Study on Optimization of Copper to Aluminum for Locomotive Finned Tube Radiator
Abstract
:1. Introduction
2. CFD Simulation and Test Verification
2.1. Model Establishment
2.2. Boundary Conditions and Governing Equations
2.3. Meshing and Test Verification
3. Performance Analysis of Serrated Fin Window Radiator
4. Research on the Influence of Different Parameters
5. Conclusions
- (1)
- The test data are in good agreement with the simulation results, and the change trend is consistent, which proves the rationality of the simulation method in this paper and that it can be used to predict the actual situation.
- (2)
- The heat transfer coefficient of the zigzag fin window aluminum heat sink is higher than that of the louver copper fin within the range of the test air flow rate, which is increased by about 1.3%, and the average pressure is reduced by about 24.59%, the turbulent flow energy is increased by about 57.78% on average, and the turbulent dissipation rate is decreased by about 18.13% on average, and, combined with the field synergy theory, the synergy angle is reduced by about 2.3°, and the performance of the new structure radiator is better.
- (3)
- The fin window factor has the greatest influence on the heat transfer coefficient and the least influence on the pressure. The baffle factor has a higher influence on the heat transfer coefficient. The heat transfer coefficient is the largest when the height is 0.15 mm, and the height change has the highest influence on the pressure. The angle factor has the least influence on the heat transfer effect and has a higher influence on the pressure.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
V | max element size, mm3 |
ρ | Air density, kg/m3 |
k | Turbulent kinetic energy, m2/s2 |
References
- Kong, L.; Sun, S. The application of aluminum radiator on foreign locomotives. Railw. Locomot. Mot. Car. 2011, 3, 1–5. [Google Scholar]
- Li, W.; Yu, Z. Heat exchangers for cooling supercritical carbon dioxide and heat transfer enhancement: A review and assessment. Energy Rep. 2021, 105, 4085–4105. [Google Scholar] [CrossRef]
- Muhammad, A.; Arafat, A.B. Heat and mass transfer for compact heat exchanger (CHXs) design: A state-of-the-art review. Int. J. Heat Mass Transf. 2018, 563, 359–380. [Google Scholar]
- Máté, P.; Gábor, S.; Károly, J. CFD analysis and heat transfer characteristics of finned tube heat exchangers. Pollack Period. 2019, 32, 156–168. [Google Scholar]
- Kim, D.Y.; Cheon, H. A CFD-based design optimization of air-cooled passive decay heat removal system. Nucl. Eng. Des. 2018, 102, 351–363. [Google Scholar] [CrossRef]
- Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Appl. Therm. Eng. 2011, 31, 1086–1100. [Google Scholar] [CrossRef] [Green Version]
- Haider, P.; Freko, P.; Acher, T.; Rehfeldt, S.; Klein, H. Influence of inlet configuration and distributor geometry on the performance of cryogenic plate-fin heat exchangers. Appl. Therm. Eng. 2021, 120, 902–915. [Google Scholar] [CrossRef]
- Gu, Y.; Liao, Q.; Ding, Y.; Cheng, M.; Wang, H.; Zhu, X. Experimental study of moist air condensation outside three-dimensional finned tubes with different fin parameters. Int. J. Heat Mass Transf. 2021, 102, 501–516. [Google Scholar] [CrossRef]
- Dzierzgowski, M. Verification and improving the heat transfer model in radiators in the wide change operating parameters. Energies 2021, 14, 6543. [Google Scholar] [CrossRef]
- Sebastian, U.; Matthias, B.; Samira, G.; Robin, W.; Uwe, H. Experimental study on the air-side thermal-flow performance of additively manufactured heat exchangers with novel fin designs. Int. J. Therm. Sci. 2019, 85, 305–319. [Google Scholar]
- Effendi, N.S.; Byoung, G.K.; Jeong, S.P.; Kyoung, J.K. Fin spacing effects on the heat transfer performances of hollow hybrid fin heat sinks under air impingement. J. Mech. Sci. Technol. 2019, 182, 175–177. [Google Scholar]
- Abhishek, P.; Prabha, C. Experimental investigations on thermal performance of solar air heater with wavy fin absorbers. Heat Mass Transf. 2019, 65, 2651–2666. [Google Scholar]
- Zullo, F.; Giorgi, C. On the optimal shape and efficiency improvement of fin heat sinks. Energies 2023, 16, 316. [Google Scholar] [CrossRef]
- Rajesh, B.C.; Kumar, P.; Roy, S.; Kanungo, D. CFD analysis of an economizer for heat transfer enhancement using serrated finned tube equipped with variable fin segments. Mater. Today Proc. 2020, 45, 1632–1644. [Google Scholar] [CrossRef]
- Pungaiah, S.S.; Kailasanathan, C.K. Thermal analysis and optimization of nano coated radiator tubes using computational fluid dynamics and taguchi method. Coatings 2020, 10, 804. [Google Scholar] [CrossRef]
- Deepika, K.; Sarviya, R.M. Application based review on enhancement of heat transfer in heat exchangers tubes using inserts. Mater. Today Proc. 2021, 44, 2362–2365. [Google Scholar] [CrossRef]
- Le, X.H.K.; Pop, I.; Sheremet, M.A. Thermogravitational convective flow and energy transport in an electronic cabinet with a heat-generating element and solid/porous finned heat sink. Mathematics 2022, 10, 34. [Google Scholar] [CrossRef]
- Chen, H.T.; Chang, Y.L.; Lin, P.Y.; Chiu, Y.J.; Chang, J.R. Numerical study of mixed convection heat transfer for vertical annular finned tube heat exchanger with experimental data and different tube diameters. Int. J. Heat Mass Transf. 2018, 22, 931–947. [Google Scholar] [CrossRef]
- Dawid, T.; Jan, T.; Marcin, T. Experimental verification of an analytical mathematical model of a round or oval tube two-row car radiator. Energies 2020, 13, 3399. [Google Scholar]
- Chikurde, R.C.; Kothavale, B.S.; Sane, N.K. Numerical validation of natural convection heat transfer with horizontal rectangular fin array using straight knurling patterns on fins—Correlation for Nusselt number. Heat Transf. Asian Res. 2019, 12, 1622–1647. [Google Scholar] [CrossRef]
- René, H.; Hannes, V.; Leopold, P. Optimized heat exchanger integration within a TSA-process based on experimentally evaluated heat transfer correlations for finned-tubes in fluidized-beds. Powder Technol. 2019, 356, 957–973. [Google Scholar]
- Malavasi, M.; Cattani, L.; Vocale, P.; Bozzoli, F.; Rainieri, S. Thermal characterisation of triple tube heat exchangers by parameter estimation approach. Int. J. Heat Mass Transf. 2021, 8, 1001–1016. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Čikić, A.; Muhič, S.; Holik, M. Heat transfer correlations for star-shaped fins. Appl. Sci. 2021, 25, 5912. [Google Scholar] [CrossRef]
- Bisri, H.; Wijayanto, D.S.; Ranto. Effect of biodiesel and radiator tube heater on fuel consumption of compression ignition engine. IOP Conf. Ser. Mater. Sci. Eng. 2018, 288, 756–768. [Google Scholar] [CrossRef]
- Kasper, L.; Pernsteiner, D.; Koller, M.; Schirrer, A.; Jakubek, S.; Hofmann, R. Numerical studies on the influence of natural convection under inclination on optimal aluminium proportions and fin spacings in a rectangular aluminium finned latent-heat thermal energy storage. Appl. Therm. Eng. 2020, 22, 150–165. [Google Scholar] [CrossRef]
- Yu, C.; Xue, X.Y.; Shi, K.; Shao, M.Z.; Liu, Y. Comparative study on CFD turbulence models for the flow field in air cooled radiator. Processes 2020, 8, 1687. [Google Scholar] [CrossRef]
- Savino, S.; Nonino, C. Header shape effect on the inlet velocity distribution in cross-flow double-layered microchannel heat sinks. Fluids 2022, 7, 7. [Google Scholar] [CrossRef]
- Wijayanto, D.S.; Pambudi, N.A.; Wijaya, Y.; Rohman, N.; Bugis, H. Biodiesel fuel blend performance evaluation using a radial finned tube heater. World J. Eng. 2018, 15, 1122–1135. [Google Scholar] [CrossRef]
- Wang, B.; Feng, S.; Liu, J.; Jiang, Y.K. Analysis of the signal-to-noise ratio of the cold-side fins of the airfoil tube radiator for construction vehicles. J. Eng. Thermophys. 2018, 39, 1849–1857. [Google Scholar]
- Sebastian, U.; Matthias, B.; Johanna, T.; Uwe, H. Experimental study of the natural convection heat transfer performance for finned oval tubes at different tube tilt angles. Exp. Therm. Fluid Sci. 2019, 55, 100–108. [Google Scholar]
- Haghighi, S.S.; Goshayeshi, H.R.; Safaei, M.R. Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. Int. J. Heat Mass Transf. 2018, 26, 640–647. [Google Scholar] [CrossRef]
- Gragnaniello, L.; Iasiello, M.; Mauro, G.M. Multi-Objective optimization of a heat sink for the thermal management of a peltier-cell-based biomedical refrigerator. Energies 2022, 15, 7352. [Google Scholar] [CrossRef]
- Talebi, M.; Lalgani, F. Assessment of thermal behavior of variable step twist in the elliptical spiral tube heat exchanger. Int. J. Therm. Sci. 2021, 8, 100–108. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, J.; Wang, B.; Qian, X.; Wang, X. The influence of airfoil fins on the heat dissipation performance of tube fin radiator. Sci. Technol. Eng. 2020, 20, 1163–1170. [Google Scholar]
- Maisuria, M.B.; Sonar, D.M.; Rathod, M.K.; Bhatt, M.K. Experimental and analytical investigation on an automobile radiator with CuO/EG-water based nanofluid as coolant. Heat Transf. Asian Res. 2019, 48, 160–176. [Google Scholar] [CrossRef]
- Mohammad, S.D.; Hassan, H. Numerical study on performance enhancement of the fin and tube heat exchanger using different nanoparticle shapes. Int. J. Environ. Sci. Technol. 2021, 12, 1–16. [Google Scholar]
- Nóbrega, C.S.; Kamal, A.R.; Lino, F. Thermal performance of bare and finned tubes submersed in nano-PCM mixture. J. Braz. Soc. Mech. Sci. Eng. 2021, 6, 105–117. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Ahn, H.S. A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger. Int. J. Heat Mass Transf. 2021, 25, 1100–1117. [Google Scholar] [CrossRef]
- Faridi, K.R.; Ghafouri, A.; Halalizade, M. Numerical study of the effects of geometric parameters and nanofluid properties on heat transfer and pressure drop in helical tubes. SN Appl. Sci. 2021, 16, 1805–1819. [Google Scholar]
- Jin, R.; Yang, X.; Yang, L.; Du, X.; Yang, Y. Thermo-flow performances of air-cooled condenser cell with oblique finned tube bundles. Int. J. Therm. Sci. 2019, 135, 1002–1017. [Google Scholar] [CrossRef]
- Wadhah, H.; Doori, A. Numerical estimation of pressure drop and heat transfer characteristics in annular-finned channel heat exchangers with different channel configurations. Heat Transf. Asian Res. 2019, 22, 1280–1291. [Google Scholar]
- Muhammad, A.; Hassan, A.; Shahid, I.; Sajid, K.; Farukh, F. Effect of condensate flow rate on retention angle on horizontal low-finned tubes. Therm. Sci. J. 2018, 12, 435–441. [Google Scholar]
- Gülay, Y. Experimental investigation of forced convection heat transfer over horizontal tube with conical fins for different fin spacings and different inclination angles. Trans. Can. Soc. Mech. Eng. 2018, 56, 427–435. [Google Scholar]
- Promvonge, P.; Skullong, S. Enhanced heat transfer in rectangular duct with punched winglets. Chin. J. Chem. Eng. 2020, 28, 130–148. [Google Scholar] [CrossRef]
- Shubham, V.; Harishchandra, T. Comparison of natural convection heat transfer from a vertical cylinder fitted with annular step fins and annular triangular fins. Int. J. Veh. Struct. Syst. 2018, 22, 363–366. [Google Scholar]
- Li, J. Research on Numerical Simulation and Structure Optimization of Tube-Fin Double-Channel Radiator; Dalian Jiaotong University: Dalian, China, 2017. [Google Scholar]
- Ankur, K.; Jyeshtharaj, B.J.; Arun, K.N. A comparison of thermal-hydraulic performance of various fin patterns using 3D CFD simulations. Int. J. Heat Mass Transf. 2017, 56, 336–356. [Google Scholar]
- Fang, J.; Yin, X.; Wang, A.; Sun, X.; Liu, Y.; Cao, F. Cooling performance enhancement for the automobile transcritical CO2 air conditioning system with various internal heat exchanger effectiveness. Appl. Therm. Eng. 2021, 196, 117274. [Google Scholar] [CrossRef]
- Guan, X.; Xie, Z.; Nan, G.; Xi, K.; Lu, Z.; Ge, Y. Thermal–Hydrodynamic behavior and design of a microchannel pin-fin hybrid heat sink. Micromachines 2022, 13, 2136. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Zhang, Y.; Geng, L. ANSYS Icepak; Publishing House of Electronics Industry: Beijing, China, 2021; pp. 302–331. [Google Scholar]
- Menon, S.H.; Rao, A.R.; Mathew, J.; Jayaprakash, J. Derivation of navier-stokes equation in rotational frame for engineering flow analysis. Int. J. Thermofluids 2021, 11, 100096. [Google Scholar] [CrossRef]
- Chaoqun, L. New ideas on governing equations of fluid dynamics. J. Hydrodyn. 2021, 6, 1–6. [Google Scholar]
- Javier, A.; Gabriel, N.G.; Ricardo, O. A posteriori error analysis of a mixed-primal finite element method for the boussinesq problem with temperature-dependent viscosity. J. Sci. Comput. 2019, 10, 887–917. [Google Scholar]
- Said, M.; Hassan, E.G. On some initial and initial boundary value problems for linear and nonlinear boussinesq models. Symmetry 2019, 20, 1273. [Google Scholar]
- Deng, X.; Li, E.; Wang, H. A variable-fidelity multi-objective evolutionary method for polygonal pin fin heat sink design. Sustainability 2023, 15, 1104. [Google Scholar] [CrossRef]
- Han, Z.; Guo, J.; Zhang, H.; Chen, J.; Huai, X.; Cui, X. Experimental and numerical studies on novel airfoil fins heat exchanger in flue gas heat recovery system. Appl. Therm. Eng. 2021, 6, 850–865. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, C.; Yang, Z.; He, H.; Xia, E.; Xue, Z.; Li, L. One-dimension and three-dimension collaborative simulation study of the influence of non-uniform inlet airflow on the heat transfer performance of automobile radiators. Appl. Therm. Eng. 2021, 10, 1225–1238. [Google Scholar] [CrossRef]
- Li, F.; Zhu, W.; He, H. Numerical optimization on microchannel flow and heat transfer performance based on field synergy principle. Int. J. Heat Mass Transf. 2019, 20, 375–385. [Google Scholar] [CrossRef]
Parameters | Numerical Value |
---|---|
Heat sink height a (mm) | 180 |
Heat sink width b (mm) | 160 |
Heat sink pitch h (mm) | 2.33 |
Heat sink thickness d (mm) | 0.16 |
Longitudinal spacing of hot water pipes f (mm) | 22.5 |
Horizontal spacing of hot water pipes s (mm) | 16 |
Arc radius of hot water pipe R (mm) | 2 |
Hot water pipe height p (mm) | 19 |
Blinds height y (mm) | 3 |
Width of blinds x (mm) | 9 |
Serial Number | Intake Air Temperature (°C) | Air Velocity (m/s) | Inlet Water Temperature (°C) | Water Velocity (m/s) | Heat Transfer Coefficient (W·m−2·K−1) |
---|---|---|---|---|---|
1 | 39.73 | 5.85 | 85.58 | 0.6 | 74.09 |
2 | 41.61 | 7.42 | 83.05 | 0.6 | 86.46 |
3 | 41.61 | 8.59 | 78.80 | 0.6 | 92.38 |
4 | 41.84 | 10.74 | 76.70 | 0.6 | 101.77 |
5 | 41.64 | 12.86 | 73.68 | 0.6 | 107.63 |
6 | 43.05 | 14.99 | 72.48 | 0.6 | 110.90 |
7 | 43.18 | 17.16 | 71.58 | 0.6 | 115.06 |
Parameters | Numerical Value |
---|---|
Wing window width x (mm) | 3 |
Wing window height y (mm) | 15 |
Sawtooth-included angle (mm) | 90 |
Baffle height n (mm) | 0.3 |
Level\Factor | A Baffle Height (mm) | B Wing Window Width (mm) | C Sawtooth-Included Angle (°) |
---|---|---|---|
1 | 0 | 1 | 60 |
2 | 0.15 | 2 | 75 |
3 | 0.3 | 3 | 90 |
4 | 0.45 | 4 | 105 |
5 | 0.6 | 5 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Cui, H.; Fei, J. Study on Optimization of Copper to Aluminum for Locomotive Finned Tube Radiator. Energies 2023, 16, 2130. https://doi.org/10.3390/en16052130
Guan Y, Cui H, Fei J. Study on Optimization of Copper to Aluminum for Locomotive Finned Tube Radiator. Energies. 2023; 16(5):2130. https://doi.org/10.3390/en16052130
Chicago/Turabian StyleGuan, Ying, Hongjiang Cui, and Jiyou Fei. 2023. "Study on Optimization of Copper to Aluminum for Locomotive Finned Tube Radiator" Energies 16, no. 5: 2130. https://doi.org/10.3390/en16052130
APA StyleGuan, Y., Cui, H., & Fei, J. (2023). Study on Optimization of Copper to Aluminum for Locomotive Finned Tube Radiator. Energies, 16(5), 2130. https://doi.org/10.3390/en16052130