An Adaptive Joint Operating Parameters Optimization Approach for Active Direct Methanol Fuel Cells
Abstract
:1. Introduction
2. Methodology
2.1. Data Acquisition
2.2. Orthogonal Test
2.3. Experimental Analysis
2.4. Surrogate Models Prediction Performance
3. Experiment
3.1. Operating Parameters Optimization
3.2. Whale Optimization Algorithm and Joint Optimization
Algorithm 1 WOA algorithm |
|
- A total of 100 sets from the orthogonal tests are sorted in descending order in terms of output power (normalized).
- We select the data from these 100 initial tests and build the RBF model. The model serves as the objective function of the WOA. We set the output of 100 data sets as P and the input as X=. The range of each input quantity is shown in Table 1. We set the global maximum output power as and its input as .
- Based on the RBF model, the WOA is used to find the best input values. According to the range of input parameters, in the first generation of the WOA, we use one set of RBF model data as one WOA individual. Then, we randomly generate 100 individuals as the initial population by the WOA and screen out an individual with the highest output from those individuals. We assume that the output power of this individual is better than the original . In that case, the original will be replaced by the output power of this individual, and the input position of is used as the current WOA global optimal position .
- We generate the next generation population of WOA according to the overall WOA location update formula, continue to find the individual with the highest output power, and then update the global optimization position and the maximum output power . We set the algorithm to run 50 iterations. When the algorithm loop ends, we screen out 20 individuals from the final 100 individuals of the WOA with the highest output power.
- We screen 20 datasets from the original 100 datasets with the lowest output power and replace them with the 20 WOA individuals obtained in Step 4. We note the highest output power in those 100 datasets as Pbest.
- We update the RBF model with newly obtained 100 datasets and repeat Step 3. The procedure is repeated sequentially 150 times.
4. Results and Discussion
5. Conclusions
- Tests were conducted for operating parameters to verify their impacts on cell performance. Based on 100 orthogonal test results, an RBF model was built as the objective function for the WOA, which can reflect the correlations among the following operating parameters: methanol concentration , methanol flow rate , air flow rate , fuel cell operating temperature T, and the output power density P.
- An adaptive joint optimization method was proposed based on WOA. The optimized parameters were obtained by searching for the best input parameters combination within the inputs variation range. The power density was increased by 8.71%, which indicates that the proposed method could positively improve the performance of the active direct methanol fuel cell.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, W.; Lu, S.; Xiang, Y.; Jiang, S.P. Pt-based nanoparticles on non-covalent functionalized carbon nanotubes as effective electrocatalysts for proton exchange membrane fuel cells. RSC Adv. 2014, 4, 46265–46284. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2022, 15, e202101798. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, S.K.; Achmad, F.; Daud, W.R.W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energy 2009, 34, 6902–6916. [Google Scholar] [CrossRef]
- Chen, X.Y.; Li, T.C.; Shen, J.N.; Hu, Z.L. From structures, packaging to application: A system-level review for micro direct methanol fuel cell. Renew. Sustain. Energy Rev. 2017, 80, 669–678. [Google Scholar] [CrossRef]
- Hosseinloo, A.H.; Ehteshami, M.M. Shock and vibration effects on performance reliability and mechanical integrity of proton exchange membrane fuel cells: A critical review and discussion. J. Power Sources 2017, 364, 367–373. [Google Scholar] [CrossRef]
- Esmaeili, N.; Gray, E.M.; Webb, C.J. Non-Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications-A Review. Chemphyschem 2019, 20, 2016–2053. [Google Scholar] [CrossRef] [Green Version]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.N.; Al Makky, A.; Mooney, J.; Barouaji, A.; Carton, J.G.; Olabi, A.G. Development of Bi-polar plate design of PEM fuel cell using CFD techniques. Int. J. Hydrogen Energy 2017, 42, 25663–25685. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Fan, X.; Cui, Z.M.; Chen, T.; Dong, Z.; Li, C.M. Controllably self-assembled graphene-supported Au@Pt bimetallic nanodendrites as superior electrocatalysts for methanol oxidation in direct methanol fuel cells. J. Mater. Chem. A 2016, 4, 7352–7364. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, Y.; Shen, P.K.; Li, C.M.; Jiang, S.P. Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. J. Mater. Chem. A 2015, 3, 1961–1971. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, T.S. Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells. Electrochim. Acta 2005, 50, 3243–3252. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, A.Y.; Yan, Z.G.; Tan, Z.H.; Tang, Y.; Xia, H.R. Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields. Appl. Energy 2016, 179, 85–98. [Google Scholar] [CrossRef]
- Seo, S.H.; Lee, C.S. A study on the overall efficiency of direct methanol fuel cell by methanol crossover current. Appl. Energy 2010, 87, 2597–2604. [Google Scholar] [CrossRef]
- Chen, S.Z.; Ye, F.; Lin, W.M. Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst. Int. J. Hydrogen Energy 2010, 35, 8225–8233. [Google Scholar] [CrossRef]
- Yang, S.H.; Chen, C.Y.; Wang, W.J. An impedance study of an operating direct methanol fuel cell. J. Power Sources 2010, 195, 2319–2330. [Google Scholar] [CrossRef]
- Ozden, A.; Ercelik, M.; Ouellette, D.; Colpan, C.O.; Ganjehsarabi, H.; Hamdullahpur, F. Designing, modeling and performance investigation of bio-inspired flow field based DMFCs. Int. J. Hydrogen Energy 2017, 42, 21546–21558. [Google Scholar] [CrossRef]
- Junoh, H.; Jaafar, J.; Nordin, N.A.H.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Aziz, F.; Yusof, N. Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure. Membranes 2020, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Yang, Q.; Kianimanesh, A.; Freiheit, T.; Park, S.S.; Xue, D. A semi-empirical model considering the influence of operating parameters on performance for a direct methanol fuel cell. J. Power Sources 2011, 196, 10640–10651. [Google Scholar] [CrossRef]
- Taymaz, I.; Akgun, F.; Benli, M. Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC. Energy 2011, 36, 1155–1160. [Google Scholar] [CrossRef]
- Mallick, R.K.; Thombre, S.B.; Kothekar, K.P. An integral mathematical model of liquid feed passive DMFCs with non-isothermal effects and charge conservation phenomenon. J. Clean. Prod. 2018, 182, 654–671. [Google Scholar] [CrossRef]
- Tafaoli-Masoule, M.; Bahrami, A.; Elsayed, E.M. Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm. Energy 2014, 70, 643–652. [Google Scholar] [CrossRef]
- Charoen, K.; Prapainainar, C.; Sureeyatanapas, P.; Suwannaphisit, T.; Wongamornpitak, K.; Kongkachuichay, P.; Holmes, S.M.; Prapainainar, P. Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production. J. Clean. Prod. 2017, 142, 1309–1320. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, G.B.; Guo, T.; Jiao, K.; Huang, X.R. A three-dimensional multi-phase numerical model of DMFC utilizing Eulerian–Eulerian model. Appl. Therm. Eng. 2018, 132, 140–153. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Han, D.; Gwak, G.; Ju, H. Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions. Int. J. Hydrogen Energy 2017, 42, 1736–1750. [Google Scholar] [CrossRef]
- Tang, K.H.; Zhang, S.H.; Wu, Y.L. Optimization and control of fuel cell thermal management system based on neural network. Therm. Sci. 2021, 25, 2933–2939. [Google Scholar] [CrossRef]
- Liu, G.C.; Zhou, H.W.; Ding, X.N.; Li, X.P.; Zou, D.C.; Li, X.Y.; Wang, X.D.; Lee, J.K. Effect of fabrication and operating parameters on electrochemical property, of anode and cathode for direct methanol fuel cells. Energy Convers. Manag. 2016, 122, 366–371. [Google Scholar] [CrossRef]
- Jiang, J.H.; Li, Y.S.; Liang, J.R.; Yang, W.W.; Li, X.L. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Appl. Energy 2019, 252. [Google Scholar] [CrossRef]
- Yang, Q.N.; Chen, S.J.; Xiao, G.; Li, L.X.; Liu, T.; Feng, J.H. Joint operation of adaptive numerical simulation and adaptive optimization for direct methanol fuel cell performance improvement. J. Clean. Prod. 2021, 289. [Google Scholar] [CrossRef]
- Cao, L.Z.; Cui, G.Z.; Li, C.W.; Liu, L.F.; Zhang, X.F.; IEEE. The Research of Active Direct Methanol Fuel Cell Control System. In Proceedings of the 9th World Congress on Intelligent Control and Automation (WCICA), Taipei, Taiwan, 21–25 June 2011; pp. 299–302. [Google Scholar]
- Garg, A.; Panda, B.N.; Zhao, D.Y.; Tai, K. Framework based on number of basis functions complexity measure in investigation of the power characteristics of direct methanol fuel cell. Chemom. Intell. Lab. Syst. 2016, 155, 7–18. [Google Scholar] [CrossRef]
- Santiago, O.; Aranda-Rosales, M.; Navarro, E.; Raso, M.A.; Leo, T.J. Automated design of direct methanol fuel cell stacks: A quick optimization. Int. J. Hydrogen Energy 2019, 44, 10933–10950. [Google Scholar] [CrossRef]
- Karaoglan, M.U.; Ince, A.C.; Colpan, C.O.; Glusen, A.; Kuralay, N.S.; Muller, M.; Stolten, D. Simulation of a hybrid vehicle powertrain having direct methanol fuel cell system through a semi-theoretical approach. Int. J. Hydrogen Energy 2019, 44, 18981–18992. [Google Scholar] [CrossRef]
- Shakeri, N.; Rahmani, Z.; Noei, A.R.; Zamani, M. Direct methanol fuel cell modeling based on the norm optimal iterative learning control. Proc. Inst. Mech. Eng. Part I-J. Syst. Control. Eng. 2021, 235, 68–79. [Google Scholar] [CrossRef]
- Rocha, H. On the selection of the most adequate radial basis function. Appl. Math. Model. 2009, 33, 1573–1583. [Google Scholar] [CrossRef]
- Ji, F.; Min, B. Simulated Annealing ANN Approach for Parameter Optimization of Micro-scaled Flow Channels Formation by Electrochemical Machining. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.S. Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator. IEEE Access 2020, 8, 77013–77048. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
Parameter | Lower Limit | Upper Limit |
---|---|---|
mol/L | 2 mol/L | |
ccm | ccm | |
200 ccm | 1000 ccm | |
T | 30 °C | 70 °C |
Parameters | Values | ||||
---|---|---|---|---|---|
(mol/L) | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 |
(ccm) | 0.5 | 1.5 | 2.5 | 3.5 | 4.5 |
(ccm) | 200 | 400 | 600 | 800 | 1000 |
T (°C) | 30 | 40 | 50 | 60 | 70 |
No. | (mol/L) | T (°C) | No. | T (°C) | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 0.25 | 0.5 | 200 | 30 | 14 | 0.75 | 3.5 | 200 | 70 |
2 | 0.25 | 1.5 | 800 | 50 | 15 | 0.75 | 4.5 | 800 | 40 |
3 | 0.25 | 2.5 | 400 | 70 | 16 | 1.00 | 0.5 | 1000 | 50 |
4 | 0.25 | 3.5 | 1000 | 40 | 17 | 1.00 | 1.5 | 600 | 70 |
5 | 0.25 | 4.5 | 600 | 60 | 18 | 1.00 | 2.5 | 200 | 40 |
6 | 0.50 | 0.5 | 800 | 70 | 19 | 1.00 | 3.5 | 800 | 60 |
7 | 0.50 | 1.5 | 400 | 40 | 20 | 1.00 | 4.5 | 400 | 30 |
8 | 0.50 | 2.5 | 1000 | 60 | 21 | 1.50 | 0.5 | 600 | 40 |
9 | 0.50 | 3.5 | 600 | 30 | 22 | 1.50 | 1.5 | 200 | 60 |
10 | 0.50 | 4.5 | 200 | 50 | 23 | 1.50 | 2.5 | 800 | 30 |
11 | 0.75 | 0.5 | 400 | 70 | 24 | 1.50 | 3.5 | 400 | 50 |
12 | 0.75 | 1.5 | 1000 | 30 | 25 | 1.50 | 4.5 | 1000 | 70 |
13 | 0.75 | 2.5 | 600 | 50 |
(mol/L) | (ccm) | (ccm) | T (°C) |
---|---|---|---|
1.00 | 2.5 | 600 | 30 |
0.75 | 0.5 | 200 | 30 |
2.00 | 3.5 | 400 | 50 |
No. | (mol/L) | (ccm) | (ccm) | T (°C) | Power Density (mW/cm2) | |
---|---|---|---|---|---|---|
Simulation | Experiment | |||||
86 | 1.27 | 2.58 | 800 | 62 | 70.16 | 68.61 |
87 | 1.27 | 1.64 | 300 | 70 | 71.67 | 71.91 |
88 | 0.94 | 3.62 | 300 | 66 | 72.32 | 70.56 |
89 | 0.94 | 3.62 | 400 | 70 | 71.24 | 71.67 |
90 | 1.58 | 2.58 | 800 | 57 | 71.35 | 69.09 |
91 | 1.58 | 1.77 | 200 | 68 | 70.87 | 70.73 |
92 | 1.58 | 3.62 | 500 | 62 | 71.68 | 69.71 |
93 | 1.49 | 1.66 | 670 | 69 | 71.62 | 71.09 |
94 | 1.49 | 2.58 | 300 | 52 | 71.68 | 69.86 |
95 | 1.49 | 2.58 | 800 | 70 | 72.16 | 72.38 |
96 | 1.27 | 3.11 | 300 | 62 | 71.52 | 69.72 |
97 | 1.27 | 3.11 | 400 | 69 | 71.75 | 71.61 |
98 | 0.94 | 1.64 | 670 | 70 | 71.85 | 70.39 |
99 | 0.88 | 1.64 | 670 | 70 | 71.49 | 71.90 |
100 | 0.88 | 2.58 | 300 | 62 | 71.35 | 69.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Li, D.; Xu, X.; Zhang, D. An Adaptive Joint Operating Parameters Optimization Approach for Active Direct Methanol Fuel Cells. Energies 2023, 16, 2167. https://doi.org/10.3390/en16052167
Zhao Z, Li D, Xu X, Zhang D. An Adaptive Joint Operating Parameters Optimization Approach for Active Direct Methanol Fuel Cells. Energies. 2023; 16(5):2167. https://doi.org/10.3390/en16052167
Chicago/Turabian StyleZhao, Zhengang, Dongjie Li, Xiaoping Xu, and Dacheng Zhang. 2023. "An Adaptive Joint Operating Parameters Optimization Approach for Active Direct Methanol Fuel Cells" Energies 16, no. 5: 2167. https://doi.org/10.3390/en16052167
APA StyleZhao, Z., Li, D., Xu, X., & Zhang, D. (2023). An Adaptive Joint Operating Parameters Optimization Approach for Active Direct Methanol Fuel Cells. Energies, 16(5), 2167. https://doi.org/10.3390/en16052167