Effects of Inorganic Minerals and Kerogen on the Adsorption of Crude Oil in Shale
Abstract
:1. Introduction
2. Samples
3. Methodology
3.1. Preparation of Adsorbents
3.2. Adsorption Experimental Method
4. Results
4.1. Adsorbent Properties
4.2. Results of Adsorption Experiment
5. Discussion
5.1. Crude Oil Adsorption Ratio of Kerogen
5.2. Adsorption Ratio of Inorganic Minerals to Crude Oil
5.3. Discussion of the Adsorption Mechanism
6. Conclusions
- (1)
- Under the condition of the adsorbate content being close to the oil content of geological shale samples, the crude oil adsorption capacity of TA (containing kerogen effective carbon) ranged from 1.39 to 3.66 mg/g, and the adsorption ratio ranged from 17.56 to 25.52%. The crude oil adsorption capacity of TB (containing kerogen ineffective carbon) ranged from 1.77 to 4.12 mg/g, and the adsorption ratio ranged from 26.48 to 38.98%. The crude oil adsorption capacity of TC (only inorganic minerals) ranged from 1.18 to 2.40 mg/g, and the adsorption ratio ranged from 11.36 to 17.02%. The change in the surface properties of shale adsorbents during thermal evolution was the main reason for the different crude oil adsorption properties of different types of adsorbent.
- (2)
- In the adsorbents prepared from general organic-rich shale samples (TOC = 1.60−4.52%), because of the wide content difference between kerogen and inorganic minerals, resulting in a change in kerogen’s structural units and content, it cannot dominate the crude oil adsorption of shale. On the contrary, the composition and evolution of inorganic minerals are closely related to the crude oil adsorption properties of shale, and they play a dominant role in shale’s adsorption of crude oil. Among them, the content and evolution characteristics of illite + smectite in shale had the most significant effect on the adsorption of crude oil, and orthoclase can indirectly affect the crude oil adsorption properties of shale by affecting the conversion process of illite/smectite to illite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarvie, D.M. Shale Resource Systems for Oil and Gas: Part2-Shale-Oil Resource Systems. Shale Reserv.-Giant Resour. 21st Century 2012, 97, 89–119. [Google Scholar]
- Zou, C.N.; Yang, Z.; Cui, J.W.; Zhu, R.K.; Hou, L.H.; Tao, S.Z.; Yuan, X.J.; Wu, S.T.; Lin, S.H.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 15–27. [Google Scholar] [CrossRef]
- Modica, C.J.; Lapierre, S.G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bull. 2012, 96, 87–108. [Google Scholar] [CrossRef]
- Jiang, Q.G.; Li, M.W.; Qian, M.H.; Li, Z.M.; Li, Z.; Huang, Z.K.; Zhang, C.M.; Ma, Y.Y. Quantitative characterization of shale oil in different occurrence states and its application. Pet. Geol. Exp. 2016, 38, 842–849. [Google Scholar]
- Li, S.F.; Hu, S.Z.; Xie, X.N.; Lv, Q.; Huang, X.; Ye, J.R. Assessment of shale oil potential using a new free hydrocarbon index. Int. J. Coal Geol. 2016, 156, 74–85. [Google Scholar] [CrossRef]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Rev. L’institut Français Pétrole 1998, 53, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Ritter, U. Fractionation of petroleum during expulsion from kerogen. J. Geochem. Explor. 2003, 78–79, 417–420. [Google Scholar] [CrossRef]
- Ertas, D.; Kelemen, S.R.; Halsey, T.C. Petroleum Expulsion Part 1. Theory of Kerogen Swelling in Multicomponent Solvents. Energy Fuels 2006, 20, 295–300. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Walters, C.C.; Ertas, D.; Kwiatek, L.M.; Curry, D.J. Petroleum Expulsion Part 2. Organic Matter Type and Maturity Effects on Kerogen Swelling by Solvents and Thermodynamic Parameters for Kerogen from Regular Solution Theory. Energy Fuels 2006, 20, 301–308. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple Kinetic-Models of Petroleum Formation.1. Oil and Gas Generation from Kerogen. Mar. Pet. Geol. 1995, 12, 291–319. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part III: Modelling an open system. Mar. Pet. Geol. 1995, 12, 417–452. [Google Scholar] [CrossRef]
- Jarvie, D.M. Components and processes affecting producibility and commerciality of shale resource systems. Geol. Acta 2014, 12, 307–325. [Google Scholar]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Li, Z.M.; Tao, G.L.; Li, M.W.; Jiang, Q.G.; Cao, T.T.; Liu, P.; Qian, M.H.; Xie, M.M.; Li, Z. Favorable interval for shale oil prospecting in coring Well L69 in the Paleogene Es3L in Zhanhua Sag, Jiyang Depression, Bohai Bay Basin. Oil Gas Geol. 2019, 40, 236–247. [Google Scholar]
- Cai, Y.L.; Zhang, X.; Zou, Y.R. Solvent swelling: A new technique for oil primary migration. Geochimica 2007, 36, 351–356. [Google Scholar]
- Collins, S.H.; Melrose, J.C. Adsorption of Asphaltenes and Water on Reservoir Rock Minerals. SPE Oilfield Geotherm. Chem. Symp. 1983, 249–254. [Google Scholar] [CrossRef]
- Pernyeszi, T.; Patzko, A.; Berkesi, O.; Dekany, I. Asphaltene adsorption on clays and crude oil reservoir rocks. Colloids Surf. A Physicochem. Eng. Asp. 1998, 137, 373–384. [Google Scholar] [CrossRef]
- Schettler, P.D., Jr.; Parmely, C.R. Contributions to Total Storage Capacity in Devonian Shales. In Proceedings of the SPE Eastern Regional Meeting, Lexington, KY, USA, 23 October 1991. [Google Scholar]
- Cao, Z.; Jiang, H.; Zeng, J.H.; Hakim, S.; Lu, T.Z.; Xie, X.M.; Zhang, Y.C.; Zhou, G.G.; Wu, K.Y.; Guo, J.R. Nanoscale liquid hydrocarbon adsorption on clay minerals: A molecular dynamics simulation of shale oils. Chem. Eng. J. 2021, 420, 127578. [Google Scholar] [CrossRef]
- Acevedo, S.; Ranaudo, M.A.; Escobar, G.; Gutiérrez, L.; Ortega, P. Adsorption of asphaltenes and resins on organic and inorganic substrates and their correlation with precipitation problems in production well tubing. Fuel 1995, 74, 595–598. [Google Scholar] [CrossRef]
- Li, Z.; Zou, Y.R.; Xu, X.Y.; Sun, J.N.; Li, M.W.; Peng, P.A. Adsorption of mudstone source rock for shale oil—Experiments, model and a case study. Org. Geochem. 2016, 92, 55–62. [Google Scholar] [CrossRef]
- Guo, S.B.; Mao, W.J. Division of diagenesis and pore evolution of a Permian Shanxi shale in the Ordos Basin, China. J. Pet. Sci. Eng. 2019, 182, 106351. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Li, F.L.; Wang, M.Z.; Liu, S.B.; Hao, Y.W. Pore characteristics and influencing factors of different types of shales. Mar. Pet. Geol. 2019, 102, 391–401. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Bao, S.Y.; Li, J.Y.; Li, Z.; Zhu, R.F.; Zhang, L.; Wang, Y.R. Hydrocarbon and crude oil adsorption abilities of minerals and kerogens in lacustrine shales. Pet. Geol. Exp. 2015, 37, 776–780. [Google Scholar]
- Fan, E.P.; Tang, S.H.; Zhang, C.L.; Guo, Q.L.; Sun, C.H. Methane sorption capacity of organics and clays in high-over matured shale-gas systems. Energy Explor. Exploit. 2014, 32, 927–942. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.S.; Xue, H.T.; Lu, S.F.; Zeng, F.; Xue, Q.Z.; Chen, G.H.; Wu, C.Z.; Zhang, S.S. Molecular Simulation of Oil Mixture Adsorption Character in Shale System. J. Nanosci. Nanotechnol. 2017, 17, 6198–6209. [Google Scholar] [CrossRef]
- Daughney, C.J. Sorption of crude oil from a non-aqueous phase onto silica: The influence of aqueous pH and wetting sequence. Org. Geochem. 2000, 31, 147–158. [Google Scholar] [CrossRef]
- Dudášová, D.; Simon, S.; Hemmingsen, P.V.; Sjöblom, J. Study of asphaltenes adsorption onto different minerals and clays. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 62–72. [Google Scholar] [CrossRef]
- Wei, Z.F.; Zou, Y.R.; Cai, Y.L.; Wang, L.; Luo, X.R.; Peng, P.A. Kinetics of oil group-type generation and expulsion: An integrated application to Dongying Depression, Bohai Bay Basin, China. Org. Geochem. 2012, 52, 1–12. [Google Scholar] [CrossRef]
- Chen, J.H.; Philp, R.P. Porphyrin distributions in crude oils from the Jianghan and Biyang basins, China. Chem. Geol. 1991, 91, 139–151. [Google Scholar] [CrossRef]
- Dong, Y.L.; Zhu, X.M.; Xian, B.Z.; Hu, T.H.; Geng, X.J.; Liao, J.J.; Luo, Q. Seismic geomorphology study of the Paleogene Hetaoyuan Formation, central-south Biyang Sag, Nanxiang Basin, China. Mar. Pet. Geol. 2015, 64, 104–124. [Google Scholar] [CrossRef]
- Song, Y.; Li, S.F.; Hu, S.Z. Warm-humid paleoclimate control of salinized lacustrine organic-rich shale deposition in the Oligocene Hetaoyuan Formation of the Biyang Depression, East China. Int. J. Coal Geol. 2018, 202, 69–84. [Google Scholar] [CrossRef]
- Qing, J.Z. Source Rocks in China; Science Press: Beijing, China, 2005. [Google Scholar]
- Sun, J.N. Evalution of Movable Oil and Retention Machanics of Dongying Depression Shales. Ph.D. Thesis, University of Chinese Academy of Sciences, Guangzhou, China, 2021. [Google Scholar]
- Sert, M.; Ballice, L.; Yüksel, M.; Saglam, M.; Reimert, R.; Erdem, S. Effect of solvent swelling on pyrolysis of kerogen (type-I) isolated from Göynük oil shale (Turkey). J. Anal. Appl. Pyrolysis 2009, 84, 31–38. [Google Scholar] [CrossRef]
- Cooles, G.P. Calculation of petroleum masses generated and expelled from source rocks. Org. Geochem. 1986, 10, 235–245. [Google Scholar] [CrossRef]
- Dow, W.G. Kerogen studies and geological interpretations. J. Geochem. Explor. 1977, 7, 79–99. [Google Scholar] [CrossRef]
- Qiu, L.W.; Jiang, Z.X.; Cao, Y.C.; Qiu, R.H.; Chen, W.X.; Tu, Y.F. Alkaline diagenesis and its influence on a reservoir in the Biyang depression. Sci. China (Earth Sci.) 2002, 45, 643–653. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, F.; Bai, J.R.; Sun, B.Z.; Li, S.H.; Sun, J. Study on the Basic Physicoche mical Characteristics of the Huadi an Oil Shales. J. Jilin Univ. (Earth Sci. Ed.) 2006, 36, 1006–1011. [Google Scholar]
- Dembicki, J.H. The effects of the mineral matrix on the determination of kinetic parameters using modified Rock Eval pyrolysis. Org. Geochem. 1992, 18, 531–539. [Google Scholar] [CrossRef]
- Bai, J.R.; Song, K.T.; Chen, J.B. The migration of heavy metal elements during pyrolysis of oil shale in Mongolia. Fuel 2018, 225, 381–387. [Google Scholar] [CrossRef]
- Yu, Z.; Ding, K.; Han, C.; Wu, Y.; Guan, F. Adsorption of diesel oil onto natural mud shale: From experimental investigation to thermodynamic and kinetic modelling. Int. J. Environ. Anal. Chem. 2021, 8, 1–15. [Google Scholar] [CrossRef]
- Hao, Y.M.; Lu, M.J.; Dong, C.S.; Jia, J.P.; Su, Y.L.; Sheng, G.L. Experimental Investigation on Oil Enhancement Mechanism of Hot Water Injection in tight reservoirs. Open Phys. 2016, 14, 703–713. [Google Scholar]
- Shakeel, M.; Pourafshary, P.; Hashmet, M.R. Hybrid Engineered Water-Polymer Flooding in Carbonates: A Review of Mechanisms and Case Studies. Appl. Sci. 2020, 10, 6087. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, S.F.; Li, J.Q.; Zhang, P.F.; Xue, H.T.; Zhao, X.; Xie, L.J. Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene) on Clay Minerals: An Experimental Study. Energies 2017, 10, 1586. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.Z.; Kim, K.T.; Werth, C.J.; Katz, L.E.; Mohanty, K.K. Surfactant Adsorption on Shale Samples: Experiments and an Additive Model. Energy Fuels 2020, 34, 5436–5443. [Google Scholar] [CrossRef]
- Rajak, V.K.; Kumar, H.; Mandal, A. Kinetics, equilibrium and thermodynamic studies of adsorption of oil from oil-in-water emulsion by activated charcoal. Int. J. Surf. Sci. Eng. 2016, 10, 600–621. [Google Scholar] [CrossRef]
- Acar, E.T.; Ortaboy, S.; Atun, G. Adsorptive removal of thiazine dyes from aqueous solutions by oil shale and its oil processing residues: Characterization, equilibrium, kinetics and modeling studies. Chem. Eng. J. 2015, 276, 340–348. [Google Scholar] [CrossRef]
- Zhang, H.X.; Wang, X.Y.; Liang, H.H.; Tan, T.S.; Wu, W.S. Adsorption behavior of Th(IV) onto illite: Effect of contact time, pH value, ionic strength, humic acid and temperature. Appl. Clay Sci. 2016, 127, 35–43. [Google Scholar]
- Li, S.G.; Bai, Y.; Lin, H.F.; Yan, M.; Liu, J.B. Experimental study on the effect of temperature on the kinetics characteristics of gas adsorption on coal. J. Xi’an Univ. Sci. Technol. 2018, 38, 181–186+272. [Google Scholar]
- Berger, G.; Lacharpagne, J.C.; Velde, B.; Beaufort, D.; Lanson, B. Kinetic constrains on illitization reactions and effects of organic diagenesis in sandstone/shale sequences. Appl. Geochem. 1997, 12, 23–35. [Google Scholar] [CrossRef]
- Velde, B.; Vasseur, G. Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am. Mineral. 1992, 77, 967–976. [Google Scholar]
- Boles, J.R.; Franks, S.J. Clay diagenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on sandstone cementation. J. Sediment. Res. 1979, 49, 55–70. [Google Scholar]
- Huang, S.J.; Huang, K.K.; Feng, W.L.; Tong, H.P.; Liu, L.H.; Zhang, X.H. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica 2009, 38, 498–506. [Google Scholar]
- Aagaard, P.; Egeberg, P.K.; Saigal, G.C.; Morad, S.Y.; Bjorlykke, K. Diagenetic albitization of detrital K-feldspars in Jurassic, Lower Cretaceous and Tertiary clastic reservoir rocks from offshore Norway; II, Formation water chemistry and kinetic considerations. J. Sediment. Res. 1990, 60, 575–581. [Google Scholar] [CrossRef]
- Wei, W.W.; Huang, S.J.; Huan, J.L. Thermodynamic Calculation of Illite Formation and Its Significance on Research of Sandstone Diagenesis. Geol. Sci. Technol. Inf. 2011, 30, 20–25. [Google Scholar]
- Hollanders, S.; Adriaens, R.; Skibsted, J.; Cizer, Ö.; Elsen, J. Pozzolanic reactivity of pure calcined clays. Appl. Clay Sci. 2016, 132–133, 552–560. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- He, C.L.; Osbaeck, B.; Makovicky, E. Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cem. Concr. Res. 1995, 25, 1691–1702. [Google Scholar] [CrossRef]
- Li, G.H.; Jiang, T.; Fan, X.H.; Qiu, G.Z. Thermochemical Activation of Silicon in Illite and Its Removal. Met. Mine 2004, 5, 18–24. [Google Scholar]
- Zhou, Z.J.; Chen, D.Z. The properties and evolution of illite at high temperature. J. Mineral. Petrol. 1999, 19, 20–22. [Google Scholar]
- He, C.L.; Osbaeck, B.; Makovicky, E. Thermal stability and pozzolanic activity of calcined illite. Appl. Clay Sci. 1995, 9, 337–354. [Google Scholar] [CrossRef]
- Zhu, X.J.; Cai, J.G.; Wang, G.L.; Song, M.S. Role of organo-clay composites in hydrocarbon generation of shale. Int. J. Coal Geol. 2018, 192, 83–90. [Google Scholar] [CrossRef]
- Ross, D.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Tian, S.S.; Xue, H.T.; Lu, S.F.; Chen, G.H. Discussion on the Mechanism of Oil and Gas Retention of Different Types of Kerogen, Symposium 57: Basin Dynamics and Unconventional Energy. In Proceedings of the 2014 China Geoscience Union Academic Conference, Beijing, China, 20–23 October 2014. [Google Scholar]
- Rahman, H.M.; Kennedy, M.; LöHr, S.; Dewhurst, D.N. Clay-organic association as a control on hydrocarbon generation in shale. Org. Geochem. 2017, 105, 42–55. [Google Scholar] [CrossRef]
- Tian, S.S.; Erastova, V.; Lu, S.F.; Greenwell, H.C.; Underwood, T.R.; Xue, H.T.; Zeng, F.; Chen, G.H.; Wu, C.Z.; Zhao, R.X. Understanding Model Crude Oil Component Interactions on Kaolinite Silicate and Aluminol Surfaces: Toward Improved Understanding of Shale Oil Recovery. Energy Fuels 2018, 32, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Jada, A.; Debih, H. Hydrophobation of Clay Particles by Asphaltenes Adsorption. Compos. Interfaces 2012, 16, 219–235. [Google Scholar] [CrossRef]
- Chu, X.Z.; Xu, J.M. Relationship between the Adsorption Capacity of Hydrogen Isotopes and Specific Surface Area of Adsorbents. Chem. J. Chin. Univ.-Chin. Ed. 2008, 29, 775–778. [Google Scholar]
- Nijkamp, M.G. Hydrogen Storage using Physisorption: Modified Carbon Nanofibers and Related Materials. Ph.D. Thesis, Utrecht University Repository, Utrecht, The Netherlands, 2001. [Google Scholar]
- Almon, W.; Davies, D.K.; Longstaffe, F. Formation damage and the crystal chemistry of clays. Short Course Clays Resour. Geol. Montr. Mineral. Assoc. Can. 1981, 7, 81–102. [Google Scholar]
- Olphen, V.H.; Fripiar, J.J. Data Handbook for Clay Materials and Other Non-Metallic Minerals; Pergamon Press: Oxford, UK; Elmsford, NY, USA, 1979; Volume 131, pp. 62–63. [Google Scholar]
- Zhao, X.Y.; Zhang, Y.Y.; Song, J. Some mineralogical characteristics of clay minerals in China oil-bearing basins. Geoscience 1994, 8, 254–272. [Google Scholar]
- Zhang, W.; Ren, Y.N.; Zhao, X.L.; Yan, T.G.; Sun, Q. Investigations of the adsorption of fluoride on natural sodium feldspar and potassium feldspar in aqueous solution. J. Yunnan Univ. Nat. Sci. Ed. 2020, 42, 977–984. [Google Scholar]
- Yazdani, R.; Tuutijrvi, T.; Bhatnagar, A.; Vahala, R. Adsorptive removal of arsenic(V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption. J. Mol. Liq. 2016, 214, 149–156. [Google Scholar] [CrossRef]
- Wu, S.T.; Zhu, R.K.; Cui, J.G.; Cui, J.W.; Bai, B.; Zhang, X.X.; Jin, X.; Zhu, D.S.; You, J.C.; Li, X.H. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 167–176. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.S.; Guo, Y.L.; Wang, L.; Yasin, Q.; Yang, J.G. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Goodman, C.; Vahedifard, F. Micro-Scale Characterization of Clay at Elevated Temperatures. Géotechnique Lett. 2019, 9, 225–230. [Google Scholar] [CrossRef]
- Dabare, L.; Svinka, R. Characterization of porous ceramic pellets from Latvian clays. Chemija 2014, 25, 82–88. [Google Scholar]
Sample No. | Chloroform Bitumen C (wt.%) | Temperature of Adsorbent Preparation (°C) | Adsorbent No. | Weight of Adsorbent/Adsorbate (g) | ||
---|---|---|---|---|---|---|
Adsorbent Content | Calculate Adsorbate Content | Adsorbate Content | ||||
1 | 0.597 | 300 | 1-TA | 10.0534 | 0.0601 | 0.0603 |
650 | 1-TB | 10.0457 | 0.0600 | 0.0601 | ||
900 | 1-TC | 10.0285 | 0.0599 | 0.0600 | ||
2 | 0.589 | 300 | 2-TA | 10.1000 | 0.0595 | 0.0591 |
650 | 2-TB | 10.3014 | 0.0607 | 0.0606 | ||
900 | 2-TC | 10.3354 | 0.0609 | 0.0606 | ||
3 | 0.479 | 300 | 3-TA | 10.0139 | 0.0480 | 0.0478 |
650 | 3-TB | 10.2368 | 0.0490 | 0.0490 | ||
900 | 3-TC | 10.3310 | 0.0495 | 0.0498 | ||
4 | 0.986 | 300 | 4-TA | 9.6927 | 0.0956 | 0.0989 |
650 | 4-TB | 10.0054 | 0.0987 | 0.0975 | ||
900 | 4-TC | 10.0219 | 0.0988 | 0.0989 | ||
5 | 0.575 | 300 | 5-TA | 9.9344 | 0.0571 | 0.0574 |
650 | 5-TB | 10.1426 | 0.0583 | 0.0582 | ||
900 | 5-TC | 10.3579 | 0.0596 | 0.0601 |
No. | S1 (mg/g) | S2 (mg/g) | TOC (wt.%) | RC (wt.%) | MinC (wt.%) | Tmax (°C) | HI (mg/g) |
---|---|---|---|---|---|---|---|
1-THCl | 2.58 | 21.18 | 4.81 | 2.83 | 0.15 | 446 | 440 |
1-TA | 0.04 | 18.44 | 4.49 | 2.94 | 0.15 | 445 | 411 |
1-TB | 0.01 | 0 | 3.29 | 3.28 | 0.07 | 486 | 0 |
1-TC | 0 | 0 | 0 | 0 | 0 | 486 | 0 |
2-THCl | 0.06 | 6.55 | 2.41 | 1.84 | 0.16 | 440 | 272 |
2-TA | 0.08 | 4.45 | 2.03 | 1.64 | 0.09 | 440 | 219 |
2-TB | 0.06 | 0.01 | 1.76 | 1.75 | 0.12 | 297 | 1 |
2-TC | 0 | 0 | 0.01 | 0.01 | 0.01 | 399 | 0 |
3-THCl | 0.26 | 22.42 | 4.82 | 2.92 | 0.07 | 444 | 465 |
3-TA | 0.04 | 20.44 | 4.52 | 2.8 | 0.14 | 445 | 452 |
3-TB | 0.07 | 0.06 | 3.03 | 3.01 | 0.13 | 305 | 2 |
3-TC | 0.03 | 0 | 0.01 | 0 | 0.01 | 327 | 0 |
4-THCl | 0.47 | 14.19 | 3.98 | 2.75 | 0.23 | 443 | 357 |
4-TA | 0.06 | 10.52 | 3.51 | 2.62 | 0.14 | 443 | 300 |
4-TB | 0.06 | 0.01 | 2.71 | 2.7 | 0.17 | 293 | 0 |
4-TC | 0.01 | 0 | 0 | 0 | 0.01 | 392 | 0 |
5-THCl | 0.2 | 4.89 | 2.01 | 1.57 | 0.16 | 439 | 243 |
5-TA | 0.04 | 1.91 | 1.72 | 1.54 | 0.07 | 440 | 111 |
5-TB | 0.06 | 0.01 | 1.6 | 1.59 | 0.05 | 290 | 0 |
5-TC | 0.01 | 0 | 0 | 0 | 0 | 376 | 0 |
No. | Adsorption Capacity (mg/g) | Adsorption Ratio (wt.%) |
---|---|---|
1-TA | 1.14 | 19.02 |
1-TB | 1.96 | 32.76 |
1-TC | 0.97 | 16.23 |
2-TA | 1.32 | 22.34 |
2-TB | 1.86 | 31.55 |
2-TC | 1.00 | 17.02 |
3-TA | 0.84 | 17.55 |
3-TB | 1.27 | 26.48 |
3-TC | 0.54 | 11.36 |
4-TA | 2.23 | 22.64 |
4-TB | 3.31 | 33.51 |
4-TC | 1.15 | 11.67 |
5-TA | 1.47 | 25.52 |
5-TB | 2.24 | 38.98 |
5-TC | 0.93 | 16.23 |
Almon et al. (1981) [72] | Zhao et al. (1995) [74] | Zhang et al. (2020) [75] | |||
---|---|---|---|---|---|
Minerals | Specific Surface Area (SSA) (m2/g) | Minerals | Specific Surface Area (SSA) (m2/g) | Minerals | Specific Surface Area (SSA) (m2/g) |
smectite | 820 | smectite | 470 | orthoclase | 5.745 |
illite | 113 | illite-smectite | 220~297 | plagioclase | 3.380 |
chlorite | 42 | illite | 78.66 | ||
kaolinite | 23 | chlorite | 65 | ||
quartz | 0.15 | kaolinite | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, S.; Hu, S.; Zhou, C. Effects of Inorganic Minerals and Kerogen on the Adsorption of Crude Oil in Shale. Energies 2023, 16, 2386. https://doi.org/10.3390/en16052386
Zhang Y, Li S, Hu S, Zhou C. Effects of Inorganic Minerals and Kerogen on the Adsorption of Crude Oil in Shale. Energies. 2023; 16(5):2386. https://doi.org/10.3390/en16052386
Chicago/Turabian StyleZhang, Yanyan, Shuifu Li, Shouzhi Hu, and Changran Zhou. 2023. "Effects of Inorganic Minerals and Kerogen on the Adsorption of Crude Oil in Shale" Energies 16, no. 5: 2386. https://doi.org/10.3390/en16052386
APA StyleZhang, Y., Li, S., Hu, S., & Zhou, C. (2023). Effects of Inorganic Minerals and Kerogen on the Adsorption of Crude Oil in Shale. Energies, 16(5), 2386. https://doi.org/10.3390/en16052386