Low-Density Polyethylene Degradation and Energy Yield Using Dielectric Barrier Discharge under Various Electrical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Methods
3. Results and Discussion
3.1. Characteristics of the DBD Reactor
3.2. Mass Change Analysis
3.3. Changes in the LDPE Properties
3.3.1. FTIR Analysis
3.3.2. SEM Analysis
3.3.3. Elemental Analysis
3.4. Degradation Efficiency Compared to Energy
3.4.1. Electrical Characteristics over Time
3.4.2. Mass Change Compared to Energy
3.4.3. Carbonyl Index (CI) Change Compared to Energy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shanmugam, V.; Das, O.; Neisiany, R.E.; Babu, K.; Singh, S.; Hedenqvist, M.S.; Berto, F.; Ramakrishna, S. Polymer Recycling in Additive Manufacturing: An Opportunity for the Circular Economy. Mater. Circ. Econ. 2020, 2, 11. [Google Scholar] [CrossRef]
- Mehran, M.T.; Raza Naqvi, S.; Ali Haider, M.; Saeed, M.; Shahbaz, M.; Al-Ansari, T. Global Plastic Waste Management Strategies (Technical and Behavioral) during and after COVID-19 Pandemic for Cleaner Global Urban Life. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–10. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, P.; Manna, C.; Jain, M. Abundance, Interaction, Ingestion, Ecological Concerns, and Mitigation Policies of Microplastic Pollution in Riverine Ecosystem: A Review. Sci. Total Environ. 2021, 782, 146695. [Google Scholar] [CrossRef]
- Lee, Q.Y.; Li, H. Photocatalytic Degradation of Plastic Waste: A Mini Review. Micromachines 2021, 12, 907. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, H.; Chen, M.; Shao, L.-M.; He, P.-J. Greenhouse Gas Emissions from MSW Incineration in China: Impacts of Waste Characteristics and Energy Recovery. Waste Manag. 2012, 32, 2552–2560. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current Technologies for Plastic Waste Treatment: A Review. J. Clean. Prod. 2021, 282, 124523. [Google Scholar] [CrossRef]
- Rahimi, A.; García, J.M. Chemical Recycling of Waste Plastics for New Materials Production. Nat. Rev. Chem. 2017, 1, 46. [Google Scholar] [CrossRef]
- Ganie, Z.A.; Khandelwal, N.; Tiwari, E.; Singh, N.; Darbha, G.K. Biochar-Facilitated Remediation of Nanoplastic Contaminated Water: Effect of Pyrolysis Temperature Induced Surface Modifications. J. Hazard. Mater. 2021, 417, 126096. [Google Scholar] [CrossRef]
- Ramirez Arenas, L.; Ramseier Gentile, S.; Zimmermann, S.; Stoll, S. Nanoplastics Adsorption and Removal Efficiency by Granular Activated Carbon Used in Drinking Water Treatment Process. Sci. Total Environ. 2021, 791, 148175. [Google Scholar] [CrossRef]
- Kim, K.T.; Park, S. Enhancing Microplastics Removal from Wastewater Using Electro-Coagulation and Granule-Activated Carbon with Thermal Regeneration. Processes 2021, 9, 617. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Y.; Almatrafi, E.; Hu, T.; Zhou, C.; Song, B.; Zeng, Z.; Zeng, G. Efficient Removal of Microplastics from Wastewater by an Electrocoagulation Process. Chem. Eng. J. 2022, 428, 131161. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Yue, D. Insights into Mechanism of Hypochlorite-Induced Functionalization of Polymers toward Separating BFR-Containing Components from Microplastics. ACS Appl. Mater. Interfaces 2020, 12, 36755–36767. [Google Scholar] [CrossRef]
- Wang, Z.; Sedighi, M.; Lea-Langton, A. Filtration of Microplastic Spheres by Biochar: Removal Efficiency and Immobilisation Mechanisms. Water Res. 2020, 184, 116165. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Zambrzycki, C.; Kloker, G.; Kotyrba, A.; Anjass, M.H.; Franco Castillo, I.; Mitchell, S.G.; Güttel, R.; Streb, C. Water Purification and Microplastics Removal Using Magnetic Polyoxometalate-Supported Ionic Liquid Phases (MagPOM-SILPs). Angew. Chem. Int. Ed. Libr. 2020, 59, 1601–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Chen, W.; Fan, X.; Tian, C.; Sun, L.; Xie, H. Cooperative Recyclable Magnetic Microsubmarines for Oil and Microplastics Removal from Water. Appl. Mater. Today 2020, 20, 100682. [Google Scholar] [CrossRef]
- Kiendrebeogo, M.; Karimi Estahbanati, M.R.; Ouarda, Y.; Drogui, P.; Tyagi, R.D. Electrochemical Degradation of Nanoplastics in Water: Analysis of the Role of Reactive Oxygen Species. Sci. Total Environ. 2022, 808, 151897. [Google Scholar] [CrossRef]
- Miao, F.; Liu, Y.; Gao, M.; Yu, X.; Xiao, P.; Wang, M.; Wang, S.; Wang, X. Degradation of Polyvinyl Chloride Microplastics via an Electro-Fenton-like System with a TiO2/Graphite Cathode. J. Hazard. Mater. 2020, 399, 123023. [Google Scholar] [CrossRef]
- Kang, J.; Zhou, L.; Duan, X.; Sun, H.; Ao, Z.; Wang, S. Degradation of Cosmetic Microplastics via Functionalized Carbon Nanosprings. Matter 2019, 1, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Zeng, Y.; Zhao, Y.; Xiang, Y.; Li, Y.; Pan, X. Effects of Advanced Oxidation Processes on Leachates and Properties of Microplastics. J. Hazard. Mater. 2021, 413, 125342. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Chen, Y.; Shi, L.; Zhu, Y. Enhancement of Photocatalytic Degradation of Polyethylene Plastic with CuPc Modified TiO2 Photocatalyst under Solar Light Irradiation. Appl. Surf. Sci. 2008, 254, 1825–1829. [Google Scholar] [CrossRef]
- Fa, W.; Yang, C.; Gong, C.; Peng, T.; Zan, L. Enhanced Photodegradation Efficiency of Polyethylene-TiO2 Nanocomposite Film with Oxidized Polyethylene Wax. J. Appl. Polym. Sci. 2010, 118, 378–384. [Google Scholar] [CrossRef]
- Asghar, W.; Qazi, I.A.; Ilyas, H.; Khan, A.A.; Awan, M.A.; Rizwan Aslam, M. Comparative Solid Phase Photocatalytic Degradation of Polythene Films with Doped and Undoped TiO2 Nanoparticles. J. Nanomater. 2010, 2011, 461930. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Yin, C.-F.; Sun, L.; Zhang, J.; Xu, Y.; Zhou, N.-Y. Biodegradation of Bisphenol-A Polycarbonate Plastic by Pseudoxanthomonas Sp. Strain NyZ600. J. Hazard. Mater. 2021, 416, 125775. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, T.; Qu, G.; Jia, H.; Zhu, L. Probing the Aging Processes and Mechanisms of Microplastic under Simulated Multiple Actions Generated by Discharge Plasma. J. Hazard. Mater. 2020, 398, 122956. [Google Scholar] [CrossRef]
- Ren, J.; Li, J.; Zhen, Y.; Wang, J.; Niu, Z. Removal of Polyvinyl Chloride Microplastic by Dielectric Barrier Discharge Plasma. Sep. Purif. Technol. 2022, 290, 120832. [Google Scholar] [CrossRef]
- Kiendrebeogo, M.; Karimi Estahbanati, M.R.; Khosravanipour Mostafazadeh, A.; Drogui, P.; Tyagi, R.D. Treatment of Microplastics in Water by Anodic Oxidation: A Case Study for Polystyrene. Environ. Pollut. 2021, 269, 116168. [Google Scholar] [CrossRef]
- Galmiz, O.; Pavliňák, D.; Zemánek, M.; Brablec, A.; Černák, M. Hydrophilization of Outer and Inner Surfaces of Poly(Vinyl Chloride) Tubes Using Surface Dielectric Barrier Discharges Generated in Ambient Air Plasma. Plasma Process. Polym. 2017, 14, 166002020. [Google Scholar] [CrossRef]
- Gao, Z.; Zhou, J.; Xue, M.; Liu, S.; Guo, J.; Zhang, Y.; Cao, C.; Wang, T.; Zhu, L. Theoretical and Experimental Insights into the Mechanisms of C6/C6 PFPiA Degradation by Dielectric Barrier Discharge Plasma. J. Hazard. Mater. 2022, 424, 127522. [Google Scholar] [CrossRef]
- Jiang, N.; Li, X.; Guo, H.; Li, J.; Shang, K.; Lu, N.; Wu, Y. Plasma-Assisted Catalysis Decomposition of BPA over Graphene-CdS Nanocomposites in Pulsed Gas-Liquid Hybrid Discharge: Photocorrosion Inhibition and Synergistic Mechanism Analysis. Chem. Eng. J. 2021, 412, 128627. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic Implications of Plastic Degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Kriegseis, J.; Möller, B.; Grundmann, S.; Tropea, C. Capacitance and Power Consumption Quantification of Dielectric Barrier Discharge (DBD) Plasma Actuators. J. Electrost. 2011, 69, 302–312. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene Characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Zhao, X.U.; Li, Z.; Chen, Y.; Shi, L.; Zhu, Y. Solid-Phase Photocatalytic Degradation of Polyethylene Plastic under UV and Solar Light Irradiation. J. Mol. Catal. A Chem. 2007, 268, 101–106. [Google Scholar] [CrossRef]
- Kuo, Y.; Wann, G.; Lee, Y. Infrared Absorption of 2-hydroxyethyl (HOCH2CH2) in Solid Ar. J. Chem. Phys. 1993, 99, 3272–3276. [Google Scholar] [CrossRef]
- Albertsson, A.-C.; Andersson, S.O.; Karlsson, S. The Mechanism of Biodegradation of Polyethylene. Polym. Degrad. Stab. 1987, 18, 73–87. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Vittoria, V.; Camino, G.; Cagnani, C. Chemical and Morphologial Modifications of Irradiated Linear Low Density Polyethylene (LLDPE). Polym. Degrad. Stab. 2001, 72, 175–186. [Google Scholar] [CrossRef]
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the Carbonyl Index of Polyethylene and Polypropylene Using Specified Area under Band Methodology with ATR-FTIR Spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Ratanakamnuan, U.; Aht-Ong, D. Photobiodegradation of Low-Density Polyethylene/Banana Starch Films. J. Appl. Polym. Sci. 2006, 100, 2725–2736. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Degradation Profile of Polyethylene after Artificial Accelerated Weathering. Polym. Degrad. Stab. 2003, 79, 385–397. [Google Scholar] [CrossRef]
- García-Montelongo, X.L.; Martínez-de la Cruz, A.; Vázquez-Rodríguez, S.; Torres-Martínez, L.M. Photo-Oxidative Degradation of TiO2/Polypropylene Films. Mater. Res. Bull. 2014, 51, 56–62. [Google Scholar] [CrossRef]
- Kamalian, P.; Khorasani, S.N.; Abdolmaleki, A.; Karevan, M.; Khalili, S.; Shirani, M.; Neisiany, R.E. Toward the development of polyethylene photocatalytic degradation. J. Polym. Eng. 2020, 40, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Venkataramana, C.; Botsa, S.M.; Shyamala, P.; Muralikrishna, R. Photocatalytic Degradation of Polyethylene Plastics by NiAl2O4 Spinels-Synthesis and Characterization. Chemosphere 2021, 265, 129021. [Google Scholar] [CrossRef] [PubMed]
- Llorente-García, B.E.; Hernández-López, J.M.; Zaldívar-Cadena, A.A.; Siligardi, C.; Cedillo-González, E.I. First Insights into Photocatalytic Degradation of HDPE and LDPE Microplastics by a Mesoporous N–TiO2 Coating: Effect of Size and Shape of Microplastics. Coatings 2020, 10, 658. [Google Scholar] [CrossRef]
- Tsiota, P.; Karkanorachaki, K.; Syranidou, E.; Franchini, M.; Kalogerakis, N. Microbial degradation of HDPE secondary microplastics: Preliminary results. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Zhang, J.; Gao, D.; Li, Q.; Zhao, Y.; Li, L.; Lin, H.; Bi, Q.; Zhao, Y. Biodegradation of Polyethylene Microplastic Particles by the Fungus Aspergillus Flavus from the Guts of Wax Moth Galleria Mellonella. Sci. Total Environ. 2020, 704, 135931. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmentation by Polymer Type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Liu, P.; Qian, L.; Wang, H.; Zhan, X.; Lu, K.; Gu, C.; Gao, S. New Insights into the Aging Behavior of Microplastics Accelerated by Advanced Oxidation Processes. Environ. Sci. Technol. 2019, 53, 3579–3588. [Google Scholar] [CrossRef]
Wavenumber [cm−1] | Functional Group |
---|---|
3050–3570 | -OH stretching region of the hydroxylic |
2914 | Asymmetric stretching of CH2 |
2848 | Symmetric stretching of CH2 |
1715 | C=O stretching |
1630 | C=C stretching |
1470 | Bending deformation of CH2 |
1278, 1187 | C-O stretching |
861 | C-O-H deformation |
718 | CH2 rocking deformation |
Degradation Technique | Type of Plastic | Removal Efficiency [%] | Treatment Time [h] | Carbonyl Index (CI) | Reference |
---|---|---|---|---|---|
DBD | LDPE | 5.44 | 2 | 1.73 | This study |
PVC | - | 1 | 0.8–0.9 | [25] | |
UV light | PP | 4.00–8.00 | 144 | 1.4–2.6 | [41] |
LDPE | 7.00 | 50 | - | [42] | |
Visible light | PPs | 12.50 | 5 | - | [43] |
LDPE | 4.65 | 50 | 1.23 | [44] | |
Biodegradation | HDPE | 8.00–18.00 | 60 days | - | [45] |
HDPE | 3.90 | 28 days | - | [46] |
Treatment Time (min) | C (%) | H (%) | O (%) | N (%) | O/C |
---|---|---|---|---|---|
0 | 84.08 | 14.4 | 1.431 | 0.089 | 0.0128 |
10 | 84.163 | 14.293 | 1.476 | 0.067 | 0.0132 |
40 | 83.512 | 14.264 | 1.958 | 0.266 | 0.0176 |
80 | 82.986 | 14.259 | 2.434 | 0.322 | 0.022 |
120 | 82.877 | 13.728 | 3.089 | 0.305 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Yun, U.-H.; Kim, J.-G. Low-Density Polyethylene Degradation and Energy Yield Using Dielectric Barrier Discharge under Various Electrical Conditions. Energies 2023, 16, 2403. https://doi.org/10.3390/en16052403
Kim S-H, Yun U-H, Kim J-G. Low-Density Polyethylene Degradation and Energy Yield Using Dielectric Barrier Discharge under Various Electrical Conditions. Energies. 2023; 16(5):2403. https://doi.org/10.3390/en16052403
Chicago/Turabian StyleKim, Seong-Hun, Ung-Hui Yun, and Jin-Gyu Kim. 2023. "Low-Density Polyethylene Degradation and Energy Yield Using Dielectric Barrier Discharge under Various Electrical Conditions" Energies 16, no. 5: 2403. https://doi.org/10.3390/en16052403
APA StyleKim, S. -H., Yun, U. -H., & Kim, J. -G. (2023). Low-Density Polyethylene Degradation and Energy Yield Using Dielectric Barrier Discharge under Various Electrical Conditions. Energies, 16(5), 2403. https://doi.org/10.3390/en16052403