Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field
Abstract
:1. Introduction
2. Basic Principles and Experimental Methods
2.1. Basic Principles
2.2. Experimental Methods
3. Results
3.1. General Performance of APPJ
3.2. Propagation of APPJ
3.3. OES of Discharge
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, H.; Luo, J.; Song, K.; Zhao, F.; Liu, D.; Nie, L.; Lu, X. On the Dose of Plasma Medicine: Plasma-Activated Medium (PAM) and Its Effect on Cell Viability. Phys. Plasmas 2022, 29, 063506. [Google Scholar] [CrossRef]
- Yan, X.; Ouyang, J.; Zhang, C.; Shi, Z.; Wang, B.; Ostrikov, K. Plasma Medicine for Neuroscience—An Introduction. Chin. Neurosurg. J. 2019, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, P.; Jiang, W.; Zhang, L.; Wu, J.; Zhang, J.; Yang, D. Experimental Studies of Removing Typical VOCs by Dielectric Barrier Discharge Reactor of Different Sizes. Process. Saf. Environ. Prot. 2015, 94, 380–384. [Google Scholar] [CrossRef]
- Wegner, T.; Hinz, A.M.; Faupel, F.; Strunskus, T.; Kersten, H.; Meichsner, J. Influence of Nanoparticle Formation on Discharge Properties in Argon-Acetylene Capacitively Coupled Radio Frequency Plasmas. Appl. Phys. Lett. 2016, 108, 063108. [Google Scholar] [CrossRef]
- Knoll, A.J.; Luan, P.; Bartis, E.A.J.; Hart, C.; Raitses, Y.; Oehrlein, G.S. Real Time Characterization of Polymer Surface Modifications by an Atmospheric-Pressure Plasma Jet: Electrically Coupled versus Remote Mode. Appl. Phys. Lett. 2014, 105, 171601. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.H.; Schoenbach, K.H.; Eden, J.G. Microplasmas and Applications. J. Phys. D Appl. Phys. 2006, 39, R55–R70. [Google Scholar] [CrossRef]
- Lu, X.; Naidis, G.V.; Laroussi, M.; Reuter, S.; Graves, D.B.; Ostrikov, K. Reactive Species in Non-Equilibrium Atmospheric-Pressure Plasmas: Generation, Transport, and Biological Effects. Phys. Rep. 2016, 630, 1–84. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Laroussi, M.; Puech, V. On Atmospheric-Pressure Non-Equilibrium Plasma Jets and Plasma Bullets. Plasma Sources Sci. Technol. 2012, 21, 034005. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, Z.; Xiong, Q.; Tang, Z.; Hu, X.; Pan, Y. An 11cm Long Atmospheric Pressure Cold Plasma Plume for Applications of Plasma Medicine. Appl. Phys. Lett. 2008, 92, 081502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Oehrlein, G.S. From Thermal Catalysis to Plasma Catalysis: A Review of Surface Processes and Their Characterizations. J. Phys. D Appl. Phys. 2021, 54, 213001. [Google Scholar] [CrossRef]
- Puliyalil, H.; Lašič Jurković, D.; Dasireddy, V.D.B.C.; Likozar, B. A Review of Plasma-Assisted Catalytic Conversion of Gaseous Carbon Dioxide and Methane into Value-Added Platform Chemicals and Fuels. RSC Adv. 2018, 8, 27481–27508. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Ouyang, J.; Han, R.; Zhang, C.; Kong, D.; Zhu, P. Study of large-area atmospheric pressure plasma jet based on coplanar dielectric barrier discharge. Sci. Sin.-Phys. Mech. Astron. 2020, 50, 090009. [Google Scholar] [CrossRef]
- Moon, S.Y.; Choe, W.; Kang, B.K. A Uniform Glow Discharge Plasma Source at Atmospheric Pressure. Appl. Phys. Lett. 2004, 84, 188–190. [Google Scholar] [CrossRef]
- Panousis, E.; Clément, F.; Loiseau, J.-F.; Spyrou, N.; Held, B.; Thomachot, M.; Marlin, L. An Electrical Comparative Study of Two Atmospheric Pressure Dielectric Barrier Discharge Reactors. Plasma Sources Sci. Technol. 2006, 15, 828–839. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Mo, Y.; Rong, Y. Electrical and Optical Characteristics of Atmospheric Helium Jet Array Plasma. Plasma Sci. Technol. 2019, 21, 115403. [Google Scholar] [CrossRef]
- Fang, Z.; Ruan, C.; Shao, T.; Zhang, C. Two Discharge Modes in an Atmospheric Pressure Plasma Jet Array in Argon. Plasma Sources Sci. Technol. 2016, 25, 01LT01. [Google Scholar] [CrossRef]
- Daotan, T.; Chunsheng, R.; Dezhen, W.; Qiuyue, N. The Interactions of Two Cold Atmospheric Plasma Jets. Plasma Sci. Technol. 2009, 11, 293–296. [Google Scholar] [CrossRef]
- Wang, R.; Xu, H.; Zhao, Y.; Zhu, W.; Zhang, C.; Shao, T. Spatial–Temporal Evolution of a Radial Plasma Jet Array and Its Interaction with Material. Plasma Chem. Plasma Process. 2019, 39, 187–203. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W.; Qiu, K.; Ma, W. Magnetic-field-aided plasma enhanced chemical vapor deposition. Vacuum 2007, 44, 26–28. [Google Scholar]
- Shaikhislamov, I.F.; Zakharov, Y.P.; Posukh, V.G.; Melekhov, A.V.; Antonov, V.M.; Boyarintsev, E.L.; Ponomarenko, A.G. Laboratory Model of Magnetosphere Created by Strong Plasma Perturbation with Frozen-in Magnetic Field. Plasma Phys. Control. Fusion 2014, 56, 125007. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Jin, C.; Yu, J.; Wu, X.; Zhuge, L. High Magnetic Field Helicon Plasma Discharge for Plasma-Wall Interaction Studies. Sci. China Phys. Mech. Astron. 2016, 59, 645201. [Google Scholar] [CrossRef]
- Ono, N.; Musha, K.; Koike, K. Control of Plasma Jet Using Strong Magnetic Field. JSME Int. J. Ser. B 2005, 48, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Ono, N.; Musha, K.; Koike, K. A Simple Diagnostic Method for Plasma Jet in Strong Magnetic Field. Vacuum 2006, 80, 1179–1184. [Google Scholar] [CrossRef]
- Chen, F.F.; Torreblanca, H. Large-Area Helicon Plasma Source with Permanent Magnets. Plasma Phys. Control. Fusion 2007, 49, A81–A93. [Google Scholar] [CrossRef]
- Kaganovich, I.D.; Smolyakov, A.; Raitses, Y.; Ahedo, E.; Mikellides, I.G.; Jorns, B.; Taccogna, F.; Gueroult, R.; Tsikata, S.; Bourdon, A.; et al. Physics of E × B Discharges Relevant to Plasma Propulsion and Similar Technologies. Phys. Plasmas 2020, 27, 120601. [Google Scholar] [CrossRef]
- Jiang, W.; Tang, J.; Wang, Y.; Zhao, W.; Duan, Y. A Low-Power Magnetic-Field-Assisted Plasma Jet Generated by Dielectric-Barrier Discharge Enhanced Direct-Current Glow Discharge at Atmospheric Pressure. Appl. Phys. Lett. 2014, 104, 013505. [Google Scholar] [CrossRef]
- Zhu, P.; Meng, Z.; Hu, H.; Ouyang, J. Effect of External Electric and Magnetic Field on Propagation of Atmospheric Pressure Plasma Jet. Phys. Plasmas 2017, 24, 103512. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Wang, X.; He, X. Surface Modification of Poly(Ethylene Terephthalate) (PET) by Magnet Enhanced Dielectric Barrier Discharge Air Plasma. Surf. Coat. Technol. 2011, 205, 4993–4999. [Google Scholar] [CrossRef]
- Pekárek, S. Experimental Study of Nitrogen Oxides and Ozone Generation by Corona-Like Dielectric Barrier Discharge with Airflow in a Magnetic Field. Plasma Chem. Plasma Process. 2017, 37, 1313–1330. [Google Scholar] [CrossRef]
- Liu, C.-T.; Kumakura, T.; Ishikawa, K.; Hashizume, H.; Takeda, K.; Ito, M.; Hori, M.; Wu, J.-S. Effects of Assisted Magnetic Field to an Atmospheric-Pressure Plasma Jet on Radical Generation at the Plasma-Surface Interface and Bactericidal Function. Plasma Sources Sci. Technol. 2016, 25, 065005. [Google Scholar] [CrossRef]
- Jin, S.; Nie, L.; Liu, D.; Lu, X. A Magnetic Field Induced Cold Atmospheric Pressure Air Plasma Jet. IEEE Trans. Plasma Sci. 2023, 51, 60–65. [Google Scholar] [CrossRef]
- Wang, M.; Han, R.; Zhang, C.; Ouyang, J. Influence of Magnet on Helium Atmospheric Pressure Plasma Jet. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6 September 2020; pp. 1–4. [Google Scholar]
- Liu, Y.; Yan, H.; Guo, H.; Fan, Z.; Wang, Y.; Ren, C. Experimental Investigation on the Repetitively Nanosecond Pulsed Dielectric Barrier Discharge with the Parallel Magnetic Field. Phys. Plasmas 2018, 25, 023512. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Lu, X.; Xiong, Q.; Xian, Y.; Zou, C.; Hu, J.; Gong, W.; Liu, J.; Zou, F.; Jiang, Z.; et al. Measurements of the Propagation Velocity of an Atmospheric-Pressure Plasma Plume by Various Methods. IEEE Trans. Plasma Sci. 2010, 38, 1001–1007. [Google Scholar] [CrossRef]
- Jiang, N.; Ji, A.; Cao, Z. Atmospheric Pressure Plasma Jets beyond Ground Electrode as Charge Overflow in a Dielectric Barrier Discharge Setup. J. Appl. Phys. 2010, 108, 033302. [Google Scholar] [CrossRef]
- Kim, S.J.; Chung, T.H.; Bae, S.H. Striation and Plasma Bullet Propagation in an Atmospheric Pressure Plasma Jet. Phys. Plasmas 2010, 17, 053504. [Google Scholar] [CrossRef]
- Zhu, P.; Li, B.; Duan, Z.; Ouyang, J. Development from Dielectric Barrier Discharge to Atmospheric Pressure Plasma Jet in Helium: Experiment and Fluid Modeling. J. Phys. D Appl. Phys. 2018, 51, 405202. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, H.; Fan, Z.; Yan, H.; Ren, C. The Impacts of Magnetic Field on Repetitive Nanosecond Pulsed Dielectric Barrier Discharge in Air. Phys. Plasmas 2016, 23, 113508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Wang, M.; Li, P.; Han, R.; Ouyang, J. Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field. Energies 2023, 16, 2512. https://doi.org/10.3390/en16062512
Shi B, Wang M, Li P, Han R, Ouyang J. Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field. Energies. 2023; 16(6):2512. https://doi.org/10.3390/en16062512
Chicago/Turabian StyleShi, Bo, Manyu Wang, Pengfei Li, Ruoyu Han, and Jiting Ouyang. 2023. "Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field" Energies 16, no. 6: 2512. https://doi.org/10.3390/en16062512
APA StyleShi, B., Wang, M., Li, P., Han, R., & Ouyang, J. (2023). Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field. Energies, 16(6), 2512. https://doi.org/10.3390/en16062512