Fragmented or Unified? The State of China’s Carbon Emission Trading Market
Abstract
:1. Introduction
2. Methodology and Data
2.1. Methodology
2.2. Data
3. Results
Stages of Market Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hua, Y.; Dong, F. China’s Carbon Market Development and Carbon Market Connection: A Literature Review. Energies 2019, 12, 1663. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, N.; Yu, Y. Carbon mitigation effects and potential cost savings from carbon emissions trading in China’s regional industry. Technol. Forecast. Soc. Chang. 2019, 141, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Gao, P. Integrating environmental considerations into economic regulation of China’s electricity sector. Util. Policy 2016, 38, 62–71. [Google Scholar] [CrossRef]
- Yu, L.; Li, J.; Tang, L.; Wang, S. Linear and nonlinear Granger causality investigation between carbon market and crude oil market: A multi-scale approach. Energy Econ. 2015, 51, 300–311. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, D.; Geng, J. Information linkage, dynamic spillovers in prices and volatility between the carbon and energy markets. J. Clean. Prod. 2018, 198, 972–978. [Google Scholar] [CrossRef]
- Montagnoli, A.; de Vries, F.P. Carbon trading thickness and market efficiency. Energy Econ. 2010, 32, 1331–1336. [Google Scholar] [CrossRef]
- Charles, A.; Darné, O.; Fouilloux, J. Market efficiency in the European carbon markets. Energy Policy 2013, 60, 785–792. [Google Scholar] [CrossRef]
- Tang, B.; Shen, C.; Gao, C. The efficiency analysis of the European CO2 futures market. Appl. Energy 2013, 112, 1544–1547. [Google Scholar] [CrossRef]
- Richstein, J.C.; Chappin, É.J.; de Vries, L.J. The market (in-)stability reserve for EU carbon emission trading: Why it might fail and how to improve it. Util. Policy 2015, 35, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fu, Q.; Chang, C.P. The Integration of Carbon Price Between European and Chinese Markets: What are the Implications? Int. J. Environ. Res. 2021, 15, 667–680. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, S.; Zhang, Z. Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network. Energy Econ. 2022, 114, 106319. [Google Scholar] [CrossRef]
- Demiralay, S.; Gencer, H.G.; Bayraci, S. Carbon credit futures as an emerging asset: Hedging, diversification and downside risks. Energy Econ. 2022, 113, 106196. [Google Scholar] [CrossRef]
- Cong, R.; Lo, A.Y. Emission trading and carbon market performance in Shenzhen, China. Appl. Energy 2017, 193, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, X.; Zhu, B.; Wang, P. Measuring the efficiency of China’s carbon market: A comparison between efficient and fractal market hypotheses. J. Clean. Prod. 2020, 271, 122885. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, G.W.; Nie, D.; Chen, H. How to improve the market efficiency of carbon trading: A perspective of China. Renew. Sustain. Energy Rev. 2016, 59, 1229–1245. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, L.; Li, A. Research on the efficiency of carbon trading market in China. Renew. Sustain. Energy Rev. 2017, 79, 1–8. [Google Scholar] [CrossRef]
- Fan, J.H.; Todorova, N. Dynamics of China’s carbon prices in the pilot trading phase. Appl. Energy 2017, 208, 1452–1467. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.; Ge, F.; Zhang, C.; Wang, W. The dynamic linkage effect between energy and emissions allowances price for regional emissions trading scheme pilots in China. Renew. Sustain. Energy Rev. 2018, 98, 415–425. [Google Scholar] [CrossRef]
- Wang, X.Q.; Su, C.W.; Lobont, O.R.; Li, H.; Nicoleta-Claudia, M. Is China’s carbon trading market efficient? Evidence from emissions trading scheme pilots. Energy 2022, 245, 123240. [Google Scholar] [CrossRef]
- Wen, F.; Zhao, H.; Zhao, L.; Yin, H. What drive carbon price dynamics in China? Int. Rev. Financ. Anal. 2022, 79, 101999. [Google Scholar] [CrossRef]
- Xia, M.; Chen, Z.H.; Wang, P. Dynamic Risk Spillover Effect between the Carbon and Stock Markets under the Shocks from Exogenous Events. Energies 2023, 16, 97. [Google Scholar] [CrossRef]
- Zhao, L.; Wen, F.; Wang, X. Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect. Energy Econ. 2020, 91, 104901. [Google Scholar] [CrossRef]
- Guo, L.Y.; Feng, C. Are there spillovers among China’s pilots for carbon emission allowances trading? Energy Econ. 2021, 103, 105574. [Google Scholar] [CrossRef]
- Zhao, X.; Zou, Y.; Yin, J.; Fan, X. Cointegration relationship between carbon price and its factors: Evidence from structural breaks analysis. Energy Procedia 2017, 142, 2503–2510. [Google Scholar] [CrossRef]
- Johansen, S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica 1991, 59, 1551–1580. [Google Scholar] [CrossRef]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
Average | 0.000 | 0.000 | 0.000 |
Maximum | 0.470 | 2.008 | 3.370 |
Minimum | −0.293 | −2.397 | −2.773 |
Standard dev. | 0.069 | 0.176 | 0.309 |
Skewness | −0.448 | −0.440 | 0.371 |
Kurtosis | 8.104 | 43.602 | 25.697 |
Jarque-Bera | 2198.840 *** | 135,038.700 *** | 42,224.140 *** |
Average | 0.000 | 0.000 | 0.000 |
Maximum | 1.037 | 0.290 | 0.728 |
Minimum | −0.839 | −0.282 | −0.693 |
Standard dev. | 0.057 | 0.039 | 0.042 |
Skewness | 2.112 | 0.074 | 0.093 |
Kurtosis | 91.351 | 9.562 | 143.343 |
Jarque-Bera | 640,574.700 *** | 3526.869 *** | 1,612,635.000 *** |
1.000 | ||||||
0.023 | 1.000 | |||||
−0.006 | 0.012 | 1.000 | ||||
0.035 | −0.003 | 0.009 | 1.000 | |||
0.006 | 0.038 | 0.000 | −0.012 | 1.000 | ||
0.027 | −0.014 | 0.007 | −0.009 | 0.004 | 1.000 |
r | Trace Statistic | 5% Critical Values | Max-Eigen Statistic | 5% Critical Values |
---|---|---|---|---|
272.568 *** | 103.847 | 132.662 *** | 40.957 | |
139.906 *** | 76.973 | 79.529 *** | 34.806 | |
60.377 ** | 54.079 | 33.150 ** | 28.588 | |
27.227 | 35.193 | 18.217 | 22.300 | |
9.009 | 20.262 | 7.418 | 15.892 | |
1.591 | 9.165 | 1.591 | 9.165 |
Cointegrating Equation | ||||||
---|---|---|---|---|---|---|
Variables | CointEq1 | CointEq2 | CointEq3 | |||
1 | 0 | 0 | ||||
0 | 1 | 0 | ||||
0 | 0 | 1 | ||||
−0.218 ** | −0.364 *** | 0.177 | ||||
(0.095) | (0.047) | (0.150) | ||||
−0.295 | −0.620 *** | 0.948 *** | ||||
(0.181) | (0.089) | (0.286) | ||||
0.046 | −0.601 *** | −0.586 *** | ||||
(0.139) | (0.069) | (0.221) | ||||
c | −2.521 | 1.873 | −5.044 | |||
Error Correction | ||||||
CointEq1 | −0.035 *** | 0.012 | 0.048 ** | 0.012 ** | 0.005 | 0.000 |
(0.006) | (0.014) | (0.025) | (0.005) | (0.003) | (0.004) | |
CointEq2 | 0.001 | −0.165 *** | 0.003 | 0.009 | 0.007 * | 0.008 * |
(0.006) | (0.015) | (0.026) | (0.005) | (0.004) | (0.004) | |
CointEq3 | 0.004 | −0.016 ** | −0.101 *** | −0.004 | -0.002 | 0.001 |
(0.003) | (0.007) | (0.012) | (0.003) | (0.002) | (0.002) | |
−0.005 | −0.073 | 0.055 | −0.033 * | 0.000 | 0.008 | |
(0.023) | (0.053) | (0.090) | (0.019) | (0.013) | (0.014) | |
−0.012 | −0.301 *** | −0.033 | −0.005 | −0.005 | −0.001 | |
(0.009) | (0.022) | (0.037) | (0.008) | (0.005) | (0.006) | |
−0.001 | 0.002 | −0.396 *** | 0.004 | 0.008 *** | 0.002 | |
(0.005) | (0.012) | (0.021) | (0.004) | (0.003) | (0.003) | |
0.007 | 0.117 * | 0.023 | −0.051 ** | 0.003 | −0.001 | |
(0.027) | (0.062) | (0.108) | (0.022) | (0.015) | (0.017) | |
−0.019 | −0.162 * | 0.015 | 0.008 | −0.244 *** | 0.012 | |
(0.040) | (0.092) | (0.158) | (0.033) | (0.022) | (0.024) | |
−0.020 | 0.022 | 0.003 | 0.219 *** | −0.017 | −0.124 *** | |
(0.037) | (0.085) | (0.146) | (0.030) | (0.020) | (0.022) | |
c | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
(0.002) | (0.004) | (0.006) | (0.001) | (0.001) | (0.001) | |
Log likelihood | 13,090 | |||||
AIC | −13.251 | |||||
SIC | −13.029 |
Cointegrating Equation | ||||||
---|---|---|---|---|---|---|
Variables | CointEq1 | CointEq2 | CointEq3 | |||
1 | 0 | 0 | ||||
0 | 1 | 0 | ||||
0 | 0 | 1 | ||||
−0.231 ** | −0.298 *** | 0.324 *** | ||||
(0.092) | (0.037) | (0.098) | ||||
−0.384 ** | −0.415 *** | 0.986 *** | ||||
(0.184) | (0.075) | (0.196) | ||||
0.077 | −0.497 *** | −0.298 ** | ||||
(0.137) | (0.056) | (0.147) | ||||
c | −2.300 | 0.766 | −6.438 | |||
Error Correction | ||||||
CointEq1 | −0.031 *** | 0.032 ** | 0.019 | 0.016 *** | 0.003 | -0.001 |
(0.007) | (0.016) | (0.025) | (0.006) | (0.004) | (0.005) | |
CointEq2 | −0.003 | −0.312 *** | −0.076 ** | 0.000 | 0.004 | 0.011 * |
(0.009) | (0.021) | (0.033) | (0.008) | (0.005) | (0.006) | |
CointEq3 | −0.002 | −0.070 *** | −0.148 *** | −0.007 * | −0.003 | 0.000 |
(0.004) | (0.011) | (0.016) | (0.004) | (0.003) | (0.003) | |
−0.022 | −0.114 * | 0.088 | −0.048 ** | −0.002 | 0.011 | |
(0.025) | (0.062) | (0.096) | (0.023) | (0.015) | (0.017) | |
−0.012 | −0.224 *** | 0.007 | 0.000 | −0.004 | −0.003 | |
(0.010) | (0.024) | (0.037) | (0.009) | (0.006) | (0.007) | |
0.000 | 0.026 * | −0.386 *** | 0.005 | 0.008 ** | 0.002 | |
(0.006) | (0.015) | (0.023) | (0.006) | (0.004) | (0.004) | |
0.013 | 0.080 | 0.017 | −0.047 * | 0.006 | −0.002 | |
(0.026) | (0.065) | (0.101) | (0.025) | (0.016) | (0.018) | |
−0.003 | −0.153 | 0.097 | 0.006 | −0.267 *** | 0.015 | |
(0.040) | (0.100) | (0.153) | (0.037) | (0.024) | (0.028) | |
−0.023 | −0.014 | −0.018 | 0.220 *** | −0.023 | −0.125 *** | |
(0.036) | (0.088) | (0.136) | (0.033) | (0.021) | (0.025) | |
c | 0.000 | 0.000 | −0.001 | 0.000 | 0.000 | 0.000 |
(0.002) | (0.004) | (0.006) | (0.002) | (0.001) | (0.001) | |
Log likelihood | 10,629 | |||||
AIC | −13.018 | |||||
SIC | −12.759 |
Cointegrating Equation | ||||||
---|---|---|---|---|---|---|
Variables | CointEq1 | |||||
1 | ||||||
0.860 *** | ||||||
(0.214) | ||||||
−0.244 *** | ||||||
(0.053) | ||||||
−0.444 | ||||||
(0.325) | ||||||
−2.146 *** | ||||||
(0.365) | ||||||
0.029 | ||||||
(0.394) | ||||||
c | 2.634 | |||||
Error Correction | ||||||
CointEq1 | −0.039 ** | −0.040 | 0.250 *** | −0.006 | 0.037 *** | −0.005 |
(0.020) | (0.025) | (0.087) | (0.005) | (0.007) | (0.004) | |
0.052 | −0.024 | −0.214 | 0.019 | −0.020 | 0.005 | |
(0.056) | (0.071) | (0.246) | (0.015) | (0.019) | (0.012) | |
0.023 | −0.441 *** | −0.161 | −0.004 | −0.015 | 0.003 | |
(0.039) | (0.050) | (0.171) | (0.010) | (0.013) | (0.008) | |
0.000 | 0.001 | −0.382 *** | −0.001 | 0.015 *** | 0.002 | |
(0.011) | (0.015) | (0.050) | (0.003) | (0.004) | (0.002) | |
−0.214 | 0.228 | 0.246 | −0.287 *** | −0.079 | 0.070 * | |
(0.199) | (0.252) | (0.872) | (0.053) | (0.067) | (0.042) | |
−0.165 | 0.043 | −0.682 | 0.037 | −0.020 | −0.019 | |
(0.153) | (0.194) | (0.672) | (0.040) | (0.051) | (0.032) | |
−0.071 | −0.138 | 0.011 | 0.007 | 0.200 ** | −0.064 | |
(0.260) | (0.330) | (1.142) | (0.069) | (0.088) | (0.055) | |
c | 0.002 | 0.002 | 0.009 | 0.001 | 0.001 | 0.001 |
(0.004) | (0.006) | (0.019) | (0.001) | (0.001) | (0.001) | |
Log likelihood | 3063 | |||||
AIC | −17.549 | |||||
SIC | −16.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Huang, Y.; Gu, Y. Fragmented or Unified? The State of China’s Carbon Emission Trading Market. Energies 2023, 16, 2470. https://doi.org/10.3390/en16052470
Wu L, Huang Y, Gu Y. Fragmented or Unified? The State of China’s Carbon Emission Trading Market. Energies. 2023; 16(5):2470. https://doi.org/10.3390/en16052470
Chicago/Turabian StyleWu, Liangzheng, Yan Huang, and Yimiao Gu. 2023. "Fragmented or Unified? The State of China’s Carbon Emission Trading Market" Energies 16, no. 5: 2470. https://doi.org/10.3390/en16052470
APA StyleWu, L., Huang, Y., & Gu, Y. (2023). Fragmented or Unified? The State of China’s Carbon Emission Trading Market. Energies, 16(5), 2470. https://doi.org/10.3390/en16052470