Analysis of DC/DC Boost Converter–Full-Bridge Buck Inverter System for AC Generation
Abstract
:1. Introduction
Motivation and Contribution
2. DC/DC Boost Converter–Full-Bridge Buck Inverter System
2.1. Generalization of the System
- DC/DC Boost converter. E is the power supply, is the input ON/OFF for the transistor , a current flows through the inductor , and D is the diode. is the output voltage of the converter associated to the terminals of the capacitor , and it will be the supply for the full-bridge Buck inverter.
- Full-bridge Buck inverter. Here, and are the inputs that turn ON/OFF the four transistor arrays , , , and , where the functions of , complement , , respectively. In this way, it is possible to invert and modulate the direction of the current flow and the voltage for the low-pass filter circuit with its inductor and capacitor .
2.2. Generation of Reference Trajectories
3. Simulation Results and Discussion
3.1. Block Diagram and Circuit
- DC/DC Boost converter–full-bridge Buck inverter system. The nominal values associated with the DC/DC Boost converter parameters areIn order to obtain the parameters associated with the DC/DC Boost converter, the design data shown in Table 1 are proposed and the methodology described in [41] is also taken into account; the parameters are listed in Table 1.The parameter values associated with the full-bridge Buck inverter areThe parameters for the full-bridge Buck inverter are listed in Table 2.
- Generation of trajectories and energy. In this block, the reference paths are programmed with , , , , and through the desired trajectories and , which are selected by means of the polynomials of Bézier [43], as shown in the following:Bézier TrajectoriesSince energy is not a state of the system, we decide to solve for in terms of ; after this consideration, the relations in equilibrium are obtained: and . Considering the system (1)–(4) in permanent state and solving for , we obtainSimilarly, the reference smoothly interpolates between initial and final voltages in the same time interval; moreover, in this block, the energy is reconstructed through (5). Finally, in relation to the PWM frequency, it is taken at a constant 50 Khz.
3.2. Simulations Analysis
3.3. Discussion for the Results Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryan, M.J.; Brumsickle, W.E.; Lorenz, R.D. Control topology options for single-phase UPS inverters. IEEE Trans. Ind. Applicat. 1997, 33, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.J.; Zhang, X.; Xu, P.; Shen, W.X. Single-phase uninterruptible power supply based on Z-source. IEEE Trans. Ind. Electron. 2008, 55, 2997–3004. [Google Scholar] [CrossRef]
- Minh-Huynh, D.; Ito, Y.; Aso, S.; Kato, K.; Teraoka, K. New concept of the DC-DC converter circuit applied for the small capacity uninterruptible power supply. In Proceedings of the 2018 International Power Electronics Conference, IPEC-Niigata 2018, Niigata, Japan, 20–24 May 2018; pp. 3086–3091. [Google Scholar]
- Chen, S.; Lipo, T.A. A novel soft-switched PWM inverter for AC motor drives. IEEE Trans. Power Electron. 1996, 11, 653–659. [Google Scholar] [CrossRef]
- Matsui, K.; Kawata, Y.; Ueda, F. Application of parallel connected NPC–PWM inverters with multilevel modulation for AC motor drive. IEEE Trans. Power Electron. 2000, 15, 901–907. [Google Scholar] [CrossRef]
- El-Bourhichi, S.; Oukassi, A.; El-Bahir, L.; El-Adnani, M. Active disturbance rejection control for a five-level cascaded H-bridge inverter fed induction motor sensorless field-oriented. Math. Probl. Eng. 2021, 2021, 9925072. [Google Scholar] [CrossRef]
- Tian, Z.; Lyu, Z.; Yuan, J.; Wang, C. UDE-based sliding mode control of DC–DC power converters with uncertainties. Control Eng. Pract. 2019, 83, 116–128. [Google Scholar] [CrossRef]
- Sivakumar, S.; Sathik, M.J.; Manoj, P.S.; Sundararajan, G. An assessment on performance of DC–DC converters for renewable energy applications. Renew. Sustain. Energy Rev. 2016, 58, 1475–1485. [Google Scholar] [CrossRef]
- Kwon, J.-M.; Nam, K.-H.; Kwon, B.-H. Photovoltaic power conditioning system with line connection. IEEE Trans. Ind. Electron. 2006, 53, 1048–1054. [Google Scholar] [CrossRef]
- Gokhale, K.P.; Kawamura, A.; Hoft, R.G. Dead beat microprocessor control of PWM inverter for sinusoidal output waveform synthesis. IEEE Trans. Ind. Applicat. 1987, IA-23, 901–910. [Google Scholar] [CrossRef]
- Pinheiro, H.; Martins, A.S.; Pinheiro, J.R. A sliding mode controller in single phase voltage source inverters. In Proceedings of the 20th Annual Conference of IEEE Industrial Electronics, IECON’94, Bologna, Italy, 5–6 September 1994; pp. 394–398. [Google Scholar]
- Tzou, Y.-Y. DSP-based fully digital control of a PWM DC-AC converter for AC voltage regulation. In Proceedings of the Power Electronics Specialist Conference, PESC ’95, Atlanta, GA, USA, 18–22 June 1995; pp. 138–144. [Google Scholar]
- Biel, D.; Fossas, E.; Guinjoan, F.; Alarcón, E.; Poveda, A. Application of sliding-mode control to the design of a Buck-based sinusoidal generator. IEEE Trans. Ind. Electron. 2001, 48, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.R.; Biel, D.; Fossas, E.; Guinjoan, F. A fixed-frequency quasi-sliding control algorithm: Application to power inverters design by means of FPGA implementation. IEEE Trans. Power Electron. 2003, 18, 344–355. [Google Scholar] [CrossRef]
- Armstrong, M.; Atkinson, D.J.; Johnson, C.M.; Abeyasekera, T.D. Auto-calibrating DC link current sensing technique for transformerless, grid connected, H-bridge inverter systems. IEEE Trans. Power Electron. 2006, 21, 1385–1393. [Google Scholar] [CrossRef]
- Aroudi, A.E.; Rodríguez, E.; Orabi, M.; Alarcón, E. Modeling of switching frequency instabilities in buck-based DC–AC H-bridge inverters. Int. J. Circ. Theor. Appl. 2011, 39, 175–193. [Google Scholar] [CrossRef]
- Abrishamifar, A.; Ahmad, A.A.; Mohamadian, M. Fixed switching frequency sliding mode control for single-phase unipolar inverters. IEEE Trans. Power Electron. 2012, 27, 2507–2514. [Google Scholar] [CrossRef]
- Repecho, V.; Biel, D.; Olm, J.M.; Fossas, E. Sliding mode control of a voltage source inverter with switching frequency regulation. In Proceedings of the 2016 14th International Workshop on Variable Structure Systems, VSS, Nanjing, China, 1–4 June 2016; pp. 296–301. [Google Scholar]
- Awais, M.; Yasin, A.R.; Riaz, M.; Saqib, B.; Zia, S.; Yasin, A. Robust sliding mode control of a unipolar power inverter. Energies 2021, 14, 5405. [Google Scholar] [CrossRef]
- Caceres, R.O.; Barbi, I. A Boost DC–AC converter: Analysis, design, and experimentation. IEEE Trans. Power Electron. 1999, 14, 134–141. [Google Scholar] [CrossRef]
- Olm, J.M.; Biel, D.; Spinetti-Rivera, M.; Fossas, E. Harmonic balance-based control of a Boost DC/AC converter. Int. J. Circ. Theor. Appl. 2012, 40, 777–792. [Google Scholar] [CrossRef] [Green Version]
- Abramovitz, A.; Zhao, B.; Smedley, K. High-Gain single-stage Boosting inverter for photovoltaic applications. IEEE Trans. Power Electron. 2016, 31, 3550–3558. [Google Scholar] [CrossRef]
- Wang, C.-M. A novel single-stage full-bridge Buck-Boost inverter. IEEE Trans. Power Electron. 2004, 19, 150–159. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Orabi, M.; Ahmed, M.E. Buck-Boost interleaved inverter for grid connected photovoltaic system. In Proceedings of the 2010 IEEE International Conference on Power and Energy, Kuala Lumpur, Malasya, 29 November–1 December 2010; pp. 63–68. [Google Scholar]
- Tripathi, P.R.; Thakura, P.; Keshri, R.K.; Ghosh, S.; Guerrero, J.M. Twenty-five years of single-stage Buck–Boost inverters. IEEE Ind. Electron. Mag. 2022, 16, 4–10. [Google Scholar] [CrossRef]
- Sira-Ramírez, H.; Agrawal, S.K. Differentially Flat Systems; Marcel Dekker: New York, NY, USA, 2004; ISBN 9780824754709. [Google Scholar]
- Gil-Antonio, L.; Saldivar, B.; Portillo-Rodríguez, O.; Ávila-Vilchis, J.C.; Martínez-Rodríguez, P.R.; Martínez-Méndez, R. Flatness-based control for the maximum power point tracking in a photovoltaic system. Energies 2019, 12, 1843. [Google Scholar] [CrossRef] [Green Version]
- Gil-Antonio, L.; Saldivar, B.; Portillo-Rodríguez, O.; Vázquez-Guzmán, G.; Montes de Oca-Armeaga, S. Trajectory tracking control for a Boost converter based on the differential flatness property. IEEE Access 2019, 7, 63437–63446. [Google Scholar] [CrossRef]
- Silva-Ortigoza, R.; Hernández-Guzmán, V.M.; Antonio-Cruz, M.; Muñoz-Carrillo, D. DC/DC Buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Trans. Power Electron. 2015, 30, 1076–1084. [Google Scholar] [CrossRef]
- Rigatos, G.; Siano, P.; Ademi, S.; Wira, P. Flatness-based control of DC–DC converters implemented in successive loops. Electric Power Compon. Syst. 2018, 46, 673–687. [Google Scholar] [CrossRef]
- Arshad, M.H.; Abido, M.A. Hierarchical control of DC motor coupled with Cuk converter combining differential flatness and sliding mode control. Arab. J. Sci. Eng. 2021, 46, 9413–9422. [Google Scholar] [CrossRef]
- Silva-Ortigoza, R.; Alba-Juárez, J.N.; García-Sánchez, J.R.; Antonio-Cruz, M.; Hernández-Guzmán, V.M.; Taud, H. Modeling and experimental validation of a bidirectional DC/DC Buck power electronic converter-DC motor system. IEEE Lat. Am. Trans. 2017, 15, 1043–1051. [Google Scholar] [CrossRef]
- García-Rodríguez, V.H.; Silva-Ortigoza, R.; Hernández-Márquez, E.; García-Sánchez, J.R.; Taud, H. DC/DC Boost converter-inverter as driver for a DC motor: Modeling and experimental verification. Energies 2018, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Márquez, E.; Silva-Ortigoza, R.; García-Sánchez, J.R.; García-Rodríguez, V.H.; Alba-Juárez, J.N. “A new DC/DC Buck-Boost converter–DC motor” system: Modeling and experimental validation. IEEE Lat. Am. Trans. 2017, 15, 2043–2049. [Google Scholar] [CrossRef]
- Hernández-Márquez, E.; Avila-Rea, C.A.; García-Sánchez, J.R.; Silva-Ortigoza, R.; Marciano-Melchor, M.; Marcelino-Aranda, M.; Roldán-Caballero, A.; Márquez-Sánchez, C. New “full-bridge Buck inverter–DC motor” system: Steady-state and dynamic analysis and experimental validation. Electronics 2019, 8, 1216. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Márquez, E.; Avila-Rea, C.A.; García-Sánchez, J.R.; Silva-Ortigoza, R.; Silva-Ortigoza, G.; Taud, H.; Marcelino-Aranda, M. Robust tracking controller for a DC/DC Buck-Boost converter–inverter–DC motor system. Energies 2018, 11, 2500. [Google Scholar] [CrossRef] [Green Version]
- García-Sánchez, J.R.; Hernández-Márquez, E.; Ramírez-Morales, J.; Marciano-Melchor, M.; Marcelino-Aranda, M.; Taud, H.; Silva-Ortigoza, R. A robust differential flatness-based tracking control for the “MIMO DC/DC Boost converter-inverter-DC motor” system: Experimental results. IEEE Access 2019, 7, 84497–84505. [Google Scholar] [CrossRef]
- Silva-Ortigoza, R.; Hernández-Márquez, E.; Roldán-Caballero, A.; Tavera-Mosqueda, S.; Marciano-Melchor, M.; García-Sánchez, J.R.; Hernández-Guzmán, V.M.; Silva-Ortigoza, G. Sensorless tracking control for a “full-bridge Buck inverter–DC motor” system: Passivity and flatness-based design. IEEE Access 2021, 9, 132191–132204. [Google Scholar] [CrossRef]
- Silva-Ortigoza, R.; Marciano-Melchor, M.; García-Chávez, R.E.; Roldán-Caballero, A.; Hernández-Guzmán, V.M.; Hernández-Márquez, E.; García-Sánchez, J.R.; García-Cortés, R.; Silva-Ortigoza, G. Robust flatness-based tracking control for a “full-bridge Buck inverter–DC motor” system. Mathematics 2022, 10, 4110. [Google Scholar] [CrossRef]
- Biel, D.; Guinjoan, F.; Fossas, E.; Chavarria, J. Sliding-mode control design of a Boost–Buck switching converter for AC signal generation. IEEE Trans. Circuits Syst. 2004, 51, 1539–1551. [Google Scholar] [CrossRef]
- Sira-Ramírez, H.; Silva-Ortigoza, R. Control Design Techniques in Power Electronics Devices; Springer: London, UK, 2006; ISBN 978-1-84628-458-8. [Google Scholar]
- Silva-Ortigoza, R.; Márquez-Sánchez, C.; Carrizosa-Corral, F.; Antonio-Cruz, M.; Alba-Martínez, J.M.; Saldaña-González, G. Hierarchical velocity control based on differential flatness for a DC/DC Buck converter-DC motor system. Math. Probl. Eng. 2014, 2014, 912815. [Google Scholar] [CrossRef] [Green Version]
- Biagiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots; Springer: London, UK, 2008; ISBN 978-3-540-85628-3. [Google Scholar]
Description | Value |
---|---|
Input voltage, E | 48 (V) |
Output voltage, | 130 (V) |
Output power, | 200 (W) |
Frequency, f | 50 (Khz) |
Ripple current, | of the value of |
Ripple voltage, | of the value of |
Description | Value |
---|---|
Input voltage, | 130 (V) |
Output voltage, | 120 (V) |
Output power, | 200 (W) |
Frequency, f | 50 (Khz) |
Ripple current, | of the value of |
Ripple voltage, | of the value of |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rodríguez, V.H.; Pérez-Cruz, J.H.; Ambrosio-Lázaro, R.C.; Tavera-Mosqueda, S. Analysis of DC/DC Boost Converter–Full-Bridge Buck Inverter System for AC Generation. Energies 2023, 16, 2509. https://doi.org/10.3390/en16062509
García-Rodríguez VH, Pérez-Cruz JH, Ambrosio-Lázaro RC, Tavera-Mosqueda S. Analysis of DC/DC Boost Converter–Full-Bridge Buck Inverter System for AC Generation. Energies. 2023; 16(6):2509. https://doi.org/10.3390/en16062509
Chicago/Turabian StyleGarcía-Rodríguez, Víctor Hugo, José Humberto Pérez-Cruz, Roberto Carlos Ambrosio-Lázaro, and Salvador Tavera-Mosqueda. 2023. "Analysis of DC/DC Boost Converter–Full-Bridge Buck Inverter System for AC Generation" Energies 16, no. 6: 2509. https://doi.org/10.3390/en16062509
APA StyleGarcía-Rodríguez, V. H., Pérez-Cruz, J. H., Ambrosio-Lázaro, R. C., & Tavera-Mosqueda, S. (2023). Analysis of DC/DC Boost Converter–Full-Bridge Buck Inverter System for AC Generation. Energies, 16(6), 2509. https://doi.org/10.3390/en16062509