New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures
Abstract
:1. Introduction
2. New Method for Controlling the State of Volatile Hydrocarbon Media and Their Blends
3. The Design of Small-Size Refractometer and Principal Realization of Refractive Index Measuring
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NMR | nuclear magnetic resonance |
TIR | total internal reflection |
nm | refrective index of investigation medium |
nt | refrective index of upper layer a the investigation mixture for first measurement |
nb | refrective index of lower layer a the investigation mixture for first measurement |
Kn | coefficients in the refraction equation |
refrective index of upper layer a the investigation mixture for second measurement | |
refrective index of lower layer a the investigation mixture for second measurement | |
Mm | mass of investigation mixture |
Vm | volume of investigation mixture |
ρn | hydrocarbon medium density |
Δρ | temperature correction for hydrocarbon media |
SAK | straight-run aviation kerosene |
References
- Liu, B.; Lund, J.R.; Liao, S.; Jin, X.; Liu, L.; Cheng, C. Optimal power peak shaving using hydropower to complement wind and solar power uncertainty. Energy Convers. Manag. 2020, 209, 112628. [Google Scholar] [CrossRef]
- Patil, P.R.; Tanavade, S.; Dinesh, M.N. Analysis of Power Loss in Forward Converter Transformer Using a Novel Machine Learning Based Optimization Framework. Technol. Econ. Smart Grids Sustain. Energy 2022, 7, 21. [Google Scholar] [CrossRef]
- Sergeev, V.; Anikina, I.; Kalmykov, K. Using Heat Pumps to Improve the Efficiency of Combined-Cycle Gas Turbines. Energies 2021, 14, 2685. [Google Scholar] [CrossRef]
- Wu, G.; Ju, P.; Song, X.; Xie, C.; Zhong, W. Interaction and Coordination among Nuclear Power Plants, Power Grids and Their Protection Systems. Energies 2016, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Franke, T.; Agostinetti, P.; Aiello, G.; Avramidis, K.; Bachmann, C.; Bruschi, A.; Federici, G.; Garavaglia, S.; Granucci, G.; Grossetti, G.; et al. Review of the innovative HCD designs and the impact of their configurations on the performance of the EU DEMO fusion power plant reactor. IEEE Trans. Plasma Sci. 2018, 46, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Treshcheva, M.; Anikina, I.; Sergeev, V.; Skulkin, S.; Treshchev, D. Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions. Energies 2021, 14, 226. [Google Scholar] [CrossRef]
- Novikova, O.V.; Erastov, A.E.; Livshits, S.A. Features of evaluating the efficiency indicators of the electric power enterprise. E3S Web Conf. 2019, 124, 05057. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-H.; Kim, M.-G.; Lee, J.I.; Lee, P.-S. Recent Advances in Ocean Nuclear Power Plants. Energies 2015, 8, 11470–11492. [Google Scholar] [CrossRef] [Green Version]
- Vidal, J.V.; Rolo, P.; Carneiro, P.M.R.; Kholkin, A.L.; Soares dos Santos, M.P. Automated electromagnetic generator with self-adaptive structure by coil switching. Appl. Energy 2022, 325, 119802. [Google Scholar] [CrossRef]
- Sani, M.A.A.; Azharshah, M.D.A.; Yusof, M.I.; Sama’in, M.U.S.; Sani, N.S. Development of a Low-Cost Hydroelectric Generation System for Application on Water Pipelines. Adv. Struct. Mater. 2022, 174, 123–131. [Google Scholar] [CrossRef]
- Zargari, S.; Koozehkanani, Z.D.; Veladi, H.; Sobhi, J.; Rezania, A. Cost-effective fabrication approaches for improving output performance of triboelectric energy harvesters. J. Electrost. 2022, 115, 103640. [Google Scholar] [CrossRef]
- Ristic, M.; Vasovic, I.; Perisic, J. Revitalization and Optimization of Thermoenergetic Facilities. Lect. Notes Netw. Syst. 2020, 90, 221–249. [Google Scholar] [CrossRef]
- Lu, Q.; Xu, S.; Shao, H.; Ban, D.; Wang, C. Improving power conversion efficiency in luminescent solar concentrators using nanoparticle fluorescence and scattering. Nanotechnology 2020, 31, 455205. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Cho, Y.; Kim, S.; Lee, K.; Yi, J. Effect of Cell Electrical Mismatch on Output of Crystalline Photovoltaic Modules. Energies 2022, 15, 7438. [Google Scholar] [CrossRef]
- Shpeizman, V.V.; Nikolaev, V.I.; Pozdnyakov, A.O.; Timashov, R.B.; Averkin, A.I. Strength of Silicon Single-Crystal Wafers for Solar Cells. Tech. Phys. 2020, 65, 73–77. [Google Scholar] [CrossRef]
- Boudjemila, L.; Krasnoshchekov, V.; Olimov, S.; Diuldin, M.; Kasimakhunova, A. Some features of photoelectrical properties of highly efficient solar cells based on Si. In Proceedings of the IEEE International Conference on Electrical Engineering and Photonics, EExPolytech, St. Petersburg, Russia, 15–16 October 2020; Volume 9244000, pp. 223–226. [Google Scholar] [CrossRef]
- Boudjemila, L.; Malyshkin, V.G.; Rud, V.Y. Features of Degradation of Silicon-based Solar Photovoltavic Cells. J. Phys. Conf. Ser. 2021, 2086, 012079. [Google Scholar] [CrossRef]
- Burlakovs, J.; Vincevica-Gaile, Z.; Krievans, M.; Tamm, T.; Klavins, M. Platinum group elements in geosphere and anthroposphere: Interplay among the global reserves, urban ores, markets and circular economy. Minerals 2020, 10, 558. [Google Scholar] [CrossRef]
- Davydov, R.; Antonov, V.; Makeev, S.; Batov, Y.; Dudkin, V.; Myazin, N. New high-speed system for controlling the parameters of a nuclear reactor in a nuclear power plant. E3S Web Conf. 2019, 140, 02001. [Google Scholar] [CrossRef] [Green Version]
- Gulevich, A.V.; Dekusar, V.M.; Chebeskov, A.N.; Kuchinov, V.P.; Voloshin, N.P. Possibility of Fast-Reactor Exportation Under an International Nuclear Non-Proliferation Regime. At. Energy 2020, 127, 192–195. [Google Scholar] [CrossRef]
- Alekseev, P.N.; Gagarinskii, A.Y.; Kalugin, M.A.; Kukharkin, N.E.; Semchenkov, Y.M.; Sidorenko, V.A.; Subbotin, S.A.; Teplov, P.S.; Fomichenko, P.A.; Asmolov, V.G. Nuclear Power in Russia. At. Energy 2019, 126, 207–212. [Google Scholar] [CrossRef]
- Davydov, R.; Dudkin, V.; Logunov, S.; Bobyl, A. Optical Method for Controlling the Flow Rate of the Coolant in Nuclear Reactors. In Proceedings of the 2021 International Conference on Electrical Engineering and Photonics, EExPolytech, St. Petersburg, Russia, 14–15 October 2021; pp. 179–183. [Google Scholar] [CrossRef]
- Davydov, V.V.; Velichko, E.N.; Karseev, A.Y. Fiber-optic system for simulating accidents in the cooling circuits of a nuclear power plant. J. Opt. Technol. 2015, 82, 132–135. [Google Scholar] [CrossRef]
- Klinov, D.A.; Gulevich, A.V.; Kagramanyan, V.S.; Dekusar, V.M.; Usanov, V.I. Development of Sodium-Cooled Fast Reactors Under Modern Conditions: Challenges and Stimuli. At. Energy 2019, 125, 143–148. [Google Scholar] [CrossRef]
- Rowinski, M.K.; White, T.J.; Zhao, J. Small and Medium sized Reactors (SMR): A review of technology. Renew. Sustain. Energy Rev. 2015, 44, 643–656. [Google Scholar] [CrossRef]
- Nourelfath, M.; Lababidi, H.M.S.; Aldowaisan, T. Socio-economic impacts of strategic oil and gas megaprojects: A case study in Kuwait. Int. J. Prod. Econ. 2022, 246, 108416. [Google Scholar] [CrossRef]
- Ocampo Batlle, E.A.; Escobar Palacio, J.C.; Silva Lora, E.E.; Bortoni, E.D.C.; Horta Nogueira, L.A.; Carrillo Caballero, G.E.; Vitoriano Julio, A.A.; Escorcia, Y.C. Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol. J. Clean. Prod. 2021, 311, 127638. [Google Scholar] [CrossRef]
- De Paulo, E.H.; dos Santos, F.D.; Folli, G.S.; Santos, L.P.; Nascimento, M.H.C.; Moro, M.K.; da Cunha, P.H.P.; Castro, E.V.R.; Cunha Neto, A.; Filgueiras, P.R. Determination of gross calorific value in crude oil by variable selection methods applied to 13C NMR spectroscopy. Fuel 2022, 311, 122527. [Google Scholar] [CrossRef]
- Gafurov, M.; Mamin, G.; Gracheva, I.; Murzakhanov, F.; Ganeeva, Y.; Yusupova, T.; Orlinskii, S. High-Field (3.4 T) ENDOR Investigation of Asphaltenes in Native Oil and Vanadyl Complexes by Asphaltene Adsorption on Alumina Surface. Geofluids 2019, 267, 3812875. [Google Scholar] [CrossRef] [Green Version]
- Mir, H.; Ratlamwala, T.A.H.; Hussain, G.; Alkahtani, M.; Abidi, M.H. Impact of sloshing on fossil fuel loss during transport. Energies 2020, 13, 2625. [Google Scholar] [CrossRef]
- Pan, C.; Ciccarelli, G.; Zhao, J.; Zhu, X.; Wang, X. Evolution characteristics of vented gaseous ethanol-gasoline air explosions in a small cuboid channel. J. Loss Prev. Process Ind. 2022, 80, 104861. [Google Scholar] [CrossRef]
- Kashaev, R.S. Structural Dynamic Ordering and the Pair Potential of Interparticle Interactions. Russ. J. Phys. Chem. A 2019, 93, 1497–1504. [Google Scholar] [CrossRef]
- La Colla, N.S.; Botté, S.E.; Marcovecchio, J.E. Atmospheric particulate pollution in south american megacities. Environ. Rev. 2021, 29, 415–429. [Google Scholar] [CrossRef]
- Bocian, P.; Biernat, K.; Matuszewska, A.; Bukrejewski, P.; Noworyta, K.R. Electrochemical impedance spectroscopy studies of gasoline oxidative stability—Attempt to devise new gasolines chemical stability index. Fuel 2021, 288, 119620. [Google Scholar] [CrossRef]
- Wang, H. Operation analysis of FCC unit for adapting to the crude oil deterioration. Pet. Refin. Eng. 2021, 51, 18–21. [Google Scholar]
- Sun, Y.; Sun, W.; Guo, L.; Zeng, W.; Lin, S. An experimental investigation of wide distillation fuel based on CTL on the combustion performance and emission characteristics from a CI engine. Fuel 2021, 310, 122262. [Google Scholar] [CrossRef]
- Hidalgo, K.J.; Sierra-Garcia, I.N.; Dellagnezze, B.M.; de Oliveira, V.M. Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Front. Microbiol. 2020, 11, 561506. [Google Scholar] [CrossRef]
- Sonntag, D.B.; Baldauf, R.W.; Yanca, C.A.; Fulper, C.R. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States. J. Air Waste Manag. Assoc. 2014, 64, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Berthome, V.; Chalet, D.; Hetet, J.-F. Consequence of Blowby Flow and Idling Time on Oil Consumption and Particulate Emissions in Gasoline Engine. Energies 2022, 15, 8772. [Google Scholar] [CrossRef]
- Kashaev, R.S.; Kien, N.C.; Tung, T.V.; Kozelkov, O.V. Fast Proton Magnetic Resonance Relaxometry Methods for Determining Viscosity and Concentration of Asphaltenes in Crude Oils. J. Appl. Spectrosc. 2019, 86, 890–895. [Google Scholar] [CrossRef]
- Davydov, V.V.; Myazin, N.S.; Makeev, S.S.; Dudkin, V.I. A New Method to Study the Structure of NMR Signals Detected with the Aid of Modulation Procedure. Tech. Phys. 2020, 65, 1327–1332. [Google Scholar] [CrossRef]
- Tang, C.H.; Buskey, E.J. Impaired grazing of marine protozoa in sub-lethal exposure to the water accommodated fraction of crude oil and dispersant. Environ. Pollut. 2022, 315, 120414. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, H.; Rudolph, M. Influences of oil collector on surface air nucleation in fine graphite flotation. Sep. Purif. Technol. 2022, 303, 122165. [Google Scholar] [CrossRef]
- Lin, H.; Li, Q.; Zhang, L.; Zhang, S.; Hu, X. Hydrothermal carbonization of sawdust with the bio-oil of same origin impacts evolution of structures of hydrochar. Fuel Process. Technol. 2022, 238, 107516. [Google Scholar] [CrossRef]
- Mora, M.; Fàbregas, E.; Céspedes, F.; Bartrolí, J.; Puy, N. Production and separation of value-added compounds from pine wood using pyrolysis and biorefinery techniques. Fuel Process. Technol. 2022, 238, 107509. [Google Scholar] [CrossRef]
- Gao, J.; Huang, J.; Li, X.; Yang, C.; Ma, C. Challenges of the UK government and industries regarding emission control after ICE vehicle bans. Sci. Total Environ. 2022, 835, 155406. [Google Scholar] [CrossRef] [PubMed]
- Sahu, T.K.; Kshatri, R.; Shukla, P. CImpact of Ethanol on Combustion, Performance, and Emission Characteristics of Diesel Engine. Energy Environ. Sustain. 2021, 2, 251–266. [Google Scholar] [CrossRef]
- Qin, L.; Wang, K.; Tian, F.; Zhang, F.; Yue, Y. Research on Boost Control Method for Turbocharged Gasoline Engine. Lect. Notes Electr. Eng. 2023, 818, 1305–1315. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Wan, Q.; Jia, G.; Yin, Z. Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine. Energy 2023, 262, 125445. [Google Scholar] [CrossRef]
- Li, Z.; Ying, Y.; Yang, M.; Zhao, L.; Du, W. Monitoring and path optimization of catalytic reformer in a refinery: Principal component analysis and A* algorithm application. Expert Syst. Appl. 2022, 209, 118358. [Google Scholar] [CrossRef]
- Zhu, X.-H.; He, H.-D.; Lu, K.-F.; Peng, Z.-R.; Gao, H.O. Characterizing carbon emissions from China V and China VI gasoline vehicles based on portable emission measurement systems. J. Clean. Prod. 2022, 378, 134458. [Google Scholar] [CrossRef]
- Makeev, S.S.; Myazin, N.S.; Rud, V.Y. Features of spectral analysis of nuclear magnetic resonance signal for express-control of hydrocarbon media. J. Phys. Conf. Ser. 2021, 2086, 012154. [Google Scholar] [CrossRef]
- Kashaev, R.S.; Kien, N.T.; Tung, C.V.; Kozelkov, O.V. Correlation of Physicochemical Properties of Bach Ho Oils with Proton NMR Relaxation Parameters and Their Temperature Dependence. Pet. Chem. 2019, 59, S21–S29. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, Y.; Xie, W.; Liu, Y.; Hou, X. Flame Characteristics of Gasoline and a Water-in-Gasoline Mixture under a Controllable High-Temperature Thermal Atmosphere. ACS Omega 2022, 7, 38525–38535. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, X.; Xie, Y.-F.; Wu, J.-H.; Hu, W.-J. Prediction method of gasoline octane number based on adaptive variable weighting. Control Decis. 2022, 37, 2738–2744. [Google Scholar] [CrossRef]
- Guleria, G.; Lopez-Pintor, D.; Dec, J.E.; Assanis, D. A comparative study of gasoline skeletal mechanisms under partial fuel stratification conditions using large eddy simulations. Int. J. Engine Res. 2022, 23, 1658–1677. [Google Scholar] [CrossRef]
- Davydov, V.V.; Moroz, A.V.; Makeev, S.S.; Dudkin, V.V. Peculiarities of Registration of the Nuclear Magnetic Resonance Spectrum of a Condensed Medium During Express Control of Its State. Opt. Spectrosc. 2020, 128, 1678–1685. [Google Scholar] [CrossRef]
- D’yachenko, S.V.; Lebedev, L.A.; Sychev, M.M.; Nefedova, L.A. Physicomechanical Properties of a Model Material in the Form of a Cube with the Topology of Triply Periodic Minimal Surfaces of the Gyroid Type. Tech. Phys. 2018, 63, 984–987. [Google Scholar] [CrossRef]
- Myazin, N.S. Peculiarities of magnetic resonance signals processing during the express control of the liquid media state. J. Phys. Conf. Ser. 2019, 1236, 012026. [Google Scholar] [CrossRef] [Green Version]
- Sadovnikova, M.A.; Murzakhanov, F.F.; Mamin, G.V.; Gafurov, M.R. HYSCORE Spectroscopy to Resolve Electron–Nuclear Structure of Vanadyl Porphyrins in Asphaltenes from the Athabasca Oil Sands In Situ Conditions. Energies 2022, 15, 6204. [Google Scholar] [CrossRef]
- Davydov, V.V.; Dudkin, V.I.; Vysoczky, M.G. Small-size NMR Spectrometer for Express Control of Liquid Media State. Appl. Magn. Reson. 2020, 51, 653–666. [Google Scholar] [CrossRef]
- Safiullin, K.; Kuzmin, V.; Bogaychuk, A.; Klochkov, A.; Tagirov, M. Determination of pores properties in rocks by means of helium-3 NMR: A case study of oil-bearing arkosic conglomerate from North belt of crude oil, Republic of Cuba. J. Pet. Sci. Eng. 2022, 210, 110010. [Google Scholar] [CrossRef]
- Marusina, M.Y.; Bazarov, B.A.; Galaidin, P.A.; Marusin, M.P.; Silaev, A.A.; Zakemovskaya, E.Y.; Mustafaev, Y.N. Design of a Gradient System for a Multiphase Flowmeter. Meas. Tech. 2016, 57, 580–586. [Google Scholar] [CrossRef]
- Zverev, D.G.; Lukin, S.N.; Rodionov, A.A.; Shurtakova, D.V.; Gafurov, M.R. Multipurpose portable q-band bridge. Magn. Reson. Solids 2021, 23, 21201. [Google Scholar] [CrossRef]
- Morales-Luna, G.; Herrera-Domínguez, M.; Pisano, E.; Balderas-Elizalde, A.; Hernandez-Aranda, R.I.; Ornelas-Soto, N. Plasmonic biosensor based on an effective medium theory as a simple tool to predict and analyze refractive index changes. Opt. Laser Technol. 2020, 131, 106332. [Google Scholar] [CrossRef]
- Davydov, V.; Gureeva, I.; Dudkin, V. Flowing Refractometer for Feed Water State Control in the Second Loop of Nuclear Reactor. Energies 2022, 15, 457. [Google Scholar] [CrossRef]
- Morales-Luna, G.; García-Valenzuela, A.; Barrera, R.G. Optical Coherent Reflection from a Confined Colloidal Film: Modeling and Experiment. J. Phys. Chem. B 2018, 122, 8570–8581. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.K.; Maini, S. Compact and self-aligned fluid refractometer based on the Doppler-induced self-mixing effect. Appl. Opt. 2020, 59, 3064–3072. [Google Scholar] [CrossRef]
- Davydov, V.V.; Grebenikova, N.M.; Smirnov, K.Y. An Optical Method of Monitoring the State of Flowing Media with Low Transparency That Contain Large Inclusions. Meas. Tech. 2019, 62, 519–526. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Yu, L.; Xia, M.; Li, W.; Yang, K. High-precision algorithms for critical angle refractive index measurement. Appl. Opt. 2019, 58, 6057–6062. [Google Scholar] [CrossRef]
- Karabegov, M.A. The dynamic characteristics of automatic analyzers. Meas. Tech. 2013, 55, 1301–1310. [Google Scholar] [CrossRef]
- Shur, V.L.; Naidenov, A.S.; Lukin, A.Y.; Leibengardt, G.I. A liquid autocollimation refractometer. Meas. Tech. 2006, 49, 815–819. [Google Scholar] [CrossRef]
- Ojeda-Mendoza, G.J.; Contreras-Tello, H.; Rojas-Ochoa, L.F. Refractive index matching of large polydisperse silica spheres in aqueous suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 320–326. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Jia, Z.; Wang, D.N. Hybrid Fabry-Perot interferometer for simultaneous liquid refractive index and temperature measurement. Opt. Express 2017, 25, 14483–14493. [Google Scholar] [CrossRef] [PubMed]
- Davydov, V.V.; Makeev, S.S.; Dudkin, V.I. Method for Monitoring the Longitudinal Relaxation Time of Flowing Liquids Over the Entire Range of Flow Rate Measurements. Meas. Tech. 2020, 63, 368–374. [Google Scholar] [CrossRef]
- O’Neill, K.T.; Brancato, L.; Stanwix, P.L.; Fridjonsson, E.O.; Johns, M.L. Two-phase oil/water flow measurement using an Earth’s field nuclear magnetic resonance flow meter. Chem. Eng. Sci. 2019, 202, 222–237. [Google Scholar] [CrossRef]
- Chandrasekera, T.C.; Mitchell, J. Numerical inversion methods for recovering negative amplitudes in two-dimensional nuclear magnetic resonance relaxation-time correlations. Phys. Rev. E 2018, 98, 043308. [Google Scholar] [CrossRef]
- Aydin, E.; Makinwa, K.A.A. A Low-Field Portable Nuclear Magnetic Resonance (NMR) Microfluidic Flowmeter. In Proceedings of the 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021. [Google Scholar] [CrossRef]
- O’Neill, K.T.; Klotz, A.; Stanwix, P.L.; Fridjonsson, E.O.; Johns, M.L. Quantitative Multiphase Flow Characterisation Using an Earth’s Field NMR Flow Meter. Flow Meas. Instrum. 2017, 58, 104–111. [Google Scholar] [CrossRef]
- Chen, J.; Guo, W.; Xia, M.; Li, W.; Yang, K. In situ measurement of seawater salinity with an optical refractometer based on total internal reflection method. Opt. Express 2018, 26, 25510–25523. [Google Scholar] [CrossRef]
- Niskanen, I.; Räty, J.; Peiponen, K.-E. On the Immersion Liquid Evaporation Method Based on the Dynamic Sweep of Magnitude of the Refractive Index of a Binary Liquid Mixture: A Case Study on Determining Mineral Particle Light Dispersion. Appl. Spectrosc. 2017, 71, 1586–1592. [Google Scholar] [CrossRef]
- Guo, W.; Li, R.; Yu, L.; Chen, J.; Xia, M.; Li, W.; Yang, K. Self-referenced technology for refractive index measurement under mechanical vibration and temperature fluctuation. Appl. Opt. 2019, 58, 1862–1867. [Google Scholar] [CrossRef]
- Grebenikova, N.M.; Rud, V.Y. The influence of optical density change on measurement error of refractive index in flowing liquid. J. Phys. Conf. Ser. 2019, 1410, 012186. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Ni, W.; Wu, S.; Lu, P. Dual-wavelength highly-sensitive refractive index sensor. Opt. Express 2017, 25, 14389–14396. [Google Scholar] [CrossRef] [PubMed]
- Reed, B.E.; Grainger, R.G.; Peters, D.M.; Smith, A.J.A. Retrieving the real refractive index of mono- and polydisperse colloids from reflectance near the critical angle. Opt. Express 2016, 24, 1953–1972. [Google Scholar] [CrossRef] [PubMed]
- Tuoriniemi, J.; Moreira, B.; Safina, G. Determining Number Concentrations and Diameters of Polystyrene Particles by Measuring the Effective Refractive Index of Colloids Using Surface Plasmon Resonance. Langmuir 2016, 32, 10632–10640. [Google Scholar] [CrossRef] [PubMed]
- Grebenikova, N.M. The effect of optical density of the flowing liquid on the measurement error of its refractive index. J. Phys. Conf. Ser. 2019, 1400, 066029. [Google Scholar] [CrossRef]
- Li, C.; Bai, G.; Zhang, Y.; Zhang, M.; Jian, A. Optofluidics refractometers. Micromachines 2018, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Liu, I.-C.; Chen, P.-C.; Chau, L.-K.; Chang, G.-E. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing. Opt. Express 2018, 26, 273–283. [Google Scholar] [CrossRef] [PubMed]
T, K | Refractometer Type | |
---|---|---|
The Refractometer Developed by Us | Abbe Refractometer (NAR-2T UH) | |
287.3 ± 0.1 | 1.3605 ± 0.0004 | 1.3602 ± 0.0002 |
290.2 ± 0.1 | 1.3603 ± 0.0004 | 1.3599 ± 0.0002 |
293.1 ±0.1 | 1.3592 ± 0.0004 | 1.3590 ± 0.0002 |
295.2 ± 0.1 | 1.3586 ± 0.0004 | 1.3583 ± 0.0002 |
300.2 ± 0.1 | 1.3571 ± 0.0004 | 1.3568 ± 0.0002 |
303.1 ± 0.1 | 1.3559 ± 0.0004 | 1.3557 ± 0.0002 |
T, K | Refractometer Type | |
---|---|---|
The Refractometer Developed by Us | Abbe Refractometer (NAR-2T UH) | |
285.1 ± 0.1 | 1.4707 ± 0.0004 | 1.4703 ± 0.0002 |
287.2 ± 0.1 | 1.4701 ± 0.0004 | 1.4699 ± 0.0002 |
291.3 ± 0.1 | 1.4685 ± 0.0004 | 1.4682 ± 0.0002 |
295.2 ± 0.1 | 1.4669 ± 0.0004 | 1.4665 ± 0.0002 |
299.3 ± 0.1 | 1.4654 ± 0.0004 | 1.4650 ± 0.0002 |
303.2 ± 0.1 | 1.4640 ± 0.0004 | 1.4637 ± 0.0002 |
307.2 ± 0.1 | 1.4625 ± 0.0004 | 1.4621 ± 0.0002 |
The Medium | ρ, gr/cm3 |
---|---|
Gasoline brand Ai—95 | 0.7401 |
Sraight-run aviation kerosene | 0.7451 |
Gasoline brand Ai—92 | 0.7502 |
Gasoline brand Ai—80 | 0.7197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davydov, V.; Vakorina, D.; Provodin, D.; Ryabogina, N.; Stepanenkov, G. New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures. Energies 2023, 16, 2529. https://doi.org/10.3390/en16062529
Davydov V, Vakorina D, Provodin D, Ryabogina N, Stepanenkov G. New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures. Energies. 2023; 16(6):2529. https://doi.org/10.3390/en16062529
Chicago/Turabian StyleDavydov, Vadim, Darya Vakorina, Daniil Provodin, Natalya Ryabogina, and Gregory Stepanenkov. 2023. "New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures" Energies 16, no. 6: 2529. https://doi.org/10.3390/en16062529
APA StyleDavydov, V., Vakorina, D., Provodin, D., Ryabogina, N., & Stepanenkov, G. (2023). New Method for State Express Control of Unstable Hydrocarbon Media and Their Mixtures. Energies, 16(6), 2529. https://doi.org/10.3390/en16062529