polym. J. 2002, 38, 431–438. [Google Scholar] [CrossRef]
- Livi, A.; Levita, V.; Rolla, P.A. Dielectric behavior at microwave frequencies of an epoxy resin during crosslinking. J. Appl. Polymer. Sci. 1993, 50, 1583–1590. [Google Scholar] [CrossRef]
- Martinez-Vega, J. Dielectric Materials for Electrical Engineering; Wiley-ISTE: London, UK, 2013. [Google Scholar]
- Samet, M.; Levchenko, V.; Boiteux, G.; Seytre, G.; Kallel, A.; Serghei, A. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. J. Chem. Phys. 2015, 142, 194703. [Google Scholar] [CrossRef] [PubMed]
- Tsagaropoulos, G.; Eisenberg, A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 1995, 28, 6067–6077. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, J.X.; Li, Q.; Chen, W.; Zhang, X. The influence of high content nano-Al2O3 on the properties of epoxy resin composites. Polym. Plast. Technol. Eng. 2009, 48, 384–388. [Google Scholar] [CrossRef]
Filler Content wt% (%) | Inter-Particle Distance (nm) | Relative Distance (1) | FSA (km2/m3) |
---|---|---|---|
Al2O3 nanoparticle dimension 13 nm | |||
0.5 | 80.3 | 6.17 | 0.654 |
1 | 60.9 | 4.69 | 1.313 |
3 | 38.0 | 2.92 | 3.998 |
5 | 29.8 | 2.29 | 6.762 |
Al2O3 nanoparticle dimension <50 nm | |||
0.5 | <308.7 | 6.17 | >0.170 |
1 | <234.4 | 4.69 | >0.341 |
3 | <146.2 | 2.92 | >1.039 |
5 | <114.7 | 2.29 | >1.758 |
Specimens Set No. | Nanoparticle Size | Specimen Composition |
---|---|---|
1 | - | Neat epoxy resin |
2 | 13 nm | epoxy resin + 0.5% Al2O3 (wt) |
3 | 13 nm | epoxy resin + 1.0% Al2O3 (wt) |
4 | 13 nm | epoxy resin + 3.0% Al2O3 (wt) |
5 | 13 nm | epoxy resin + 5.0% Al2O3 (wt) |
6 | 50 nm | epoxy resin + 0.5% Al2O3 (wt) |
7 | 50 nm | epoxy resin + 1.0% Al2O3 (wt) |
8 | 50 nm | epoxy resin + 3.0% Al2O3 (wt) |
9 | 50 nm | epoxy resin + 5.0% Al2O3 (wt) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąda, A.; Błaut, P.; Kuniewski, M.; Zydroń, P. Analysis of Selected Dielectric Properties of Epoxy-Alumina Nanocomposites Cured at Stepwise Increasing Temperatures. Energies 2023, 16, 2091. https://doi.org/10.3390/en16052091
Dąda A, Błaut P, Kuniewski M, Zydroń P. Analysis of Selected Dielectric Properties of Epoxy-Alumina Nanocomposites Cured at Stepwise Increasing Temperatures. Energies. 2023; 16(5):2091. https://doi.org/10.3390/en16052091
Chicago/Turabian StyleDąda, Anna, Paweł Błaut, Maciej Kuniewski, and Paweł Zydroń. 2023. "Analysis of Selected Dielectric Properties of Epoxy-Alumina Nanocomposites Cured at Stepwise Increasing Temperatures" Energies 16, no. 5: 2091. https://doi.org/10.3390/en16052091
APA StyleDąda, A., Błaut, P., Kuniewski, M., & Zydroń, P. (2023). Analysis of Selected Dielectric Properties of Epoxy-Alumina Nanocomposites Cured at Stepwise Increasing Temperatures. Energies, 16(5), 2091. https://doi.org/10.3390/en16052091