Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in México
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Evaluated Variables
2.3. Laboratory Study
2.4. Briquettes Production
2.5. Statistical Analysis
3. Results and Discussion
3.1. Field Study
3.2. Proximate Analysis of Biomass
3.3. Physical Properties of Briquettes
3.4. Proximate Analysis of Briquettes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, T.E.; Conner, P.J. Pecan. In Fruit Breeding. Handbook of Plant Breeding; Badenes, M., Byrne, D., Eds.; Springer: Boston, MA, USA, 2012; Volume 8, 875p. [Google Scholar]
- AgMRC (Agricultural Marketing Resource Center). Pecans. Available online: https://www.agmrc.org/commodities-products/nuts/pecans (accessed on 5 February 2021).
- SIAP (Servicio de Información Agroalimentaria y Pesquera). 2021 Anuario Estadístico de La Producción Agrícola. Available online: http://Infosiap.Siap.Gob.Mx:8080/Agricola_siap_gobmx/AvanceNacionalCultivo.Do (accessed on 10 August 2022).
- Gutiérrez, P.F. El precio de la nuez ecanera 2021 y su rentabilidad financiera en base a la sensibilidad del precio. PACANA 2021, 6, 14–21. [Google Scholar]
- FIRA (Fideicomiso Instituidos en Relación con la Agricultura). Sistema de Costos Agrícolas. Resumen de Costos. 2022. Available online: https://www.fira.gob.mx/InfEspDtoXML/BusquedaArch (accessed on 20 October 2022).
- Flores-Gallardo, H.; Domínguez-Gándara, R.A.; Rosales-Serna, R.; Flores, H. Seed yield increments using different in-field rainwater harvesting techniques under rainfed conditions in Durango, México. Annu. Rep. Bean Improv. Coop. 2015, 58, 85–86. [Google Scholar]
- Clark, J.R.; Matheny, N. The Research Foundation to Tree Pruning: A Review of the Literature. Arboric Urban 2010, 36, 110–120. [Google Scholar] [CrossRef]
- Lampinen, B.; Edstrom, J.; Metcalf, S.; Stewart, W.; Negron, C.; Contador, M. Howard Walnut Trees Can Be Brought into Bearing without Annual Pruning. Calif. Agric. (Berkeley) 2015, 69, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Arreola Ávila, J.G.; Lagarda Murrieta, A.; Borja de la Rosa, A.; Valdez Cepeda, R.; López Ariza, B. Disponibilidad de luz y producción de nuez después del aclareo de árboles de nogal pecanero (Carya Illinoensis). Rev. Chapingo. Ser. Cienc. For. Y Del Ambiente 2010, 16, 147–154. [Google Scholar] [CrossRef]
- Garhwal, O.P.; Choudhary, M.R.; Bairwa, L.N.; Kumawat, K.L.; Kumar, P.; Basile, B.; Corrado, G.; Rouphael, Y.; Gora, J.S. Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus Mauritiana). Horticulturae 2022, 8, 809. [Google Scholar]
- ESCACIFOR/PROECEN. Importancia de la Poda en las Plantaciones Forestales; Comayahua: Honduras, CA, USA, 2002; 28p. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen (Para adaptarlo a las Condiciones de la República Mexicana), 4th ed.; Enriqueta García de Miranda: Ciudad de México, Mexico, 1987; 217p. [Google Scholar]
- García, G.M.; Padilla, G.D.; Hernández, J.L.; Corral, J.A.R.; Silva, M.M. Estadísticas Climatológicas Básicas del Estado de Durango (Periodo 1961–2003). Libro Técnico Núm. 1; SAGARPA-INIFAP-CIRNOC-Campo Experimental Valle del Guadiana: Durango, Mexico, 2005; 224p. [Google Scholar]
- UNE-EN 18134-1; Determination of Moisture Content-Method of Oven Drying-Part 1: Total Humidity. AENOR: Madrid, Spain, 2010. Available online: https://www.en-standard.eu/une-en-iso-18134-1-2016-solid-biofuels-determination-of-moisture-content-oven-dry-method-part-1-total-moisture-reference-method-iso-18134-1-2015/ (accessed on 6 October 2022).
- ASTM (American Society for Testing and Materials). Standard Test Method for Chemical Analysis of Wood Charcoal; American Society for Testing and Materials: Philadelphia, PA, USA, 2001; Available online: https://www.academia.edu/33739293/Standard_Test_Method_for_Chemical_Analysis_of_Wood_Charcoal_1 (accessed on 10 October 2022).
- ASTM (American Society for Testing and Materials). Standard Test Method for Gross Calorific Value of Coal and Coke; American Society for Testing and Materials: Philadelphia, PA, USA, 2001; 19p. [Google Scholar]
- Estornell, J.; Velázquez-Martí, A.; Fernández-Sarría, A.; López-Cortés, I.; Martí-Gavilá, J.; Salazar, D. Estimation of Structural Attributes of Walnut Trees Based on Terrestrial Laser Scanning. Rev. De Teledetec. 2017, 48, 67–76. [Google Scholar] [CrossRef]
- Arreola-Ávila, J.G.; Lagarda Murrieta, A.; Borja de la Rosa, A. Inducción de crecimiento lateral en nogal pecanero (Carya Illinoensis K. Koch): Mediante despunte de brotes en primavera. Rev. Chapingo Ser. Hortic 2010, 16, 31–36. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Salazar-Hernández, D.M. Quantification of the Residual Biomass Obtained from Pruning of Trees in Mediterranean Almond Groves. Renew. Energy 2011, 36, 621–626. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Veljić, N.; Soldan, C. Influence of moisture content in wood chips on the boiler operation. In Proceedings of the 7th International Conference “Vallis Aure”, Požega, Croatia, 24–26 September 2020; pp. 0091–0101. [Google Scholar]
- Usol’tsev, V.A.; Tsepordey, I.S. Dry matter content in the biomass of trees of 13 species of eurasia: Geographical aspects. Conifers Boreal Area 2022, XL 3, 193–200. [Google Scholar]
- Fadón, E.; Fernandez, E.; Behn, H.; Luedeling, E. A Conceptual Framework for Winter Dormancy in Deciduous Trees. Agronomy 2020, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Al-Sagheer, N.A.; Prasad, A.G.D. Variation in Wood Specific Gravity, Density and Moisture Content of Dipterocarpus Indicus (Bedd.) among Different Populations in Western Ghats of Karnataka, India. Int. J. Appl. Agric. Res. 2010, 5, 583–599. [Google Scholar]
- Dupuis, I. Estimación de los Residuos Agrícolas Generados en la isla de Tenerife. Resumen del Estudio de GPA S. L. para el Cabildo Insular de Tenerife. Servicio Técnico de Agricultura y Desarrollo Rural. Tenerife, España. 2006. Available online: https://www.agrocabildo.org/publica/Publicaciones/sost_28_L_estima_residu_agricola.pdf (accessed on 10 October 2022).
- Gallino, A.; Castro, B.A.; Bernaus, M.; Gaioli, F. Estudio de Potencial de Mitigación-Biomasa y Biocombustibles de 2° y 3° Generación con Fines Energéticos; Servicio Técnico de Agricultura y Desarrollo Rural; Energy Solutions S. A.: Buenos Aires, Argentina, 2014; 41p. [Google Scholar]
- Cherney, J.H.; Baker, E.V. Ash Content of Grasses for Biofuel Bioenergy Information Sheet; Cornell University, CALS: Ithaca, NY, USA, 2006; Volume 5, 2p. [Google Scholar]
- Gilliam, F.S.; Adams, B.M. Plant and soil nutrients in young versus mature central Appalachian hardwood stands. In Proceedings of the 10th Central Hardwood Forest Conference, Morgantown, WV, USA, 5–8 March 1995. [Google Scholar]
- Tang, X.; Wang, Y.-P.; Zhou, G.; Zhang, D.; Liu, S.; Liu, S.; Zhang, Q.; Liu, J.; Yan, J. Different Patterns of Ecosystem Carbon Accumulation between a Young and an Old-Growth Subtropical Forest in Southern China. Plant Ecol. 2011, 212, 1385–1395. [Google Scholar] [CrossRef]
- Inga, P.R.; Castillo, M.U. Caracteristicas fisico-quimicas de la madera y carbon de once especies forestales de la Amazonia Peruana. Rev. For. Del Perú 1987, 14, 2. [Google Scholar]
- Lourenço, A.; Pereira, H. Compositional Variability of Lignin in Biomass. In Lignin–Trends and Applications; Poletto, M., Ed.; IntechOpen Limited: London, UK, 2018; pp. 65–98. [Google Scholar]
- Rosales, S.; Ríos, J.C.; Jiménez, S.; Carrillo, O.; Nava, C.A.; Domínguez, P.A. Rendimiento y Calidad de Biomasa En Especies Cultivadas Para Obtención de Energía y Abonos En Durango. Rev. Agro-FAZ Edición Espec. INIFAP-CELALA 2018, 139–153. Available online: https://www.researchgate.net/publication/337937960_Produccion_intensiva_de_biomasa_con_especies_cultivadas_para_obtencion_de_abonos_organicos_y_bioenergia_Intensive_biomass_production_using_plant_species_grown_to_obtain_organic_fertilizer_and_bioenerg (accessed on 20 September 2022).
- Acar, S.; Ayanoglu, A. Determination of Higher Heating Values (HHVs) of Biomass Fuels. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2012, 28, 749–758. [Google Scholar]
- Marreiro, H.M.P.; Peruchi, R.S.; Lopes, R.M.B.P.; Andersen, S.L.F.; Eliziário, S.A.; Rotella Junior, P. Empirical Studies on Biomass Briquette Production: A Literature Review. Energies 2021, 14, 8320. [Google Scholar] [CrossRef]
- Maxton Engineering. How Moisture Affects the Biomass Briquetting Process. Available online: http://briquettemachine.com/how-moisture-affects-the-biomass-briquetting-process/ (accessed on 25 September 2022).
- KMEC Engineering. The Moisture Content of Raw Material Affects the Quality of Briquettes. 2021. Available online: https://www.woodbriquetteplant.com/new/the-moisture-content-of-raw-material-affects-the-quality-of-briquettes.html (accessed on 10 November 2022).
- Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S. Physiochemical Characterization of Briquettes Made from Different Feedstocks. Biotechnol. Res. Int. 2012, 2, 165202. [Google Scholar] [CrossRef] [Green Version]
- Ngangyo Heya, M.; Romo Hernández, A.L.; Foroughbakhch Pournavab, R.; Ibarra Pintor, L.F.; Díaz-Jiménez, L.; Heya, M.S.; Salas Cruz, L.R.; Carrillo Parra, A. Physicochemical Characteristics of Biofuel Briquettes Made from Pecan (Carya Illinoensis) Pericarp Wastes of Different Particle Sizes. Molecules 2022, 27, 1035. [Google Scholar] [CrossRef]
- Matúš, M.; Križan, P.; Beniak, J.; Šooš, Ľ. Effects of Initial Moisture Content on the Production and Quality Properties of Solid Biofuel; DSpace: Prague, Czech Republic, 2015. [Google Scholar]
- Boada, L.E.A.; Vargas, F.E.S. Caracterización Físico-Química de Pellets Producidos a Partir de Mezclas 50/50 Carbón Bituminoso/Madera Residual. Inf. Técnico 2015, 79, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Artemio, C.P.; Maginot, N.H.; Serafín, C.-U.; Rahim, F.P.; Guadalupe, R.Q.J.; Fermín, C.-M. Physical, Mechanical and Energy Characterization of Wood Pellets Obtained from Three Common Tropical Species. PeerJ 2018, 6, e5504. [Google Scholar] [CrossRef] [Green Version]
- Tauro, R.; Velázquez-Martí, B.; Manrique, S.; Ricker, M.; Martínez-Bravo, R.; Ruiz-García, V.M.; Ramos-Vargas, S.; Masera, O.; Soria-González, J.A.; Armendáriz-Arnez, C. Potential Use of Pruning Residues from Avocado Trees as Energy Input in Rural Communities. Energies 2022, 15, 1715. [Google Scholar] [CrossRef]
- Bakker, R.R.; Elbersen, H.W. Managing ash content and quality in herbaceous biomass: An analysis from plant to product. In Proceedings of the 14th European Biomass Conference, Paris, France, 17–21 October 2005; WUR Bioenergy Papers and ProjectReports. pp. 210–213. [Google Scholar]
- Rojas, A.F.; Barraza Burgos, J.M. Caracterización Morfológica Del Carbonizado de Carbones Pulverizados: Determinación Experimental. Rev. Fac. De Ing. Univ. De Antioq. 2008, 43, 42–58. [Google Scholar]
- Liu, Z.; Fei, B.; Jiang, Z.; Cai, Z.; Liu, X. Important Properties of Bamboo Pellets to Be Used as Commercial Solid Fuel in China. Wood Sci. Technol. 2014, 48, 903–917. [Google Scholar] [CrossRef]
- Velázquez-Martí, B.; Gaibor-Cházvez, J.; Niño-Ruiz, Z.; Narbona-Sahuquillo, S. Complete Characterization of Pruning Waste from the Lechero Tree (Euphorbia Laurifolia L.) as Raw Material for Biofuel. Renew. Energy 2018, 129, 629–637. [Google Scholar] [CrossRef]
- Kumar, R.M.D.; Anand, R. Production of Biofuel from Biomass Downdraft Gasification and Its Applications. In Advanced Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–151. [Google Scholar]
- Saucedo, J.C.R.; Serna, R.R.; Ocampo, R.J.; Martínez, P.A.D.; Parra, A.C.; Nuñez, L.M.V. Calidad de Pélets a Partir de Biomasa de Ocho Especies Dendroenergéticas de Crecimiento Rápido. Agrociencia 2021, 55, 557–568. [Google Scholar] [CrossRef]
- Ibrahim, F.E.; Ibrahim, A.Y. Effect of Growth Rate on Fixed Carbon, Volatile Matter and Ash Content of Eucalyptus Camaldulensis Wood of Coppice Origin Grown in White Nile State, Sudan. 2014. Available online: https://www.semanticscholar.org/paper/Effect-of-Growth-Rate-on-Fixed-Carbon%2C-Volatile-and-Ibrahim-Abdelgadir/31dbae32b978de7c3cf880e54f880a1c60e8d791 (accessed on 20 September 2022).
- Demirbaş, A. Relationships between Lignin Contents and Fixed Carbon Contents of Biomass Samples. Energy Convers. Manag. 2003, 44, 1481–1486. [Google Scholar] [CrossRef]
- Quiñones-Reveles, M.A.; Ruiz-García, V.M.; Ramos-Vargas, S.; Vargas-Larreta, B.; Masera-Cerutti, O.; Ngangyo-Heya, M.; Carrillo-Parra, A. Assessment of Pellets from Three Forest Species: From Raw Material to End Use. Forests 2021, 12, 447. [Google Scholar] [CrossRef]
Treatment | Site | Moisture Content (%) | Pressure (Mpa) |
---|---|---|---|
T1 | S1 | 6 | 20 |
T2 | S2 | 6 | 20 |
T3 | S1 | 6 | 15 |
T4 | S2 | 6 | 15 |
T5 | S1 | 10 | 20 |
T6 | S2 | 10 | 20 |
T7 | S1 | 10 | 15 |
T8 | S2 | 10 | 15 |
Orchard | Total Height (m) | Moisture Content (%) | Fresh Biomass (kg ha−1) | Dry Biomass (kg ha−1) |
---|---|---|---|---|
S1 | 8.1 ± 0.68 a | 42.5 ± 0.75 | 2359 | 1000 |
S2 | 12.5 ± 2.40 b | 42.8 ± 0.26 | 2312 | 995 |
Average | 10.3 | 42.3 | 2336 | 998 |
Orchard | Ash (%) | Fixed Carbon (%) | Volatile Matter (%) | High Heating Value (MJ kg−1) |
---|---|---|---|---|
S1 | 4.7 ± 0.21 a | 74.9 ± 0.71 | 19.7 ± 0.98 | 16.2 ± 0.32 |
S2 | 3.4 ± 0.66 b | 76.4 ± 1.55 | 18.7 ± 1.29 | 16.7 ± 0.23 |
Average | 4.1 | 75.7 | 19.2 | 16.5 |
Treatment | Diameter (cm) | Length (cm) | Weight (g) | Volume (cm3) | Particle Density (g cm−3) |
---|---|---|---|---|---|
T1 | 3.1 ± 0.06 b | 4.1 ± 0.07 bc | 38.7 ± 0.10 | 30.7 ± 1.36 d | 1.30 ± 0.06 a |
T2 | 3.2 ± 0.05 a | 4.1 ± 0.06 bc | 39.7 ± 0.08 | 32.5 ±1.04 bc | 1.22 ± 0.04 bc |
T3 | 3.1 ± 0.05 b | 4.0 ± 0.05 c | 39.8 ± 0.07 | 31.2 ± 1.06 cd | 1.28 ± 0.05 ab |
T4 | 3.2 ± 0.05 a | 4.0 ± 0.05 c | 39.7 ± 0.07 | 31.7 ± 1.20 cd | 1.25 ± 0.05 ab |
T5 | 3.2 ± 0.04 a | 4.5 ± 0.07 a | 39.7 ± 0.10 | 35.2 ± 1.17 a | 1.13 ± 0.05 d |
T6 | 3.2 ± 0.05 a | 4.3 ± 0.06 b | 39.6 ± 0.12 | 33.9 ± 1.23 ab | 1.17 ± 0.04 cd |
T7 | 3.2 ± 0.05 a | 4.4 ± 0.07 ab | 39.7 ± 0.09 | 34.3 ± 1.35 a | 1.16 ± 0.05 cd |
T8 | 3.2 ± 0.013 a | 4.3 ± 0.05 b | 39.7 ± 0.12 | 34.7 ± 0.88 a | 1.14 ± 0.03 d |
Average | 3.2 | 4.2 | 39.6 | 33.0 | 1.21 |
Treatment | Moisture Content (%) | Ash Content (%) | Volatile Matter (%) | Fixed Carbon (%) | 1HHV (MJ kg−1) |
---|---|---|---|---|---|
T1 | 5.3 ± 0.31 | 3.5 ± 0.25 ab | 76.7 ± 0.77 | 14.5 ± 0.50 | 18.3 ± 0.11 a |
T2 | 5.7 ± 0.67 | 3.1 ± 0.29 b | 76.8 ± 0.34 | 14.4 ± 0.82 | 18.4 ± 0.14 a |
T3 | 5.4 ± 0.03 | 3.4 ± 0.22 ab | 77.1 ± 0.45 | 14.1 ± 0.26 | 18.3 ± 0.19 a |
T4 | 5.3 ± 0.17 | 3.5 ± 0.16 ab | 77.3 ± 0.61 | 13.9 ± 0.68 | 17.8 ± 0.12 bc |
T5 | 5.9 ± 0.35 | 3.2 ± 0.16 b | 76.8 ± 0.65 | 14.2 ± 0.84 | 18.1 ± 0.13 abc |
T6 | 5.3 ± 0.15 | 3.9 ± 0.15 a | 77.6 ± 0.76 | 13.2 ± 0.74 | 17.7 ± 0.10 c |
T7 | 5.5 ± 0.04 | 3.8 ± 0.03 a | 76.8 ± 0.54 | 13.8 ± 0.52 | 18.2 ± 0.14 ab |
T8 | 5.7 ± 0.06 | 3.9 ± 0.30 a | 77.7 ± 2.42 | 12.8 ± 2.72 | 17.7 ± 0.14 c |
Average | 5.5 | 3.5 | 77.1 | 13.9 | 18.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra-Zurita, D.; Santana-Espinoza, S.; Rosales-Serna, R.; Ríos-Saucedo, J.C.; Carrillo-Parra, A. Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in México. Energies 2023, 16, 2243. https://doi.org/10.3390/en16052243
Sierra-Zurita D, Santana-Espinoza S, Rosales-Serna R, Ríos-Saucedo JC, Carrillo-Parra A. Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in México. Energies. 2023; 16(5):2243. https://doi.org/10.3390/en16052243
Chicago/Turabian StyleSierra-Zurita, Donaji, Saúl Santana-Espinoza, Rigoberto Rosales-Serna, Julio César Ríos-Saucedo, and Artemio Carrillo-Parra. 2023. "Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in México" Energies 16, no. 5: 2243. https://doi.org/10.3390/en16052243
APA StyleSierra-Zurita, D., Santana-Espinoza, S., Rosales-Serna, R., Ríos-Saucedo, J. C., & Carrillo-Parra, A. (2023). Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in México. Energies, 16(5), 2243. https://doi.org/10.3390/en16052243