Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry
Abstract
:1. Introduction
2. Materials and Methods
- SCG degasification tests using the thermogravimetric method;
- SCG pyrolysis;
- Slag reduction tests.
2.1. Equipment and Research Methodology
2.2. Research Materials
3. Results and Discussion
3.1. Thermogravimetric Analysis
3.2. Calorimetric Analysis
3.3. Analysis of SCG Pyrolysis
3.4. Slag Reduction Process
4. Conclusions
- The results of SCG pyrolysis show the potential for production of biochar containing 78 wt.% of elemental carbon, which means that SCG may be a good reducer in the process of copper slag reduction;
- The assumed research parameters of copper slag reduction process and the addition of SCG as the reducer from 5.67 wt.% to 12 wt.% ensure the decrease in copper content from 10.3 wt.% to 0.32 wt.%, which corresponds to the increase in so-called relative decopperisation degree from 88.4% to 96.9%;
- The slag reduction process with 7.56 wt.% of SCG as the reducer and the process duration of 1.5 h resulted in the smallest lead content of 0.91 wt.%;
- When the amount of SCG reducer increased from 5.67 wt.% to 12 wt.%, a higher percentage of the resulting Cu–Pb–Fe alloy and decreased amounts of copper in the waste slag from 1.41 wt.% to 0.32 wt.% were observed;
- When the content of copper in slag decreases, significantly more intense reduction in lead oxides during the reduction process is observed;
- The assumed research parameters and the amount of SCG added as the reducer do not demonstrate any major effects on the degree of iron transformation to the metal alloy;
- The process of copper slag reduction with the use of SCG biomass is characterised by lower carbon dioxide emissions compared with the process using solid fuels such as coke and coke breeze.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marcisz, M. Niemiecka precyzja. Energetyka Ciepl. I Zawodowa 2010, 10, 31–35. [Google Scholar]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wei, Y.; Wang, H.; Yang, Y. Reduction of Magnetite from Copper Smelting Slag Using Petro-Diesel and Biodiesel. ISIJ Int. 2018, 58, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Wei, Y.; Zhang, S.; Li, B.; Wang, H.; Yang, Y.; Barati, M. Reduction of Copper Smelting Slag Using Waste Cooking Oil. J. Clean. Prod. 2019, 236, 117668. [Google Scholar] [CrossRef]
- Zuo, Z.; Yu, Q.; Xie, H.; Qin, Q.; Wei, M. Direct Reduction of Copper Slag Composite Pellets Within Lignite Using Biomass as Binder. In Energy Technology 2018; Sun, Z., Wang, C., Guillen, D.P., Neelameggham, N.R., Zhang, L., Howarter, J.A., Wang, T., Olivetti, E., Zhang, M., Verhulst, D., et al., Eds.; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 65–75. ISBN 978-3-319-72361-7. [Google Scholar]
- Zuo, Z.; Yu, Q.; Luo, S.; Zhang, J.; Zhou, E. Effects of CaO on Two-Step Reduction Characteristics of Copper Slag Using Biochar as Reducer: Thermodynamic and Kinetics. Energy Fuels 2020, 34, 491–500. [Google Scholar] [CrossRef]
- Qu, G.; Wei, Y.; Li, B.; Wang, H.; Yang, Y.; McLean, A. Recovery of Copper from Copper Smelting Slag Using a Green Reductant. In 11th International Symposium on High-Temperature Metallurgical Processing; Peng, Z., Hwang, J.-Y., Downey, J.P., Gregurek, D., Zhao, B., Yücel, O., Keskinkilic, E., Jiang, T., White, J.F., Mahmoud, M.M., Eds.; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2020; pp. 417–429. ISBN 978-3-030-36539-4. [Google Scholar]
- Łabaj, J.; Blacha, L.; Jodkowski, M.; Smalcerz, A.; Fröhlichová, M.; Findorak, R. The Use of Waste, Fine-Grained Carbonaceous Material in the Process of Copper Slag Reduction. J. Clean. Prod. 2021, 288, 125640. [Google Scholar] [CrossRef]
- Caetano, N.; Silva, V.; Teresa, M. Mata Valorization of Coffee Grounds for Biodiesel Production. Chem. Eng. Trans. 2012, 26, 267–272. [Google Scholar] [CrossRef]
- Kwon, E.E.; Yi, H.; Jeon, Y.J. Sequential Co-Production of Biodiesel and Bioethanol with Spent Coffee Grounds. Bioresour. Technol. 2013, 136, 475–480. [Google Scholar] [CrossRef]
- Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biomass Fast Pyrolysis in Screw Reactors: Prediction of Spent Coffee Grounds Bio-Oil Production through a Monodimensional Model. Energy Convers. Manag. 2018, 168, 98–106. [Google Scholar] [CrossRef]
- Afolabi, O.O.D.; Sohail, M.; Cheng, Y.-L. Optimisation and Characterisation of Hydrochar Production from Spent Coffee Grounds by Hydrothermal Carbonisation. Renew. Energy 2020, 147, 1380–1391. [Google Scholar] [CrossRef]
- Rocha, M.V.P.; de Matos, L.J.B.L.; de Lima, L.P.; da Silva Figueiredo, P.M.; Lucena, I.L.; Fernandes, F.A.N.; Gonçalves, L.R.B. Ultrasound-Assisted Production of Biodiesel and Ethanol from Spent Coffee Grounds. Bioresour. Technol. 2014, 167, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.-C.; Li, W.-Y.; Feng, J. Ash Contents and Ash-Forming Elements of Biomass and Their Significance for Solid Biofuel Combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Burniol-Figols, A.; Cenian, K.; Skiadas, I.V.; Gavala, H.N. Integration of Chlorogenic Acid Recovery and Bioethanol Production from Spent Coffee Grounds. Biochem. Eng. J. 2016, 116, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.S.; Wi, S.G.; Kim, S.-B.; Bae, H.-J. Conversion of Coffee Residue Waste into Bioethanol with Using Popping Pretreatment. Bioresour. Technol. 2012, 125, 132–137. [Google Scholar] [CrossRef]
- Atabani, A.E.; Al-Muhtaseb, A.H.; Kumar, G.; Saratale, G.D.; Aslam, M.; Khan, H.A.; Said, Z.; Mahmoud, E. Valorization of Spent Coffee Grounds into Biofuels and Value-Added Products: Pathway towards Integrated Bio-Refinery. Fuel 2019, 254, 115640. [Google Scholar] [CrossRef]
- Karmee, S.K. A Spent Coffee Grounds Based Biorefinery for the Production of Biofuels, Biopolymers, Antioxidants and Biocomposites. Waste Manag. 2018, 72, 240–254. [Google Scholar] [CrossRef]
- Vardon, D.R.; Moser, B.R.; Zheng, W.; Witkin, K.; Evangelista, R.L.; Strathmann, T.J.; Rajagopalan, K.; Sharma, B.K. Complete Utilization of Spent Coffee Grounds to Produce Biodiesel, Bio-Oil, and Biochar. ACS Sustain. Chem. Eng. 2013, 1, 1286–1294. [Google Scholar] [CrossRef]
- Battista, F.; Fino, D.; Mancini, G. Optimization of Biogas Production from Coffee Production Waste. Bioresour. Technol. 2016, 200, 884–890. [Google Scholar] [CrossRef]
- Primaz, C.T.; Schena, T.; Lazzari, E.; Caramão, E.B.; Jacques, R.A. Influence of the Temperature in the Yield and Composition of the Bio-Oil from the Pyrolysis of Spent Coffee Grounds: Characterization by Comprehensive Two Dimensional Gas Chromatography. Fuel 2018, 232, 572–580. [Google Scholar] [CrossRef]
- Limousy, L.; Jeguirim, M.; Labaki, M. Energy Applications of Coffee Processing By-Products. In Handbook of Coffee Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 323–367. ISBN 978-0-12-811290-8. [Google Scholar]
- Girotto, F.; Pivato, A.; Cossu, R.; Nkeng, G.E.; Lavagnolo, M.C. The Broad Spectrum of Possibilities for Spent Coffee Grounds Valorisation. J. Mater. Cycles Waste Manag. 2018, 20, 695–701. [Google Scholar] [CrossRef]
- Kante, K.; Nieto-Delgado, C.; Rangel-Mendez, J.R.; Bandosz, T.J. Spent Coffee-Based Activated Carbon: Specific Surface Features and Their Importance for H2S Separation Process. J. Hazard. Mater. 2012, 201–202, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Lehocine, M.B.; Dubois, M.; Batisse, N.; Duclaux, L. Carbons Prepared from Coffee Grounds by H3PO4 Activation: Characterization and Adsorption of Methylene Blue and Nylosan Red N-2RBL. J. Hazard. Mater. 2010, 175, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Polyxeni, P.; Frantseska-Maria, P.; Evangelos, G. Characterization of Biochar Produced from Spent Coffee Waste; Chania: Crete, Greece, 2012; pp. 1–8. [Google Scholar]
- Mussatto, S.I.; Carneiro, L.M.; Silva, J.P.A.; Roberto, I.C.; Teixeira, J.A. A Study on Chemical Constituents and Sugars Extraction from Spent Coffee Grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Scully, D.; Jaiswal, A.; Abu-Ghannam, N. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars. Bioengineering 2016, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, Q.A.; Cho, E.J.; Lee, D.-S.; Bae, H.-J. Development of an Advanced Integrative Process to Create Valuable Biosugars Including Manno-Oligosaccharides and Mannose from Spent Coffee Grounds. Bioresour. Technol. 2019, 272, 209–216. [Google Scholar] [CrossRef]
- Juarez, G.F.Y.; Pabiloña, K.B.C.; Manlangit, K.B.L.; Go, A.W. Direct Dilute Acid Hydrolysis of Spent Coffee Grounds: A New Approach in Sugar and Lipid Recovery. Waste Biomass Valor. 2018, 9, 235–246. [Google Scholar] [CrossRef]
- Go, A.W.; Conag, A.T.; Cuizon, D.E.S. Recovery of Sugars and Lipids from Spent Coffee Grounds: A New Approach. Waste Biomass Valor. 2016, 7, 1047–1053. [Google Scholar] [CrossRef]
- Mayanga-Torres, P.C.; Lachos-Perez, D.; Rezende, C.A.; Prado, J.M.; Ma, Z.; Tompsett, G.T.; Timko, M.T.; Forster-Carneiro, T. Valorization of Coffee Industry Residues by Subcritical Water Hydrolysis: Recovery of Sugars and Phenolic Compounds. J. Supercrit. Fluids 2017, 120, 75–85. [Google Scholar] [CrossRef]
- Fiol, N.; Escudero, C.; Villaescusa, I. Re-use of Exhausted Ground Coffee Waste for Cr(VI) Sorption. Sep. Sci. Technol. 2008, 43, 582–596. [Google Scholar] [CrossRef]
- Oliveira, W.E.; Franca, A.S.; Oliveira, L.S.; Rocha, S.D. Untreated Coffee Husks as Biosorbents for the Removal of Heavy Metals from Aqueous Solutions. J. Hazard. Mater. 2008, 152, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Kondamudi, N.; Mohapatra, S.K.; Misra, M. Spent Coffee Grounds as a Versatile Source of Green Energy. J. Agric. Food Chem. 2008, 56, 11757–11760. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamamre, Z.; Foerster, S.; Hartmann, F.; Kröger, M.; Kaltschmitt, M. Oil Extracted from Spent Coffee Grounds as a Renewable Source for Fatty Acid Methyl Ester Manufacturing. Fuel 2012, 96, 70–76. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R. Spent Coffee Grounds as a Valuable Source of Phenolic Compounds and Bioenergy. J. Clean. Prod. 2012, 34, 49–56. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Bio-Refinery Approach for Spent Coffee Grounds Valorization. Bioresour. Technol. 2018, 247, 1077–1084. [Google Scholar] [CrossRef]
- Cruz, R.; Cardoso, M.M.; Fernandes, L.; Oliveira, M.; Mendes, E.; Baptista, P.; Morais, S.; Casal, S. Espresso Coffee Residues: A Valuable Source of Unextracted Compounds. J. Agric. Food Chem. 2012, 60, 7777–7784. [Google Scholar] [CrossRef]
- Nakanishi, A.; Tamai, M.; Kawasaki, N.; Nakamura, T.; Araki, M.; Tanada, S. Characterization of Water Adsorption onto Carbonaceous Materials Produced from Food Wastes. J. Colloid Interface Sci. 2002, 255, 59–63. [Google Scholar] [CrossRef]
- Kovalcik, A.; Obruca, S.; Marova, I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018, 110, 104–119. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Extraction of Polysaccharides by Autohydrolysis of Spent Coffee Grounds and Evaluation of Their Antioxidant Activity. Carbohydr. Polym. 2017, 157, 258–266. [Google Scholar] [CrossRef] [Green Version]
- McNutt, J.; He, Q. (Sophia) Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar] [CrossRef]
- Battista, F.; Barampouti, E.M.; Mai, S.; Bolzonella, D.; Malamis, D.; Moustakas, K.; Loizidou, M. Added-Value Molecules Recovery and Biofuels Production from Spent Coffee Grounds. Renew. Sustain. Energy Rev. 2020, 131, 110007. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Gominho, J.; Olivella, M.À.; Fiol, N.; Villaescusa, I.; Pereira, H. The Chemical Composition of Exhausted Coffee Waste. Ind. Crops Prod. 2013, 50, 423–429. [Google Scholar] [CrossRef]
- Madej, P. Wpływ Temperatury, Dodatku Fe2O3 Oraz Powierzchni Reduktora Na Kinetykę Procesuodmiedziowania Żużla Zawiesinowego. Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland, 2015. [Google Scholar]
- HSC Chemistry ver. 6.1. Outocumpu Research Oy. Pori. Available online: http://www.hsc-chemistry.net/ (accessed on 14 December 2022).
- Kucharski, M. Solubility of Copper in Outokumpu Slag. Met. Technol. 1979, 6, 354–356. [Google Scholar] [CrossRef]
- Blacha, L.; Łabaj, J.; Jodkowski, M. Research on the Reduction of Copper Slag Using an Alternative Coal Range. Metalurgija 2020, 59, 329–332. [Google Scholar]
- Siwiec, G.; Sozańska, M.; Blacha, L.; Smalcerz, A. Behaviour of Iron during Reduction of Slag Obtained from Copper Flash Smelting. Metalurgija 2015, 54, 113–115. [Google Scholar]
- Bok, J.P.; Choi, H.S.; Choi, Y.S.; Park, H.C.; Kim, S.J. Fast Pyrolysis of Coffee Grounds: Characteristics of Product Yields and Biocrude Oil Quality. Energy 2012, 47, 17–24. [Google Scholar] [CrossRef]
- Ebeling, J.; Jenkins, B.M. Physical and Chemical Properties of Biomass Fuels. Trans. ASAE 1985, 28, 898–902. [Google Scholar] [CrossRef]
- Duan, F.; Zhang, J.-P.; Chyang, C.-S.; Wang, Y.-J.; Tso, J. Combustion of Crushed and Pelletized Peanut Shells in a Pilot-Scale Fluidized-Bed Combustor with Flue Gas Recirculation. Fuel Process. Technol. 2014, 128, 28–35. [Google Scholar] [CrossRef]
- Lasek, J.; Głód, K.; Kazalski, K.; Janusz, M.; Wilk, B. Ocena Modeli Do Określania Włąściwości Kalorycznych Paliw Stałych Pod Kątem Ich Zastosowania w Bilansowaniu Obiektów Energetyki Zawodowej. Rynek Energii 2013, 1, 95–103. [Google Scholar]
Elemental analysis | Element, wt.% | |||
Carbon | Oxygen | Hydrogen | Nitrogen | |
45–59.8 | 32–47 | 6–7.57 | 1.18–4 | |
Biochemical analysis | Chemical substance, wt.% | |||
Cellulose | Hemicellulose | Lignin | Protein | |
8.6–15.3 | 31.7–41.7 | 22.20–33.60 | 13.00–17.54 |
Reaction | Temperature, °C | ||||
---|---|---|---|---|---|
1200 | 1250 | 1300 | 1350 | 1400 | |
ΔG, kJ/mol | |||||
Cu2O + CO = 2Cu + CO2 | −96.72 | −94.74 | −92.73 | −90.70 | −88.65 |
Cu2O + C = 2Cu + CO | −183.38 | −189.94 | −196.46 | −202.94 | −209.38 |
2Cu2O + C = 4Cu + CO2 | −280.09 | −284.68 | −289.19 | −293.65 | −298.04 |
4Cu2O + CH4 = 8Cu + CO2 + 2H2O | −567.13 | −576.04 | −584.80 | −593.43 | −601.92 |
7Cu2O + C2H6 = 14Cu + 2CO2 + 3H2O | −1096.07 | −1114.36 | −1132.41 | −1150.23 | −1167.82 |
Slag Component | Cu | Pb | Fe | SiO2 | CaO |
---|---|---|---|---|---|
Component amount, wt.% | 10.3 | 2.25 | 11.1 | 34.5 | 14.1 |
SCG Component | Carbon | Oxygen | Hydrogen | Nitrogen |
---|---|---|---|---|
Component amount, wt.% | 47.2 | 50.0 | 6.17 | 3.11 |
Sample Mass Loss | Loss I [%] | Loss II [%] | Loss III [%] |
---|---|---|---|
5.63 | 48.45 | 27.70 | |
Temperature range for the particular loss: °C | 20–200 | 200–370 | 370–1200 |
Mass loss rate: mg s−1 | 0.0094 | 0.1047 | 0.0064 |
No. | Sample | C | H | O | N | Mean Heat of Combustion Qmean, kJ/kg |
---|---|---|---|---|---|---|
[%w/w] | ||||||
1 | Almond shells | 44.98 | 5.97 | 42.27 | 1.16 | 19.38 |
2 | Walnut shells | 49.98 | 5.71 | 43.35 | 0.21 | 20.18 |
3 | Peanut shells | 46.30 | 6.59 | 41.66 | 0.50 | 17.35 |
4 | Peanut shells, pellet | 40.84 | 5.44 | 38.39 | 0.86 | 16.74 |
5 | Peach stones | 53.00 | 5.90 | 39.14 | 0.32 | 20.82 |
6 | Sunflower husks, pellet | 52.08 | 6.06 | 37.94 | 0.75 | 20.49 |
7 | SCG | 47.2 | 6.17 | 50.0 | 3.11 | 21.09 |
Pyrolysis duration | [min] | 90 |
Argon flow | [L/min] | 6.1 |
Beginning of the process | ||
Furnace temperature | [°C] | 174.8 |
Sample temperature | 104.7 | |
Gas temperature | 24.4 | |
End of the process | ||
Furnace temperature | [°C] | 603.3 |
Sample temperature | 594.5 | |
Gas temperature | 129.6 |
Sample Weight for the Process | Biochar | Sample Mass Loss during the Process | Solid Fraction Percentage | Oil | Liquid Fraction Percentage | Volatile Fraction | Volatile Fraction Percentage |
---|---|---|---|---|---|---|---|
[g] | [%] | [g] | [%] | [g] | [%] | ||
500.0 | 127.0 | 74.6 | 25.4 | 189.0 | 37.8 | 184.0 | 36.8 |
No. | Feeding Components, g | Reduction Time, h | Alloy Weight, g | Waste Slag Weight, g | Chemical Composition of the Waste Slag, wt.% | Chemical Composition of the Cu–Pb–Fe Alloy, wt.% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slag | SCG | Cu | Pb | Fe | Cu | Pb | Fe | ||||
1 | 100 | 5.67 | 1 | 8.95 | 89.13 | 1.19 | 2.22 | 11.85 | 92.92 | 2.29 | 0.07 |
2 | 7.56 | 1 | 13.61 | 85.81 | 0.50 | 1.04 | 12.39 | 91.02 | 7.77 | 0.06 | |
3 | 5.67 | 1.5 | 12.17 | 89.82 | 0.91 | 1.87 | 11.93 | 94.61 | 4.46 | 0.01 | |
4 | 7.56 | 1.5 | 13.02 | 85.94 | 0.45 | 0.91 | 11.72 | 90.70 | 7.06 | 0.07 | |
5 | 5.67 | 2 | 11.53 | 87.99 | 0.79 | 1.71 | 11.61 | 91.18 | 7.34 | 0.03 | |
6 | 7.56 | 2 | 12.12 | 86.91 | 0.41 | 1.27 | 12.06 | 93.51 | 5.35 | 0.05 | |
7. | 5.67 | 3 | 10.04 | 88.68 | 1.41 | 2.46 | 11.10 | 96.84 | 1.90 | 0.07 | |
8 | 7.56 | 3 | 11.40 | 86.59 | 0.63 | 1.37 | 11.45 | 92.38 | 4.95 | 0.15 | |
9 | 5.67 | 4 | 10.57 | 89.62 | 1.03 | 1.94 | 11.22 | 95.66 | 3.31 | 0.03 | |
10 | 7.56 | 4 | 11.26 | 86.23 | 0.67 | 1.56 | 11.94 | 93.58 | 5.37 | 0.11 | |
11 | 10 | 3 | 12.11 | 92.05 | 0.49 | 1.15 | 11.60 | 77.66 | 19.82 | 0.31 | |
12 | 12 | 3 | 13.15 | 90.04 | 0.32 | 0.98 | 12.55 | 89.48 | 8.06 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matula, T.; Labaj, J.; Nowacki, K.; Blacha, L.; Kortyka, L.; Mycka, L.; Madej, P.; Jaworek, L.; Wojtal, T. Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry. Energies 2023, 16, 2415. https://doi.org/10.3390/en16052415
Matula T, Labaj J, Nowacki K, Blacha L, Kortyka L, Mycka L, Madej P, Jaworek L, Wojtal T. Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry. Energies. 2023; 16(5):2415. https://doi.org/10.3390/en16052415
Chicago/Turabian StyleMatula, Tomasz, Jerzy Labaj, Krzysztof Nowacki, Leszek Blacha, Lukasz Kortyka, Lukasz Mycka, Piotr Madej, Lukasz Jaworek, and Tomasz Wojtal. 2023. "Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry" Energies 16, no. 5: 2415. https://doi.org/10.3390/en16052415
APA StyleMatula, T., Labaj, J., Nowacki, K., Blacha, L., Kortyka, L., Mycka, L., Madej, P., Jaworek, L., & Wojtal, T. (2023). Application of Spent Coffee Grounds (SCGs) as a Fuel and Alternative Reducer of Slags from the Copper Industry. Energies, 16(5), 2415. https://doi.org/10.3390/en16052415