Multi-Objective Electromagnetic Design Optimization of a Power Transformer Using 3D Finite Element Analysis, Response Surface Methodology, and the Third Generation Non-Sorting Genetic Algorithm
Abstract
:1. Introduction
2. Multi-Objective Transformer Design Methodology
3. Transformer Modeling
3.1. The Manufacturer’s Transformer Design Approach
3.2. Electromagnetic Model
3.3. Response Surface Methodology
4. Multi-Objective Optimization
5. Numerical Results
5.1. Optimization Results with the Manufacturer’s Transformer Design Approach
5.2. Multi-Objective Optimization Results Using RSM Polynomial Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reece, A.B.J.; Preston, T.W. Finite Element Methods in Electrical Power Engineering; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- del Vecchio, R.M.; Poulin, B.; Feghali, P.T.; Shah, D.M.; Ahuja, R. Transformer Design Principles; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315218342. [Google Scholar]
- Stebel, M.; Kubiczek, K.; Rios Rodriguez, G.; Palacz, M.; Garelli, L.; Melka, B.; Haida, M.; Bodys, J.; Nowak, A.J.; Lasek, P.; et al. Thermal Analysis of 8.5 MVA Disk-Type Power Transformer Cooled by Biodegradable Ester Oil Working in ONAN Mode by Using Advanced EMAG–CFD–CFD Coupling. Int. J. Electr. Power Energy Syst. 2022, 136, 107737. [Google Scholar] [CrossRef]
- Bastos, J.P.A.; Sadowski, N. Electromagnetic Modeling by Finite Element Methods; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780429213472. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Amoiralis, E.I.; Georgilakis, P.S.; Kefalas, T.D.; Tsili, M.A.; Kladas, A.G. Artificial Intelligence Combined with Hybrid FEM-BE Techniques for Global Transformer Optimization. IEEE Trans. Magn. 2007, 43, 1633–1636. [Google Scholar] [CrossRef]
- Amoiralis, E.I.; Tsili, M.A.; Georgilakis, P.S.; Kladas, A.G.; Souflaris, A.T. A Parallel Mixed Integer Programming-Finite Element Method Technique for Global Design Optimization of Power Transformers. IEEE Trans. Magn. 2008, 44, 1022–1025. [Google Scholar] [CrossRef]
- Amoiralis, E.I.; Tsili, M.A.; Kladas, A.G. Transformer Design and Optimization: A Literature Survey. IEEE Trans. Power Deliv. 2009, 24, 1999–2024. [Google Scholar] [CrossRef]
- Arjona, M.A.; Hernandez, C.; Cisneros-Gonzalez, M. Hybrid Optimum Design of a Distribution Transformer Based on 2-D FE and a Manufacturer Design Methodology. IEEE Trans. Magn. 2010, 46, 2864–2867. [Google Scholar] [CrossRef]
- Tran, T.v.; Moussouni, F.; Brisset, S.; Brochet, P. Adapted Output Space-Mapping Technique for a Bi-Objective Optimization. IEEE Trans. Magn. 2010, 46, 2990–2993. [Google Scholar] [CrossRef]
- Cheema, M.A.M.; Fletcher, J.E.; Dorrell, D. A Practical Approach for the Global Optimization of Electromagnetic Design of 3-Phase Core-Type Distribution Transformer Allowing for Capitalization of Losses. IEEE Trans. Magn. 2013, 49, 2117–2120. [Google Scholar] [CrossRef]
- Hultmann Ayala, H.V.; de Vasconcelos Segundo, E.H.; Lebensztajn, L.; Mariani, V.C.; dos Santos Coelho, L. Multiobjective Wind Driven Optimization Approach Applied to Transformer Design. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 4642–4647. [Google Scholar]
- Xia, B.; Hong, S.; Choi, K.; Koh, C.S. Optimal Design of Winding Transposition of Power Transformer Using Adaptive Co-Kriging Surrogate Model. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Mohammed, M.S.; Vural, R.A. NSGA-II+FEM Based Loss Optimization of Three-Phase Transformer. IEEE Trans. Ind. Electron. 2019, 66, 7417–7425. [Google Scholar] [CrossRef]
- Liu, D.; Wei, B.; Cai, C.; Ding, J.; Guo, Z. TOC Optimization Design of Amorphous Metal Core Distribution Transformer Based on NSGA-II. In Proceedings of the 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, 16–18 October 2020; pp. 1–2. [Google Scholar]
- Orosz, T.; Pánek, D.; Karban, P. FEM Based Preliminary Design Optimization in Case of Large Power Transformers. Appl. Sci. 2020, 10, 1361. [Google Scholar] [CrossRef] [Green Version]
- Cove, S.R.; Ordonez, M.; Luchino, F.; Quaicoe, J.E. Applying Response Surface Methodology to Small Planar Transformer Winding Design. IEEE Trans. Ind. Electron. 2013, 60, 483–493. [Google Scholar] [CrossRef]
- Li, J.; Water, W.; Zhu, B.; Lu, J. Integrated High-Frequency Coaxial Transformer Design Platform Using Artificial Neural Network Optimization and FEM Simulation. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Xiaowei, G.; Zhiting, Y.; Danchen, J. Optimization of High Frequency Transformer Based on Advanced Genetic Algorithm. In Proceedings of the 2017 IEEE 21st International Conference on Pulsed Power (PPC), Brighton, UK, 18–22 June 2017; pp. 1–4. [Google Scholar]
- Tan, Y.; Yu, X.; Wang, X.; Lv, Q.; Shi, M. Interaction Analysis and Multi-Response Optimization of Transformer Winding Design Parameters. Int. Commun. Heat Mass Transf. 2022, 137, 106233. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Tang, K.; Yao, X. Many-Objective Evolutionary Algorithms. ACM Comput. Surv. 2015, 48, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology, 4th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; ISBN 978-1-118-91601-8. [Google Scholar]
- ANSYS Academic Research Maxwell; Release 2022 R2, Help System; ANSYS Inc.: Canonsburg, PA, USA.
- Hernández, C.; Arjona, M.A. Design of Distribution Transformers Based on a Knowledge-Based System and 2D Finite Elements. Finite Elem. Anal. Des. 2007, 43, 659–665. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; ISBN 978-1-119-72210-6. [Google Scholar]
- Deb, K. An Introduction to Genetic Algorithms. Sadhana 1999, 24, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Das, I.; Dennis, J.E. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM J. Optim. 1998, 8, 631–657. [Google Scholar] [CrossRef] [Green Version]
- Blank, J.; Deb, K.; Dhebar, Y.; Bandaru, S.; Seada, H. Generating Well-Spaced Points on a Unit Simplex for Evolutionary Many-Objective Optimization. IEEE Trans. Evol. Comput. 2021, 25, 48–60. [Google Scholar] [CrossRef]
- Sun, Y.; Yen, G.G.; Yi, Z. IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Trans. Evol. Comput. 2019, 23, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Coello Coello, C.A.; Reyes Sierra, M. A Study of the Parallelization of a Coevolutionary Multi-Objective Evolutionary Algorithm. In Proceedings of the MICAI 2004: Advances in Artificial Intelligence: Third Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, 26–30 April 2004; pp. 688–697. [Google Scholar]
- Blank, J.; Deb, K. A Running Performance Metric and Termination Criterion for Evaluating Evolutionary Multi- and Many-Objective Optimization Algorithms. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
Power Rating (kVA) | High Voltage (V) | Low Voltage (V) | Type | Connection | Frequency (Hz) | Reactance (%) |
---|---|---|---|---|---|---|
1500 | 13,200 | 220 | Oil filled | Delta-wye | 60 | 5.5 |
Dim. | Description | Dim. | Description | Dim. | Description |
---|---|---|---|---|---|
d0 | Core diameter | h | Core leg height | h3 | Yoke bottom tank clearance |
d1 | LV winding diameter | g | HV–LV windings gap | h4 | Yoke top tank clearance |
d2 | HV winding diameter | g0 | LV–Core clearance | tw | Tank width |
h1 | LV winding height | g1 | LV–Yoke clearance | th | Tank height |
h2 | HV winding height | g2 | HV–Yoke clearance | td | Tank depth |
b1 | LV winding radial depth | g3 | HV–HV clearance | ||
b2 | HV winding radial depth | g4 | HV–Tank clearance |
Design Variables and Transformer Quantities | Description | Optimum NSGA-II | Optimum NSGA-III | FEA of Optimum NSGA-III | Units |
---|---|---|---|---|---|
B | Flux density | 1.48 | 1.69 | - | T |
JHV | HV current density | 3.36 | 3.20 | - | A/mm2 |
JLV | LV current density | 3.25 | 2.81 | - | A/mm2 |
d0 | Core diameter | 255.83 | 239.08 | - | mm |
h | Core leg length | 457.60 | 493.21 | - | mm |
g | HV–LV winding gap | 12.00 | 14.82 | - | mm |
S | Apparent power | 1499.72 | 1499.84 | 1501.09 | kVA |
X | Leakage reactance | 5.54 | 5.5 | 5.86 | % |
Ploss | Power losses | 14,751 | 13,740 | 13,248 | W |
WCu | Copper weight | 515.88 | 548.40 | 548.3 | Kg |
Wcore | Core weight | 1261.15 | 1113.19 | 1124.9 | Kg |
Levels | Core Diameter (mm), d0 | HV–LV Gap (mm), g | LV Radial Depth (mm), b1 | HV Radial Depth (mm), b2 | Core Leg Height (mm), h |
---|---|---|---|---|---|
−α (min) | 215.17 | 13.34 | 32.35 | 28.32 | 443.89 |
−1 (low) | 227.13 | 14.08 | 34.14 | 29.90 | 468.55 |
0 (center) | 239.08 | 14.82 | 35.94 | 31.47 | 493.21 |
1 (high) | 251.03 | 15.56 | 37.74 | 33.04 | 517.87 |
+α (max) | 262.99 | 16.30 | 39.53 | 34.62 | 542.53 |
Run | d0 (mm) | g (mm) | b1 (mm) | b2 (mm) | h (mm) | Power Loss (W) | Copper Weight (Kg) | Core Weight (Kg) | Sout (kVA) | X (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 239.08 | 14.82 | 35.94 | 31.47 | 493.21 | 13,248.4 | 548.3 | 1124.9 | 1501.09 | 5.86 |
2 | 215.17 | 14.82 | 35.94 | 31.47 | 493.21 | 13,421.7 | 507.8 | 874.6 | 1447.99 | 5.41 |
3 | 262.99 | 14.82 | 35.94 | 31.47 | 493.21 | 12,997.5 | 588.8 | 1415.7 | 1501.85 | 6.26 |
4 | 239.08 | 13.34 | 35.94 | 31.47 | 493.21 | 13,248.6 | 546.1 | 1121.3 | 1502.08 | 5.62 |
5 | 239.08 | 16.3 | 35.94 | 31.47 | 493.21 | 13,245.5 | 550.5 | 1128.5 | 1500.71 | 6.09 |
6 | 239.08 | 14.82 | 32.35 | 31.47 | 493.21 | 13,243.9 | 513.3 | 1116.1 | 1501.03 | 5.6 |
7 | 239.08 | 14.82 | 39.53 | 31.47 | 493.21 | 13,232.8 | 584.0 | 1133.6 | 1500.86 | 6.12 |
8 | 239.08 | 14.82 | 35.94 | 28.32 | 493.21 | 13,237.6 | 517.9 | 1117.2 | 1502.15 | 5.69 |
9 | 239.08 | 14.82 | 35.94 | 34.62 | 493.21 | 13,256.9 | 579.2 | 1132.5 | 1500.26 | 6.01 |
10 | 239.08 | 14.82 | 35.94 | 31.47 | 443.89 | 13,155.9 | 485.3 | 1079.9 | 1500.16 | 6.53 |
11 | 239.08 | 14.82 | 35.94 | 31.47 | 542.53 | 13,325.3 | 611.3 | 1169.9 | 1502.74 | 5.3 |
12 | 227.13 | 14.08 | 34.14 | 29.90 | 517.87 | 13,427.9 | 523.8 | 1006.1 | 1495.79 | 5.06 |
13 | 251.03 | 14.08 | 34.14 | 29.90 | 468.55 | 13,064.5 | 503.2 | 1229.2 | 1502.40 | 6.04 |
14 | 227.13 | 15.56 | 34.14 | 29.90 | 468.55 | 13,321.0 | 468.9 | 968.8 | 1494.00 | 5.86 |
15 | 251.03 | 15.56 | 34.14 | 29.90 | 517.87 | 13,135.8 | 566.7 | 1282.8 | 1502.96 | 5.68 |
16 | 227.13 | 14.08 | 37.74 | 29.90 | 468.55 | 13,321.3 | 499.0 | 973.4 | 1494.08 | 5.89 |
17 | 251.03 | 14.08 | 37.74 | 29.90 | 517.87 | 13,143.3 | 602.7 | 1288.5 | 1502.91 | 5.69 |
18 | 227.13 | 15.56 | 37.74 | 29.90 | 517.87 | 13,380.8 | 561.9 | 1017.3 | 1493.31 | 5.54 |
19 | 251.03 | 15.56 | 37.74 | 29.90 | 468.55 | 13,066.3 | 539.3 | 1242.8 | 1501.34 | 6.58 |
20 | 227.13 | 14.08 | 34.14 | 33.04 | 468.55 | 13,322.8 | 494.5 | 972.4 | 1492.01 | 5.78 |
21 | 251.03 | 14.08 | 34.14 | 33.04 | 517.87 | 13,136.8 | 597.5 | 1287.3 | 1503.22 | 5.59 |
22 | 227.13 | 15.56 | 34.14 | 33.04 | 517.87 | 13,429.2 | 557.4 | 1016.3 | 1495.18 | 5.44 |
23 | 251.03 | 15.56 | 34.14 | 33.04 | 468.55 | 13,060.7 | 534.6 | 1241.6 | 1501.53 | 6.47 |
24 | 227.13 | 14.08 | 37.74 | 33.04 | 517.87 | 13,424.5 | 591.3 | 1020.9 | 1492.19 | 5.46 |
25 | 251.03 | 14.08 | 37.74 | 33.04 | 468.55 | 13,067.2 | 567.1 | 1247.3 | 1501.34 | 6.5 |
26 | 227.13 | 15.56 | 37.74 | 33.04 | 468.55 | 13,336.8 | 529.2 | 983.6 | 1493.92 | 6.3 |
27 | 251.03 | 15.56 | 37.74 | 33.04 | 517.87 | 13,161.2 | 638.7 | 1300.9 | 1502.26 | 6.09 |
Design Variables and Transformer Quantities | Description | Optimum Values Using RSM Models | FEA Validation | Units |
---|---|---|---|---|
d0 | Core diameter | 232.49 | - | mm |
g | HV–LV windings gap | 14.51 | - | mm |
b1 | LV winding radial depth | 33.10 | - | mm |
b2 | HV winding radial depth | 28.57 | - | mm |
h | Core leg height | 478.52 | - | mm |
S | Apparent power | 1499.92 | 1500.22 | kVA |
X | Reactance | 5.52 | 5.51 | % |
Ploss | Power losses | 13,287.5 | 13,280.47 | W |
WeightCu | Copper weight | 466.1 | 465.9 | Kg |
Weightcore | Core weight | 1025.5 | 1025.4 | Kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez, C.; Lara, J.; Arjona, M.A.; Melgoza-Vazquez, E. Multi-Objective Electromagnetic Design Optimization of a Power Transformer Using 3D Finite Element Analysis, Response Surface Methodology, and the Third Generation Non-Sorting Genetic Algorithm. Energies 2023, 16, 2248. https://doi.org/10.3390/en16052248
Hernandez C, Lara J, Arjona MA, Melgoza-Vazquez E. Multi-Objective Electromagnetic Design Optimization of a Power Transformer Using 3D Finite Element Analysis, Response Surface Methodology, and the Third Generation Non-Sorting Genetic Algorithm. Energies. 2023; 16(5):2248. https://doi.org/10.3390/en16052248
Chicago/Turabian StyleHernandez, Concepcion, Jorge Lara, Marco A. Arjona, and Enrique Melgoza-Vazquez. 2023. "Multi-Objective Electromagnetic Design Optimization of a Power Transformer Using 3D Finite Element Analysis, Response Surface Methodology, and the Third Generation Non-Sorting Genetic Algorithm" Energies 16, no. 5: 2248. https://doi.org/10.3390/en16052248
APA StyleHernandez, C., Lara, J., Arjona, M. A., & Melgoza-Vazquez, E. (2023). Multi-Objective Electromagnetic Design Optimization of a Power Transformer Using 3D Finite Element Analysis, Response Surface Methodology, and the Third Generation Non-Sorting Genetic Algorithm. Energies, 16(5), 2248. https://doi.org/10.3390/en16052248