A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites
Abstract
:1. Introduction
2. Effect of Lignin Properties on UV-Shielding Materials
2.1. Interunit Linkages and Functional Groups of Lignin
2.2. Particle Size and Molecular Weight of Lignin
3. Main Factors Affecting the Color of Lignin
4. UV-Shielding Performance of Technical Lignins
5. Application of Bio-Based Materials as Enhancement Additive for UV-Shielding
5.1. UV-Shielding Performance of Biomass-Derived Materials as Enhancement Additives
5.2. Extraction of Silica and Nanocellulose from Biomass
6. Application of Biomass-Derived UV-Shielding Materials
6.1. Applications of Lignin as a UV-Absorbing Agent
6.2. Applications of Cellulose as a UV-Absorbing Agent
6.3. Applications of Silica as a UV-Blocking Agent
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols anti-inflammatory: Antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Sadeghifar, H.; Ragauskas, A. Lignin as a UV light blocker—A review. Polymers 2020, 12, 1134. [Google Scholar] [CrossRef]
- Hattori, H.; Ide, Y.; Sano, T. Microporous titanate nanofibers for highly efficient UV-protective transparent coating. J. Mater. Chem. A 2014, 2, 16381–16388. [Google Scholar] [CrossRef]
- Miao, Y.; Tang, Z.; Zhang, Q.; Reheman, A.; Xiao, H.; Zhang, M.; Liu, K.; Huang, L.; Chen, L.; Wu, H. Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, UV Shielding, and Antioxidant Activity as Wearable Sensors. ACS Appl. Polym. Mater. 2022, 4, 1448–1456. [Google Scholar] [CrossRef]
- Xiong, F.; Wu, Y.; Li, G.; Han, Y.; Chu, F. Transparent Nanocomposite Films of Lignin Nanospheres and Poly(vinyl alcohol) for UV-Absorbing. Ind. Eng. Chem. Res. 2018, 57, 1207–1212. [Google Scholar] [CrossRef]
- Andrady, A.L.; Hamid, S.H.; Hu, X.; Torikai, A. Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B Biol. 1998, 46, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.U.; Dobretsov, S.; Lee, J.S. Effects of UV radiation on marine ectotherms in polar regions. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2011, 153, 363–371. [Google Scholar] [CrossRef]
- Madronich, S.; McKenzie, R.L.; Björn, L.O.; Caldwell, M.M. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J. Photochem. Photobiol. B Biol. 1998, 46, 5–19. [Google Scholar] [CrossRef]
- Mandi, S.S. UV Radiation-Induced Damage at Molecular Level. In Natural UV Radiation in Enhancing Survival Value and Quality of Plants; Springer: New Delhi, India, 2016; pp. 45–71. [Google Scholar]
- Melnikova, V.O.; Ananthaswamy, H.N. Cellular and molecular events leading to the development of skin cancer. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2005, 571, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.C. 2(2-hydroxyphenyl)2H-benzotriazole ultraviolet stabilizers. Prog. Polym. Sci. 1999, 24, 7–43. [Google Scholar] [CrossRef]
- Schaller, C.; Rogez, D.; Braig, A. Hydroxyphenyl-s-triazines: Advanced multipurpose UV-absorbers for coatings. J. Coat. Technol. Res. 2008, 5, 25–31. [Google Scholar] [CrossRef]
- Denisov, E.T. The role and reactions of nitroxyl radicals in hindered piperidine light stabilisation. Polym. Degrad. Stab. 1991, 34, 325–332. [Google Scholar] [CrossRef]
- Klampfl, C.W.; Himmelsbach, M. Advances in the determination of hindered amine light stabilizers—A review. Anal. Chim. Acta 2016, 933, 10–22. [Google Scholar] [CrossRef]
- Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm. J. 2019, 27, 1009–1018. [Google Scholar] [CrossRef]
- Shaath, N.A. Ultraviolet filters. Photochem. Photobiol. Sci. 2010, 9, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Manaia, E.B.; Kaminski, R.C.K.; Corrêa, M.A.; Chiavacci, L.A. Inorganic UV filters. Braz. J. Pharm. Sci. 2013, 49, 201–209. [Google Scholar] [CrossRef]
- Geisler, A.N.; Austin, E.; Nguyen, J.; Hamzavi, I.; Jagdeo, J.; Lim, H.W. Visible light. Part II: Photoprotection against visible and ultraviolet light. J. Am. Acad. Dermatol. 2021, 84, 1233–1244. [Google Scholar] [CrossRef]
- Lee, S.C.; Yoo, E.; Lee, S.H.; Won, K. Preparation and application of light-colored lignin nanoparticles for broad-spectrum sunscreens. Polymers 2020, 12, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food and Drug Administration: Part 352-Sunscreen Drug Products for Over-the-Counter Human Use. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=352.10 (accessed on 6 January 2023).
- Qian, Y.; Qiu, X.; Zhu, S. Lignin: A nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem. 2015, 17, 320–324. [Google Scholar] [CrossRef]
- Butt, S.T.; Christensen, T. Toxicity and phototoxicity of chemical sun filters. Radiat. Prot. Dosim. 2000, 91, 283–286. [Google Scholar] [CrossRef]
- Jansen, R.; Osterwalder, U.; Wang, S.Q.; Burnett, M.; Lim, H.W. Photoprotection: Part II. Sunscreen: Development, efficacy, and controversies. J. Am. Acad. Dermatol. 2013, 69, 867.e1–867.e14. [Google Scholar] [CrossRef] [PubMed]
- Lautenschlager, S.; Wulf, H.C.; Pittelkow, M.R. Photoprotection. Lancet 2007, 370, 528–537. [Google Scholar] [CrossRef]
- Ruszkiewicz, J.A.; Pinkas, A.; Ferrer, B.; Peres, T.V.; Tsatsakis, A.; Aschner, M. Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicol. Rep. 2017, 4, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Kajta, M.; Wójtowicz, A.K. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Curr. Pharmacol. Rep. 2013, 65, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.J. An overview of ultraviolet radiation, sunscreens, and photo-induced dermatoses. Dermatol. Clin. 2006, 24, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K.W. Biomedical applications of polymer-composite materials: A review. Compos. Sci. Technol. 2001, 61, 1189–1224. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Raw natural fiber–based polymer composites. Int. J. Polym. Anal. Charact. 2014, 19, 256–271. [Google Scholar] [CrossRef]
- Doherty, W.O.; Mousavioun, P.; Fellows, C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod. 2011, 33, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Bruijnincx, P.C.; Weckhuysen, B.M. Lignin up for break-down. Nat. Chem. 2014, 6, 1035–1036. [Google Scholar] [CrossRef]
- Tran, M.H.; Phan, D.P.; Lee, E.Y. Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chem. 2021, 23, 4633–4646. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, X.; Zhu, S. Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustain. Chem. Eng. 2016, 4, 4029–4035. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Venditti, R.; Jur, J.; Gorga, R.E.; Pawlak, J.J. Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain. Chem. Eng. 2017, 5, 625–631. [Google Scholar] [CrossRef]
- Parit, M.; Saha, P.; Davis, V.A.; Jiang, Z. Transparent and homogenous cellulose nanocrystal/lignin UV-protection films. ACS Omega 2018, 3, 10679–10691. [Google Scholar] [CrossRef]
- Ajao, O.; Jeaidi, J.; Benali, M.; Restrepo, A.M.; El Mehdi, N.; Boumghar, Y. Quantification and variability analysis of lignin optical properties for colour-dependent industrial applications. Molecules 2018, 23, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Naebe, M. Lignin: A review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain. Chem. Eng. 2021, 9, 1427–1442. [Google Scholar] [CrossRef]
- Kaur, R.; Thakur, N.S.; Chandna, D.; Bhaumik, J. Development of agri-biomass based lignin derived zinc oxide nanocomposites as promising UV protectant-cum-antimicrobial agents. J. Mater. Chem. B 2020, 8, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Abidi, N.; Hequet, E.; Tarimala, S.; Dai, L.L. Cotton Fabric Surface Modification for Improved UV Radiation Protection Using Sol-Gel Process. J. Appl. Polym. Sci. 2007, 104, 111–117. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, M.; Pang, L.; Yang, C.; Zhang, Y.; Hu, J.; Wu, G. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance. J. Colloid Interface Sci. 2019, 537, 91–100. [Google Scholar] [CrossRef]
- Zhang, L.; You, T.; Zhou, T.; Zhou, X.; Xu, F. Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Super capacitors. ACS Appl. Mater. Interfaces 2016, 8, 13918–13925. [Google Scholar] [CrossRef]
- Han, K.; Yu, M. Study of the Preparation and Properties of UV-Blocking Fabrics of a PET/TiO2 Nanocomposite Prepared by In Situ Polycondensation. J. Appl. Polym. Sci. 2006, 100, 1588–1593. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, Y.; Miao, M.; CaO, S.; Feng, X.; Fang, J.; Shi, L. Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. J. Mater. Chem. C 2015, 3, 6717–6724. [Google Scholar] [CrossRef]
- Wang, R.H.; Xin, J.H.; Tao, X.M. UV-Blocking Property of Dumbbell-Shaped ZnO Crystallites on Cotton Fabrics. Inorg. Chem. 2005, 44, 3926–3930. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Zhang, J.; Sha, L.; Liu, B.; Zhang, X.; Zhang, X.; Xue, G. Preparation and characterization of lignin-TiO2 UV-shielding composite material by induced synthesis with nanofibrillated cellulose. BioResources 2020, 15, 7374–7389. [Google Scholar] [CrossRef]
- Shen, B.; Scaiano, J.C.; English, A.M. Zeolite Encapsulation Decreases TiO2-photosensitized ROS Generation in Cultured Human Skin Fibroblasts. Photochem. Photobiol. 2006, 82, 5–12. [Google Scholar] [CrossRef]
- Ibrahim, M.N.M.; Iqbal, A.; Shen, C.C.; Bhawani, S.A.; Adam, F. Synthesis of lignin based composites of TiO2 for potential application as radical scavengers in sunscreen formulation. BMC Chem. 2019, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Srisasiwimon, N.; Chuangchote, S.; Laosiripojana, N.; Sagawa, T. TiO2/Lignin-Based Carbon Composited Photocatalysts for Enhanced Photocatalytic Conversion of Lignin to High Value Chemicals. ACS Sustain. Chem. Eng. 2018, 6, 13968–13976. [Google Scholar] [CrossRef]
- Salimbeygi, G.; Nasouri, K.; Shoushtari, A.M.; Malek, R.; Mazaheri, F. Microwave Absorption Properties of Polyaniline/Poly(vinyl alcohol)/Multi-Walled Carbon Nanotube Composites in Thin Film and Nanofiber Layer Structures. Macromol. Res. 2015, 23, 741–748. [Google Scholar] [CrossRef]
- Mondal, S.; Hu, J.L. A Novel Approach to Excellent UV Protecting Cotton Fabric with Functionalized MWNT Containing Water Vapor Permeable PU Coating. J. Appl. Polym. Sci. 2007, 103, 3370–3376. [Google Scholar] [CrossRef]
- Nasouri, K.; Shoushtari, A.M.; Mirzaei, J.; Merati, A.A. Synthesis of carbon nanotubes composite nanofibers for ultrahigh performance UV protection and microwave absorption applications. Diam. Relat. Mater. 2020, 107, 107896. [Google Scholar] [CrossRef]
- Mahmoudifard, M.; Safi, M. Novel study of carbon nanotubes as UV absorbers for the modification of cotton fabric. J. Text. Inst. 2012, 103, 893–899. [Google Scholar] [CrossRef]
- Pnnusamy, V.K.; Nguyen, D.D.; Dharmaraja, J.; Shobana, S.; Banu, J.R.; Saratale, R.G.; Chang, S.W.; Kumar, G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 2019, 271, 462–472. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Song, X.; Cao, D.; Li, K.; Hassanpour, M.; Zhang, Z. UV-Shielding Performance and Color of Lignin and its Application to Sunscreen. Macromol. Mater. Eng. 2022, 307, 2100628. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Qian, Y.; Qiu, X.; Ren, Y.; Yang, D. Reduction of lignin color via one-step UV irradiation. Green Chem. 2016, 18, 695–699. [Google Scholar] [CrossRef]
- ATİK, C.; Balaban, M. Relation between CIE lab color values and the lignin content of Kraft pulps during bleaching. Cellul. Chem. Technol. 2003, 37, 385–389. [Google Scholar]
- Qiu, X.; Yu, J.; Yang, D.; Wang, J.; Mo, W.; Qian, Y. Whitening sulfonated alkali lignin via H2O2/UV radiation and its application as dye dispersant. ACS Sustain. Chem. Eng. 2018, 6, 1055–1060. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, S.; Chen, Y. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int. J. Biol. Macromol. 2020, 147, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Tran, T.M.T.; Choi, J.W.; Won, K. Lignin for white natural sunscreens. Int. J. Biol. Macromol. 2019, 122, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhong, X.; Li, Y.; Qiu, X. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind. Crops Prod. 2017, 101, 54–60. [Google Scholar] [CrossRef]
- Widsten, P.; Tamminen, T.; Liitiä, T. Natural sunscreens based on nanoparticles of modified Kraft lignin (CatLignin). ACS Omega 2020, 5, 13438–13446. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yang, L.; Zhang, H.; Xia, Y.; He, Y.; Lan, W.; Ren, J.; Yue, F.; Lu, F. Revealing the structure-activity relationship between lignin and anti-UV radiation. Ind. Crops Prod. 2021, 174, 114212. [Google Scholar] [CrossRef]
- Wang, B.; Sun, D.; Wang, H.M.; Yuan, T.Q.; Sun, R.C. Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain. Chem. Eng. 2018, 7, 2658–2666. [Google Scholar] [CrossRef]
- Beisl, S.; Miltner, A.; Friedl, A. Lignin from micro-to nanosize: Production methods. Int. J. Mol. Sci. 2017, 18, 1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccinino, D.; Capecchi, E.; Delfino, I.; Crucianelli, M.; Conte, N.; Avitabile, D.; Saladino, R. Green and Scalable Preparation of Colloidal Suspension of Lignin Nanoparticles and Its Application in Eco-friendly Sunscreen Formulations. ACS Omega 2021, 6, 21444–21456. [Google Scholar] [CrossRef]
- Piccinino, D.; Capecchi, E.; Botta, L.; Bizzarri, B.M.; Bollella, P.; Antiochia, R.; Saladino, R. Layer-by-layer preparation of microcapsules and nanocapsules of mixed polyphenols with high antioxidant and UV-shielding properties. Biomacromolecules 2018, 19, 3883–3893. [Google Scholar] [CrossRef]
- Xiong, F.; Han, Y.; Wang, S.; Li, G.; Qin, T.; Chen, Y.; Chu, F. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind. Crops Prod. 2017, 100, 146–152. [Google Scholar] [CrossRef]
- Fu, Y.; Qian, Y.; Zhang, A.; Lou, H.; Ouyang, X.; Yang, D.; Qiu, X. Long-Acting Ultraviolet-Blocking Mechanism of Lignin: Generation and Transformation of Semiquinone Radicals. ACS Sustain. Chem. Eng. 2022, 10, 5421–5429. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, Y.; Yu, B.; Liu, X.; Chen, F. A practicable process for lignin color reduction: Fractionation of lignin using methanol/water as a solvent. Green Chem. 2017, 19, 5152–5162. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Fu, S.; Chen, Y. Fabrication of light-colored lignin microspheres for developing natural sunscreens with favorable UV absorbability and staining resistance. Ind. Eng. Chem. Res. 2019, 58, 13858–13867. [Google Scholar] [CrossRef]
- Trevisan, H.; Rezende, C.A. Pure, stable and highly antioxidant lignin nanoparticles from elephant grass. Ind. Crops Prod. 2020, 145, 112105. [Google Scholar] [CrossRef]
- Li, R.; Huang, D.; Chen, S.; Lei, L.; Chen, Y.; Tao, J.; Zhou, W.; Wang, G. Insight into the self-assembly process of bamboo lignin purified by solvent fractionation to form uniform nanospheres with excellent UV resistance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128652. [Google Scholar] [CrossRef]
- Li, H.; Deng, Y.; Wu, H.; Ren, Y.; Qiu, X.; Zheng, D.; Li, C. Self-assembly of Kraft lignin into nanospheres in dioxane-water mixtures. Holzforschung 2016, 70, 725–731. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, L.P.; Song, G.; Sun, R.C.; He, L.; Singh, S.; Simmons, B.A.; Cheng, G. From lignin subunits to aggregates: Insights into lignin solubilization. Green Chem. 2017, 19, 3272–3281. [Google Scholar] [CrossRef]
- Qian, Y.; Deng, Y.; Qiu, X.; Li, H.; Yang, D. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem. 2014, 16, 2156–2163. [Google Scholar] [CrossRef]
- Gordobil, O.; Olaizola, P.; Banales, J.M.; Labidi, J. Lignins from agroindustrial by-products as natural ingredients for cosmetics: Chemical structure and in vitro sunscreen and cytotoxic activities. Molecules 2020, 25, 1131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, F.; Liu, X.; Fu, S. Micromorphology influence on the color performance of lignin and its application in guiding the preparation of light-colored lignin sunscreen. ACS Sustain. Chem. Eng. 2018, 6, 12532–12540. [Google Scholar] [CrossRef]
- de Araújo Padilha, C.E.; da Costa Nogueira, C.; Oliveira Filho, M.A.; de Santana Souza, D.F.; de Oliveira, J.A.; dos Santos, E.S. Valorization of cashew apple bagasse using acetic acid pretreatment: Production of cellulosic ethanol and lignin for their use as sunscreen ingredients. Process Biochem. 2020, 91, 23–33. [Google Scholar] [CrossRef]
- Qiu, X.; Li, Y.; Qian, Y.; Wang, J.; Zhu, S. Long-acting and safe sunscreens with ultrahigh sun protection factor via natural lignin encapsulation and synergy. ACS Appl. Bio Mater. 2018, 1, 1276–1285. [Google Scholar] [CrossRef]
- Kim, J.Y.; Hwang, H.; Oh, S.; Kim, Y.S.; Kim, U.J.; Choi, J.W. Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int. J. Biol. Macromol. 2014, 66, 57–65. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Y.; Gao, J.; Li, H. Coloring characteristics of in situ lignin during heat treatment. Wood Sci. Technol. 2012, 46, 33–40. [Google Scholar]
- Björkman, A. Lignin and lignin-carbohydrate complexes: Extraction from wood meal with neutral solvents. Ind. Eng. Chem. 1957, 49, 1395–1398. [Google Scholar] [CrossRef]
- Constant, S.; Wienk, H.L.J.; Frissen, A.E.; de Peinder, P.; Boelens, R.; van Es, D.S.; Grisel, R.J.H.; Weckhuysen, B.M.; Huijgen, W.J.J.; Gosselink, R.J.A.; et al. New insights into the structure and composition of technical lignins: A comparative characterization study. Green Chem. 2016, 18, 2651–2665. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, L.; Wang, D.; Li, D. Structure elucidation and properties of different lignins isolated from acorn shell of Quercus variabilis Bl. Int. J. Biol. Macromol. 2018, 107, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, X.; Fu, S.; Chen, Y. High-value utilization of Kraft lignin: Color reduction and evaluation as sunscreen ingredient. Int. J. Biol. Macromol. 2019, 133, 86–92. [Google Scholar] [CrossRef]
- Imsgard, F.; Falkehag, S.I.; Kringstad, K.P. On Possible Chromophoric Structures in Spruce Wood; Technical Association of the Pulp & Paper Industry Inc.: Peachtree Corners, GA, USA, 1971. [Google Scholar]
- Zakis, G.F.; Melkis, A.A.; Nieberte, B.Y. Methods for determination of quinone carbonyl groups in lignins. Khim Drev. 1987, 3, 82–86. [Google Scholar]
- Argyropoulos, D.S.; Heitner, C. 31P NMR spectroscopy in wood chemistry. Part VI. Solid state 31P NMR of trimethyl phosphite derivatives of chromophores and carboxylic acids present in mechanical pulps; a method for the quantitative determination of ortho-quinones. Holzforschung 1994, 48, 112–116. [Google Scholar] [CrossRef]
- Buranov, A.U.; Mazza, G. Lignin in straw of herbaceous crops. Ind. Crops Prod. 2008, 28, 237–259. [Google Scholar] [CrossRef]
- Schutyser, W.; Renders, A.T.; Van den Bosch, S.; Koelewijn, S.F.; Beckham, G.T.; Sels, B.F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef]
- Kazzaz, A.E.; Fatehi, P. Technical lignin and its potential modification routes: A mini-review. Ind. Crops Prod. 2020, 154, 112732. [Google Scholar] [CrossRef]
- Chio, C.; Sain, M.; Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Darmawan, M.A.; Ramadhani, N.H.; Hubeis, N.A.; Ramadhan, M.Y.A.; Sahlan, M.; Abd-Aziz, S.; Gozan, M. Natural sunscreen formulation with a high sun protection factor (SPF) from tengkawang butter and lignin. Ind. Crops Prod. 2022, 177, 114466. [Google Scholar] [CrossRef]
- Hambardzumyan, A.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V. Natural Organic UV-Absorbent Coatings Based on Cellulose and Lignin: Designed Effects on Spectroscopic Properties. Biomacromolecules 2012, 13, 4081–4088. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.Y.; Park, S.B. Anatase-phase titania: Preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. J. Photochem. Photobiol. A 1999, 127, 117–122. [Google Scholar] [CrossRef]
- Jaroenworaluck, A.; Sunsaneeyametha, W.; Kosachan, N.; Steven, R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf. Interface Anal. 2006, 38, 473–477. [Google Scholar] [CrossRef]
- Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted application of silica nanoparticles. A review. Silicon 2020, 12, 1337–1354. [Google Scholar] [CrossRef]
- Alarcos, N.; Cohen, B.; Ziółek, M.; Douhal, A. Photochemistry and photophysics in silica-based materials: Ultrafast and single molecule spectroscopy observation. Chem. Rev. 2017, 117, 13639–13720. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Kilpeläinen, M.; Riikonen, J.; Vlasova, M.A.; Huotari, A.; Lehto, V.P.; Salonen, J.; Herzig, K.H.; Järvinen, K. In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J. Control Release 2009, 137, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, F.; Castaldo, R.; Cocca, M.; Gentile, G.; Lavorgna, M. Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings: A critical review. Nanoscale 2021, 13, 9091–9111. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, D. Ordered mesoporous materials as adsorbents. Chem. Commun. 2011, 47, 3332–3338. [Google Scholar] [CrossRef]
- Castaldo, R.; Gentile, G.; Avella, M.; Carfagna, C.; Ambrogi, V. Microporous hyper-crosslinked polystyrenes and nanocomposites with high adsorption properties: A review. Polymers 2017, 9, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Wang, Y.; Peng, B. Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem. Asian J. 2014, 9, 319–327. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Wang, W.; Song, L.; Fan, W.; Gao, X.; Xiong, C. Synthesis and characterization of pH-responsive mesoporous chitosan microspheres loaded with sodium phytate for smart water-based coatings. Mater. Corros. 2018, 69, 736–748. [Google Scholar] [CrossRef]
- Azizi Samir, M.A.S.; Alloin, F.; Dufresne, A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 2005, 6, 612–626. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites–A review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Garcia de Rodriguez, N.L.; Thielemans, W.; Dufresne, A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 2006, 13, 261–270. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef]
- Bai, W.; Holbery, J.; Li, K. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 2009, 16, 455–465. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Khalil, H.A.; Bhat, A.H.; Yusra, A.I. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- Ferrer, A.; Pal, L.; Hubbe, M. Nanocellulose in packaging: Advances in barrier layer technologies. Ind. Crops Prod. 2017, 95, 574–582. [Google Scholar] [CrossRef]
- Jaroenworaluck, A.; Pijarn, N.; Kosachan, N.; Stevens, R. Nanocomposite TiO2–SiO2 gel for UV absorption. Chem. Eng. J. 2012, 181, 45–55. [Google Scholar] [CrossRef]
- Sotiriou, G.A.; Watson, C.; Murdaugh, K.M.; Darrah, T.H.; Pyrgiotakis, G.; Elder, A.; Brain, J.D.; Demokritou, P. Engineering safer-by-design silica-coated ZnO nanorods with reduced DNA damage potential. Environ. Sci. Nano 2014, 1, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Li, C.C.; Chen, Y.T.; Lin, Y.T.; Sie, S.F.; Chen-Yang, Y.W. Mesoporous silica aerogel as a drug carrier for the enhancement of the sunscreen ability of benzophenone-3. Colloids Surf. B. 2014, 115, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.; Li, Y.; Lin, F.Y.; Miller, A.; Liu, F.; Tsyrenova, A.; Palm, D.; Curtzwiler, G.W.; Vorst, K.L.; Cochran, E.; et al. Thin biobased transparent UV-blocking coating enabled by nanoparticle self-assembly. ACS Appl. Mater. Interfaces 2019, 11, 24552–24559. [Google Scholar] [CrossRef]
- Yuying, P.U.; Jianzhang, F.A.N.G.; Feng, P.E.N.G.; Baojian, L.I.; Huang, L. Microemulsion synthesis of nanosized SiO2/TiO2 particles and their photocatalytic activity. Chin. J. Catal. 2007, 28, 251–256. [Google Scholar]
- Linsebigler, A.L.; Lu, G.; Yates, J.T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Serpone, N.; Dondi, D.; Albini, A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg. Chim. Acta 2007, 360, 794–802. [Google Scholar] [CrossRef]
- Kullavanijaya, P.; Lim, H.W. Photoprotection. J. Am Acad. Dermatol. 2005, 52, 937–958. [Google Scholar] [CrossRef]
- Murphy, G.M. Sunblocks: Mechanisms of action. Photodermatol. Photoimmunol. Photomed. 1999, 15, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Reidy, D.J.; Holmes, J.D.; Morris, M.A. Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia and silica dopants. Ceram. Int. 2006, 32, 235–239. [Google Scholar] [CrossRef]
- Anderson, C.; Bard, A.J. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J. Phys. Chem. B 1997, 101, 2611–2616. [Google Scholar] [CrossRef]
- Morawski, A.W.; Kusiak-Nejman, E.; Przepiórski, J.; Kordala, R.; Pernak, J. Cellulose-TiO2 nanocomposite with enhanced UV–Vis light absorption. Cellulose 2013, 20, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Abdalkarim, S.Y.H.; Yu, H.Y.; Wang, C.; Yang, L.; Guan, Y.; Huang, L.; Yao, J. Sheet-like cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing agents in biopolyester composite nanofibers with ultrahigh UV-shielding and antibacterial performances. ACS Appl. Bio Mater. 2018, 1, 714–727. [Google Scholar] [CrossRef]
- Gasparro, F.P.; Mitchnick, M.; Nash, J.F. A review of sunscreen safety and efficacy. Photochem. Photobiol. 1998, 68, 243–256. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, H.; Chang, H.; Park, W.; Hahn, S.K.; Kwon, W. Biocompatible organosilica nanoparticles with self-encapsulated phenyl motifs for effective UV protection. ACS Appl. Mater. Interfaces 2020, 12, 9062–9069. [Google Scholar] [CrossRef]
- Setlow, R.B.; Grist, E.; Thompson, K.; Woodhead, A.D. Wavelengths effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. USA 1993, 90, 6666–6670. [Google Scholar] [CrossRef] [Green Version]
- Walenzyk, T.; Carola, C.; Buchholz, H.; König, B. Synthesis of mono-dispersed spherical silica particles containing covalently bonded chromophores. Int. J. Cosmet. Sci. 2005, 27, 177–189. [Google Scholar] [CrossRef]
- Knežević, N.Z.; Ilić, N.; Đokić, V.; Petrović, R.; Janaćković, D. Mesoporous silica and organosilica nanomaterials as UV-blocking agents. ACS Appl. Mater. Interfaces 2018, 10, 20231–20236. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Y.; Guo, X.; Zeng, K.; Mondal, A.K.; Li, J.; Tao, Y.; Chen, L. Strong, robust cellulose composite film for efficient light management in energy efficient building. Chem. Eng. J. 2021, 425, 131469. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Visanko, M.; Heiskanen, J.P.; Liimatainen, H. UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films. J. Mater. Cem. A 2016, 4, 6368–6375. [Google Scholar] [CrossRef] [Green Version]
- Baccile, N.; Babonneau, F.; Thomas, B.; Coradin, T. Introducing ecodesign in silica sol–gel materials. J. Mater. Chem. 2009, 19, 8537–8559. [Google Scholar] [CrossRef] [Green Version]
- Laine, R.M.; Blohowiak, K.Y.; Robinson, T.R.; Hoppe, M.L.; Nardi, P.; Kampf, J.; Uhm, J. Synthesis of pentacoordinate silicon complexes from SiO2. Nature 1991, 353, 642–644. [Google Scholar] [CrossRef] [Green Version]
- Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Martin, J.C.; Oliphant, A.J.; Xu, J.F.; DeBorn, K.M.; Chen, C.; Sun, L. Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: A comprehensive utilization of rice husk biomass. ACS Sustain. Chem. Eng. 2013, 1, 254–259. [Google Scholar] [CrossRef]
- Wang, W.; Martin, J.C.; Fan, X.; Han, A.; Luo, Z.; Sun, L. Silica nanoparticles and frameworks from rice husk biomass. ACS Appl. Mater. Interfaces 2012, 4, 977–981. [Google Scholar] [CrossRef]
- Della, V.P.; Kühn, I.; Hotza, D. Rice husk ash as an alternate source for active silica production. Mater. Lett. 2002, 57, 818–821. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, S.; Joshi, G.N.; Smith, A.T.; Zeng, H.; Wei, Z.; Yu, X.; Pokhrel, M.; Mao, Y.; Wang, W.; et al. Design and fabrication of highly photoluminescent carbon-incorporated silica from rice husk biomass. Ind. Eng. Chem. Res. 2019, 58, 4688–4694. [Google Scholar] [CrossRef]
- Yang, W.; Feng, Y.; He, H.; Yang, Z. Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials 2018, 11, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilamian, M.; Noroozi, B. A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose 2019, 26, 5831–5849. [Google Scholar] [CrossRef]
- Sofla, M.R.K.; Brown, R.J.; Tsuzuki, T.; Rainey, T.J. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 035004. [Google Scholar] [CrossRef]
- Peart, C.; Ni, Y. UV-Vis spectra of lignin model compounds in the presence of metal ions and chelants. J. Wood Chem. Technol. 2001, 21, 113–125. [Google Scholar] [CrossRef]
- McCarthy, J.L.; Islam, A. Lignin chemistry, technology, and utilization: A brief history. ACS Symp. Ser. 1999, 742, 2–66. [Google Scholar]
- Li, S.X.; Li, M.F.; Bian, J.; Wu, X.F.; Peng, M.; Ma, M.G. Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. Int. J. Biol. Macromol. 2019, 132, 836–843. [Google Scholar] [CrossRef]
- Wu, Y.; Qian, Y.; Lou, H.; Yang, D.; Qiu, X. Enhancing the Broad-Spectrum Adsorption of Lignin through Methoxyl Activation, Grafting Modification, and Reverse Self-Assembly. ACS Sustain. Chem. Eng. 2019, 7, 15966–15973. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, S.; Wang, W.; Linhardt, R.J.; Ragauskas, A.J. Preparation of Highly Reactive Lignin by Ozone Oxidation: Application as Surfactants with Antioxidant and Anti-UV Properties. ACS Sustain. Chem. Eng. 2020, 8, 22–28. [Google Scholar] [CrossRef]
- Paulsson, M.; Parkås, J. Review: Light-induced yellowing of lignocellulosic pulps—Mechanisms and preventive methods. BioResources 2012, 7, 5995–6040. [Google Scholar] [CrossRef] [Green Version]
- DiFonzo, N.; Bordia, P. Peroxidations initiated by lignin model compounds: Investigating the role of singlet oxygen in photo-yellowing. J. Allergy Clin. Immunol. 1998, 130, 556. [Google Scholar]
- Yu, J.; Li, L.; Qian, Y.; Lou, H.; Yang, D.; Qiu, X. Facile and Green Preparation of High UV-Blocking Lignin/Titanium Dioxide Nanocomposites for Developing Natural Sunscreens. Ind. Eng. Chem. Res. 2018, 57, 15740–15748. [Google Scholar] [CrossRef]
- Gutiérrez-Hernández, J.M.; Escalante, A.; Murillo-Vázquez, R.N.; Delgado, E.; González, F.J.; Toríz, G. Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection. J. Photochem. Photobiol. B Biol. 2016, 163, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Sana, B.; Krishnan, R.; Seayad, J.; Ghadessy, F.J.; Jana, S.; Ramalingam, B. Laccase-catalyzed synthesis of low-molecular-weight lignin-like oligomers and their application as UV-blocking materials. Chem. Asian J. 2018, 13, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Avelino, F.; de Oliveira, D.R.; Mazzetto, S.E.; Lomonaco, D. Poly(methyl methacrylate) films reinforced with coconut shell lignin fractions to enhance their UV-blocking, antioxidant and thermo-mechanical properties. Int. J. Biol. Macromol. 2019, 125, 171–180. [Google Scholar] [CrossRef]
- Xing, Q.; Ruch, D.; Dubois, P.; Wu, L.; Wang, W.J. Biodegradable and High-Performance Poly(butylene adipate-co-terephthalate)-Lignin UV-Blocking Films. ACS Sustain. Chem. Eng. 2017, 5, 10342–10351. [Google Scholar] [CrossRef]
- Lee, E.; Song, Y.; Lee, S. Crosslinking of lignin/poly(vinyl alcohol) nanocomposite fiber webs and their antimicrobial and ultraviolet-protective properties. Text. Res. J. 2019, 89, 3–12. [Google Scholar] [CrossRef]
- He, X.; Luzi, F.; Hao, X.; Yang, W.; Torre, L.; Xiao, Z.; Xie, Y.; Puglia, D. Thermal, antioxidant and swelling behaviour of transparent polyvinyl (alcohol) films in presence of hydrophobic citric acid-modified lignin nanoparticles. Int. J. Biol. Macromol. 2019, 127, 665–676. [Google Scholar] [CrossRef]
- Wu, W.; Liu, T.; Deng, X.; Sun, Q.; Cao, X.; Feng, Y.; Wang, B.; Roy, V.A.L.; Li, R.K. Ecofriendly UV-protective films based on poly (propylene carbonate) biocomposites filled with TiO2 decorated lignin. Int. J. Biol. Macromol. 2019, 126, 1030–1036. [Google Scholar] [CrossRef]
- Rukmanikrishnan, B.; Ramalingam, S.; Rajasekharan, S.K.; Lee, J.; Lee, J. Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: Biocompatibility, antioxidant activity, UV and water barrier properties. Int. J. Biol. Macromol. 2020, 153, 55–62. [Google Scholar] [CrossRef]
- Kim, Y.; Suhr, J.; Seo, H.W.; Sun, H.; Kim, S.; Park, I.K.; Kim, S.H.; Lee, Y.K.; Kim, K.J.; Nam, J.D. All biomass and UV protective composite composed of compatibilized lignin and poly (lactic-acid). Sci. Rep. 2017, 7, 43596. [Google Scholar] [CrossRef] [Green Version]
- Shikinaka, K.; Nakamura, M.; Navarro, R.R.; Otsuka, Y. Non-flammable and moisture-permeable UV protection films only from plant polymers and clay minerals. Green Chem. 2019, 21, 498–502. [Google Scholar] [CrossRef]
- Chen, K.; Qian, Y.; Wu, S.; Qiu, X.; Yang, D.; Lei, L. Neutral fabrication of UV-blocking and antioxidation lignin-stabilized high internal phase emulsion encapsulates for high efficient antibacterium of natural curcumin. Food Funct. 2019, 10, 3543–3555. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, H.; Shen, K.; Qiu, C.; Qi, H. Transparent cellulose-based film with high UV-blocking performance fabricated by surface modification using Biginelli reaction. Macromol. Rapid Commun. 2022, 2200495, 2200495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Guo, M.; Jin, T.Z.; Arabi, S.A.; He, Q.; Ismail, B.B.; Hu, Y.; Liu, D. Antimicrobial and UV blocking properties of composite chitosan films with curcumin grafted cellulose nanofiber. Food Hydrocoll. 2021, 112, 106337. [Google Scholar] [CrossRef]
- Mendoza, D.J.; Browne, C.; Raghuwanshi, V.S.; Mouterde, L.M.; Simon, G.P.; Allais, F.; Garnier, G. Phenolic ester-decorated cellulose nanocrystals as UV-absorbing nanoreinforcements in polyvinyl alcohol films. ACS Sustain. Chem. Eng. 2021, 9, 6427–6437. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, D.; Shao, Z.; Zhu, P.; Qiu, J.; Zhu, L. Rice straw cellulose microfiber reinforcing PVA composite film of ultraviolet blocking through pre-cross-linking. Carbohydr. Polym. 2022, 296, 119886. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quiles, D.; Tovar-Sánchez, A. Are sunscreens a new environmental risk associated with coastal tourism? Environ. Int. 2015, 83, 158–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grande, F.; Tucci, P. Titanium dioxide nanoparticles: A risk for human health? Mini Rev. Med. Chem. 2016, 16, 762–769. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [Green Version]
- Prabha, S.; Durgalakshmi, D.; Rajendran, S.; Lichtfouse, E. Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: A review. Environ. Chem. Lett. 2021, 19, 1667–1691. [Google Scholar] [CrossRef]
- Zhang, J.; Raphael, A.P.; Yang, Y.; Popat, A.; Prow, T.W.; Yu, C. Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency. J. Mater. Chem. B 2014, 2, 7673–7678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen-Yang, Y.W.; Chen, Y.T.; Li, C.C.; Yu, H.C.; Chuang, Y.C.; Su, J.H.; Lin, Y.T. Preparation of UV-filter encapsulated mesoporous silica with high sunscreen ability. Mater. Lett. 2011, 65, 1060–1062. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.; Rahman, R.T.; Lee, D.J.; Lee, K.; Nam, Y.S. Plastic-free silica-titania-polyphenol heterojunction hybrids for efficient UV-to-blue light blocking and suppressed photochemical reactivity. Chem. Eng. J. 2022, 431, 133790. [Google Scholar] [CrossRef]
- Fagervold, S.K.; Rodrigues, A.S.; Rohée, C.; Roe, R.; Bourrain, M.; Stien, D.; Lebaron, P. Occurrence and environmental distribution of 5 UV filters during the summer season in different water bodies. Water Air Soil Pollut. 2019, 230, 172. [Google Scholar] [CrossRef]
- Dransfield, G.P. Inorganic sunscreens. Radiat. Prot. Dosim. 2000, 91, 271–273. [Google Scholar] [CrossRef]
- Surber, C.; Plautz, J.; Dähnhardt-Pfeiffer, S.; Osterwalder, U. Size matters! Issues and challenges with nanoparticulate UV filters. Chall. Sun Prot. 2021, 55, 203–222. [Google Scholar]
- Abbas, N.; Manzoor, S.; Saeed, S.; Husnain, S.M.; Tariq, M.; Akhtar, Z.; Saira, N.; Yasmin, G. Investigation of calcium silicate as a natural clay-based sunblock: Formulation and characterization. Photodermatol. Photoimmunol. Photomed. 2021, 37, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Cheraghian, G.; Wistuba, M.P. Effect of fumed silica nanoparticles on ultraviolet aging resistance of bitumen. Nanomaterials 2021, 11, 454. [Google Scholar] [CrossRef]
Active Ingredient | Concentration Limit (%) | Active Wavelength |
---|---|---|
Organic | ||
Aminobenzoic acid (PABA) | 15 | UVB |
Avobenzone | 3 | UVA2, UVA1 |
Cinoxate | 3 | UVB |
Dioxybenzone | 3 | UVB, UVA2 |
Homosalate | 15 | UVB |
Menthyl anthranilate | 5 | UVA2 |
Octocrylene | 10 | UVB, UVA2 |
Octyl methoxycinnamate | 7.5 | UVB |
Octyl salicylate | 5 | UVB |
Oxybenzone | 6 | UVB, UVA2 |
Padimate O | 8 | UVB |
Phenylbenzimidazole sulfonic acid | 4 | UVB |
Sulisobenzone | 10 | UVB, UVA2 |
Trolamine salicylate | 12 | UVB |
Inorganic | ||
Titanium dioxide | 25 | UVB, UVA2, UVA1 |
Zinc oxide | 25 | UVB, UVA2, UVA1 |
Source | Type | Solvent-Shifting | Treatment | Particle Size | Zeta Potential | Mw | Ref. |
---|---|---|---|---|---|---|---|
(nm) | (mV) | (g/mol) | |||||
Hardwood | Organosolv | THF (1) | Ultrasonication or magnetic stirring | 99 | −32.2 | [65] | |
Softwood | Kraft | THF (1) | 112 | −31.1 | |||
- | Alkali | THF (1) | 118 | −29.9 | |||
Hardwood | Organosolv | DMI (2) | 192 | −33.4 | |||
Softwood | Kraft | DMI (2) | 89 | −29.9 | |||
- | Alkali | DMI (2) | 102 | −32.5 | |||
Hardwood | Organosolv | IPG (3) | 905 | −27.3 | |||
Softwood | Kraft | IPG (3) | 679 | −39.4 | |||
- | Alkali | IPG (3) | 780 | −28.6 | |||
Hardwood | Organosolv | GVL (4) | 101 | −31.4 | |||
Softwood | Kraft | GVL (4) | 116 | −31.8 | |||
- | Alkali | GVL (4) | 121 | −32.8 | |||
Softwood | Kraft | - | - | 440 | - | - | [61] |
Hardwood | Kraft | - | - | 400 | - | - | |
Softwood | Kraft | Acetone | Agitation | 80 | - | - | |
Hardwood | Kraft | Acetone | Agitation | 100 | - | - | |
Poplar wood | Organosolv | Acetone | Agitation | - | - | 2860 | [68] |
Birch wood | Organosolv | Acetone | Agitation | - | - | 4980 | |
Rice straw | Organosolv | Acetone | Agitation | - | - | 2340 | |
Eucalyptus | Kraft | Ethanol | Agitation | 6428 | [69] | ||
Methanol | 5143 | ||||||
Bamboo | Organosolv | Acetic acid | Agitation | 2520 | −86.2 | 3615 | [70] |
Eucalyptus | Kraft | Acetic acid + Acetylation | - | 4150 | −68.1 | 6143 | |
Elephant grass | Alkali | Acetone | - | 55 | [71] | ||
Alkali | Acetylation | - | 86 | ||||
Bamboo | Organosolv | Acetone | - | - | - | 901–5760 | [72] |
Bamboo | Organosolv | THF (1) | Ultrasonication | 205–266 | |||
Corn cob | Alkali | Acetylation | Ultrasonication | 100–800 | [63] | ||
Pine tree | Alkali | THF (1) | UV radiation | 20–200 | [55] | ||
- | Kraft | Dioxane | Agitation | 100–300 | [73] |
Source | Type | Further Treatment | SCI (1) | ΔE (2) | ISO (3) | WI (4) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | (-) | (%) | (%) | (-) | |||
Hard wood | Organosolv | - | 40.6 | 4.5 | 4.9 | 59.4 | - | - | [59] |
Grass | MWL (5) | - | 70.8 | 7.0 | 13.8 | 32.7 | - | - | |
Softwood | MWL | - | 74.6 | 6.4 | 14.1 | 29.4 | - | - | |
Rice husk | - | - | 4.6 | 21.3 | 35.5 | 77.2 | - | - | [19] |
Rice husk | Organosolv | - | 55.1 | 7.5 | 15.9 | 47.8 | - | - | |
Rice husk | CEL (6) | - | 66.8 | 5.4 | 15.9 | 36.8 | - | - | |
Eucalyptus | Kraft | Acetylation | 51.0 | 8.0 | 22.7 | - | 10.4 | - | [77] |
Eucalyptus | Kraft | Solvent shifting (Pyridine/diethyl ether) | 46.5 | 7.8 | 17.4 | - | 8.3 | - | |
Poplar wood | Organosolv | - | - | - | - | - | - | 61.3 | [68] |
Birch wood | Organosolv | - | - | - | - | - | - | 62.2 | |
Rice straw | Organosolv | - | - | - | - | - | - | 45.6 | |
Bamboo | Organosolv | - | 32.4 | 8.0 | 21.2 | - | 5.0 | - | [70] |
Bamboo | Organosolv | Solvent shifting (acetic acid) | 61.7 | 11.0 | 23.2 | - | 17.5 | - | |
Eucalyptus | Kraft | - | 30.6 | 6.5 | 18.1 | - | 3.2 | - | |
Eucalyptus | Kraft | Acetylation | 50.0 | 8.3 | 22.5 | - | 10.4 | - | |
- | Kraft | Solvent shifting (methanol) undissolved | 26.6 | 5.7 | 11.6 | - | 3.0 | - | [69] |
- | Kraft | Solvent shifting (methanol) dissolved | 45.1 | 10.2 | 24.1 | - | 6.1 | - |
Type (-) | Chemical Use (-) | Solvent (-) | Sulfur Content (%) | Average Mw (g/mol) | Price ($/ton) | Production (per Year) | Ref. (-) |
---|---|---|---|---|---|---|---|
Kraft | Sodium hydroxide and sodium sulfite | Alkali, organic solvents | 1.0–3.0 | 1000–15,000 | 250–600 | 70 Mt | [32,90,91,92] |
Lignosulfonate | Aqueous sulfur dioxide | Water | 3.5–8.0 | 1000–50,000 | 180–500 | 1 Mt | |
Soda | Sodium hydroxide | Alkali | 0 | 1000–3000 | 200–300 | 5000–10,000 ton | |
Organosolv | Organic solvents | Organic solvents | 0 | 500–5000 | 300–520 | 3000 ton |
Source | Type | Chemical | Lignin Conc. (%) | Sun Protection Factor (SPF) | Ref. | |||
---|---|---|---|---|---|---|---|---|
(-) | (-) | (-) | PC (1) | L (2) + PC | SL (3) | L + SL | (-) | |
- | Soda | - | 5 | 1.0 | 4.0 | 18.2 | 53.7 | [33] |
Kraft | - | 5 | 4.0 | 15.3 | ||||
Organosolv | - | 5 | 6.7 | 55.7 | ||||
Enzymatic hydrolyzed | - | 5 | 3.2 | 47.1 | ||||
Na-lignosulfonate | - | 5 | 3.7 | 22.0 | ||||
Eucalyptus | Kraft | - | 2 | 1.0 | 2.2 | 16.3 | 35.4 | [62] |
Organosolv | AcOH, formic acid | 2 | 1.7 | 28.6 | ||||
CEL (4) | - | 2 | 1.3 | 22.1 | ||||
Pinus kesiya | Kraft | - | 2 | 2.3 | 39.3 | |||
Organosolv | AcOH, formic acid | 2 | 1.6 | 24.5 | ||||
CEL (4) | - | 2 | 1.6 | 24.4 | ||||
- | Ca-lignosulfonate | - | 1 | 4.0 | 5.7 | - | - | [93] |
- | Mg-lignosulfonate | - | 1 | 6.5 | - | |||
- | Na-lignosulfonate | - | 1 | 7.9 | - | |||
Cashew apple bagasse | Organosolv | AcOH | 1 | 1.0 | 1.1 | 21.6 | 20.1 | [78] |
Organosolv | AcOH | 2 | 1.3 | 29.3 | ||||
Organosolv | AcOH | 5 | 2.0 | 40.7 | ||||
Sugarcane bagasse | Soda | Sodium hydroxide | 5 | 1.1 | 2.3 | 12.2 | 21.9 | [54] |
Organosolv | Ethylene glycol | 5 | 3.4 | 28.1 | ||||
Organosolv | Glycerol | 5 | 3.4 | 21.0 | ||||
Organosolv | 1,3-propanediol | 5 | 3.5 | 29.3 | ||||
Organosolv | 1,4-butanediol | 5 | 2.5 | 26.5 | ||||
Hardwood | Organosolv | - | 5 | 1.1 | 2.3 | 8.4 | 23.6 | [59] |
Miscanthus sacchariflorus | MWL (5) | - | 5 | 3.2 | 24.0 | |||
Pinus densiflora | MWL (5) | - | 5 | 2.3 | 21.3 | |||
Rice husk | CEL (4) | - | 5 | 1.1 | 2.2 | - | - | [19] |
Types of Materials | Modifications | Concentrations | SPF | Other Properties | Applications | Ref. |
---|---|---|---|---|---|---|
Organic acid lignin | Acetic acid/ hydrogen peroxide/HCl | 5 wt% | 5 | Antioxidant activity | Sunscreen | [149] |
Alkali lignin | Grafting the benzophenone | 10 wt% | 56 | Antioxidant activity | Sunscreen | [150] |
Sulfonated alkali lignin | Grafted on TiO2 | 20 wt% | 48 | N/A | Sunscreen | [154] |
Kraft, alkali lignin | Fabricating the ZnO particles | 20 wt% | 10 | Antioxidant activity Antimicrobial activity | Sunscreen | [38] |
Soda, organosolv lignin | Compose with ZnO nanoparticles | 5 wt% | 13 | Photostability | Sunscreen | [155] |
Kraft lignin | Synergistic effect with commercial products | 8 wt% | 75 | Decolorization | Sunscreen | [87] |
Organosolv lignin | Synergistic effect with commercial products | 10 wt% | 92 | Photostability | Sunscreen | [33] |
Alkali lignin | Synergistic effect with commercial products | 10 wt% | 50 | Photostability | Sunscreen | [21] |
CEL, organosolv lignin | Synergistic effect with commercial products | 5 wt% | 30 | Decolorization | Sunscreen | [19] |
Kraft lignin | Solvent blending | 5 wt% | Good | Photostability | Composites (PVC) | [156] |
Organosolv lignin | Fractionation, solvent casting | 1 wt% | 0.8% a | Plasticizer effect Antioxidant activity | Composites (PMMA) | [157] |
Soda lignin | Grafting the oleic acids, melt-blend | 10 wt% | 1% a | Enhanced tensile properties | Composites (PBAT) | [158] |
Alkali lignin | Solvent blending | 50 wt% | 50 b | Electrospinning Antimicrobial activity | Composites (PVA) | [159] |
Alkali lignin | Etherification, solvent casting | 10 wt% | 50 b | Wettability Moisture adsorption Swelling efficiency | Composites (PVA) | [160] |
Organosolv lignin | TiO2 decoration, blade-casting | 5 wt% | 10% a | Thermal stability Enhanced modulus | Composites (PPC) | [161] |
Softwood Kraft lignin | Propargylation, solvent casting | 2 wt% | 100 | Thermal stability | Composites (cellulose) | [34] |
Alkaline and softwood Kraft lignin | Acetylation, solvent casting | 4 wt% | 41 | Decolorization Surface hydrophobicity Thermal stability | Composites (cellulose) | [35] |
Kraft lignin | Solvent casting | 10 wt% | 53.6% a | Enhanced tensile strength, Surface hydrophobicity Water vapor permeabilities Antioxidant activity Non-cytotoxic activity | Composites (gellan gum, cellulose) | [162] |
Kraft lignin | Acetylation, solvent casting | 10 wt% | 2.5% a | Barrier property, Solubility parameter analysis Enhanced tensile properties | Composites (PLA) | [163] |
Enzymatic and milled lignin | Knife casting | 20 wt% | 0% a | Flame retardant grade Moisture/gas transmittance | Composites (MMT) | [164] |
Enzymatic lignin | Ozone oxidation | N/A | Excellent | Antioxidant activity | Surfactant | [151] |
Enzymatic hydrolysis lignin | Grafting alkyl polyglucoside | 2 wt% | Superior | N/A | Surfactant | [165] |
cellulose nanocrystal | Grafting aldehyde and p-aminobenzoic acid | 10 wt% | 0% a | Transparency Enhanced tensile strength | Composites (PVA) | [136] |
Cellulose acetoacetates | Biginelli reaction with urea and vanillin | N/A | 0% a | Transparency | Cellulose film | [166] |
TEMPO-oxidized cellulose | Grafting curcumin | 33 wt% | 23% a | Vapor barrier properties | Composites (chitosan) | [167] |
Cellulose nanocrystal | Grafting phenolic ester | 20 wt% | 0% a | Transparency Enhanced tensile properties | Composites (PVA) | [168] |
Cellulose microfiber | Aldolization | N/A | Strong | Transparency Wettability | Composites (PVA) | [169] |
Mesoporous silica nanoparticle | N/A | N/A | 19 | N/A | N/A | [142] |
Silica vesicle | Encapsulation of MBBT | 37.5 wt% | 100 | Water dispersibility | Sunscreen | [170] |
Mesoporous silica | Encapsulation of octyl methoxycinnamate | 4 wt% | 13 | N/A | Sunscreen | [171] |
Mesoporous silica | Compose with titania and tannin | 5 wt% | 42 | N/A | Sunscreen | [172] |
Calcium silicate | N/A | 5 wt% | 38 | Less white residue | Sunscreen | [173] |
Fumed silica nanoparticles | N/A | 0.1 wt% | N/A | Decreasing in aging factor | Composites (bitumen) | [174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.H.; Park, S.H.; Lee, S.; Bharadwaj, A.V.S.L.S.; Lee, Y.S.; Yoo, C.G.; Kim, T.H. A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites. Energies 2023, 16, 2231. https://doi.org/10.3390/en16052231
Kim TH, Park SH, Lee S, Bharadwaj AVSLS, Lee YS, Yoo CG, Kim TH. A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites. Energies. 2023; 16(5):2231. https://doi.org/10.3390/en16052231
Chicago/Turabian StyleKim, Tae Hoon, Seung Hyeon Park, Seoku Lee, A.V.S.L. Sai Bharadwaj, Yang Soo Lee, Chang Geun Yoo, and Tae Hyun Kim. 2023. "A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites" Energies 16, no. 5: 2231. https://doi.org/10.3390/en16052231
APA StyleKim, T. H., Park, S. H., Lee, S., Bharadwaj, A. V. S. L. S., Lee, Y. S., Yoo, C. G., & Kim, T. H. (2023). A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites. Energies, 16(5), 2231. https://doi.org/10.3390/en16052231