Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load
Abstract
:1. Introduction
2. Thermodynamic Model and Assumptions
2.1. Turbine
- Friction and aerodynamic losses in the main gas path, quantified by turbine polytropic efficiency (ηy,t);
- Throttling of cooling air from its supply pressure to the local pressure;
- Irreversible heat transfer from gas to coolant, followed by mixing of coolant and gas: this mixing process causes further heat transfer irreversibility in bringing the mixture to a common temperature, as well as an irreversible loss of stagnation pressure to accelerate the coolant to the main flow velocity.
2.2. Recuperator
2.3. CO2 Compression
- Intercooled two-stage compression up to 80 bar, i.e., above the critical point;
- Export of excess CO2 amounting to 3% of the total recycle flow (please note that sink (12) and source (14) ensure compliance with the mass balance);
- Cooling of the sCO2 stream to near ambient temperature, so density is raised by a factor of 5, thus reaching approximately 850 kg/m3 at the inlet of the dense phase pump;
- Final compression to about 300 bar by means of two pumps connected in parallel to mimic the “recycle pump” and the “oxidant pump” of Figure 1.
2.4. ASU and Combustor
3. Model Validation and Sensitivity Analysis
3.1. Base-Case Model Validation
3.2. Sensitivity Analysis
3.2.1. Turbine Inlet Temperature
- Increase in the heat transfer irreversibility in the recuperator: the heat transfer through the heat exchanger (36), i.e., the first through which exhaust gases pass, is reduced, thus lowering ηel,n, in accordance with [26].
- Increase of the turbine cooling flow rate: different from what is specified in [26], TIT augmentation was achieved by increasing the fuel mass flow rate at a constant recycling flow rate. Consequently, TIT grows with TOT and with coolant and recirculated CO2 temperature. Although this latter effect could be beneficial to cycle efficiency, a higher amount of coolant is required to maintain the desired metal temperature. As discussed by El-Masri [30,31,32], the larger the coolant flow, the higher the thermo-fluid dynamic losses during the expansion phase, with consequent reduction in ηel,n.
3.2.2. Turbine Inlet Pressure
3.2.3. Turbine Outlet Pressure
3.2.4. Turbomachinery Efficiency
3.2.5. ASU Consumption
4. Cycle Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASU | air separation unit |
CCS | carbon capture and storage |
cp | specific heat capacity at constant pressure |
cs | cooled surface interval |
h | enthalpy |
HX | heat exchanger |
LHV | lower heating value |
m | mass flow rate |
NG | natural gas |
NGCC | natural gas combined cycle |
P | power |
p | pressure |
pp | percentage points |
s | supercritical |
T | temperature |
Th | thickness parameter |
th | coating thickness |
TBC | thermal barrier coating |
TFX | Thermoflex predictions |
TIP | turbine inlet pressure |
TIT | turbine inlet temperature |
TOP | turbine outlet pressure |
TOT | turbine outlet temperature |
W | specific work |
z | exponent |
α | coefficient |
ϕ | cooling effectiveness |
γ | ratio of specific heat |
η | efficiency |
λ | thermal conductivity |
μ | coefficient |
Subscripts | |
c | compressor |
cf | coolant flow |
el | electric |
g | gas |
in | inlet |
is | isentropic |
max | maximum |
n | net |
opt | optimal |
out | outlet |
t | turbine |
th | thermal |
TT | total-to-total |
w | wall |
y | polytropic |
Appendix A
Stream Number | Temperature (°C) | Pressure (bar) |
---|---|---|
1 | 727 | 30 |
2 | 43 | 29 |
3 | 17 | 29 |
4 | 23 | 100 |
5 | 23 | 100 |
6 | 23 | 100 |
7 | 16 | 100 |
8 | 16 | 100 |
9 | 717 | 312 |
10 | 16 | 100 |
11 | 16 | 100 |
12 | 2 | 99 |
13 | 717 | 310 |
14 | 266 | 330 |
Base Case | Optimized Case | |||||||
---|---|---|---|---|---|---|---|---|
Stream Number | p (bar) | T (°C) | h (kJ/kg) | m (kg/s) | p (bar) | T (°C) | h (kJ/kg) | m (kg/s) |
1 | 212.1 | 1056.1 | 1209.8 | 882 | 218.1 | 1099.4 | 1270.3 | 873.6 |
2 | 154.3 | 974.3 | 1099.4 | 911.7 | 155.8 | 1009.1 | 1147.3 | 909.4 |
3 | 112.2 | 907.3 | 1009.9 | 930 | 110.5 | 935.5 | 1048.2 | 930.8 |
4 | 81.6 | 849.7 | 934.3 | 939.2 | 78.34 | 872.5 | 965 | 941.5 |
5 | 59.35 | 800.2 | 870.4 | 939.2 | 55.56 | 818.3 | 894.7 | 941.5 |
6 | 43.16 | 752.5 | 809.6 | 939.2 | 39.4 | 766.2 | 828 | 941.5 |
7 | 291.7 | 1158 | 1351.7 | 838.5 | 303.2 | 1193.8 | 1402.7 | 839.9 |
8 | 297.5 | 144 | −27.81 | 881.7 | 309.2 | 204 | 68.34 | 881.7 |
9 | 297.5 | 144 | −27.81 | 781.1 | 309.2 | 204 | 68.34 | 780.1 |
10 | 29 | 17 | −103 | 939.2 | 28 | 17 | −104.2 | 941.5 |
11 | 29 | 17 | −39.52 | 913.7 | 28 | 17 | −38.1 | 915 |
13 | 29 | 17 | −39.58 | 909 | 28 | 17 | −38.16 | 909 |
14 | 57.13 | 72.33 | −2.908 | 909 | 49.45 | 62.82 | −7.55 | 909 |
15 | 56.01 | 19.54 | −94 | 909 | 48.48 | 19.54 | −70.72 | 909 |
16 | 80 | 45.68 | −81.39 | 909 | 78 | 57.13 | −50.37 | 909 |
17 | 80 | 45.68 | −81.39 | 27.27 | 78 | 57.13 | −50.37 | 27.27 |
18 | 80 | 45.68 | −81.39 | 881.7 | 78 | 57.13 | −50.37 | 881.7 |
20 | 78.43 | 16 | −270 | 690.7 | 76.47 | 16 | −269.6 | 690.7 |
21 | 78.43 | 16 | −270 | 191.1 | 76.47 | 16 | −269.6 | 191.1 |
22 | 297.5 | 97.59 | 32.62 | 46.01 | 309.2 | 97.15 | 31.34 | 47.88 |
23 | 291.7 | 700.2 | 714.8 | 781.1 | 303.2 | 722.2 | 742.8 | 780.1 |
27 | 303.5 | 38.6 | −238.5 | 881.7 | 315.4 | 116.9 | −83.47 | 881.7 |
28 | 309.5 | 37.26 | −241.3 | 881.7 | 321.7 | 38.54 | −239.2 | 881.7 |
30 | 309.5 | 37.26 | −241.3 | 690.7 | 321.7 | 38.54 | −239.2 | 690.7 |
31 | 70 | 25 | 11.46 | 49,976 | 70 | 25 | 11.93 | 49,976 |
32 | 297.5 | 139 | 11.46 | 50,205 | 309.2 | 141.8 | 11.93 | 50,212 |
33 | 297.5 | 144 | −27.81 | 21.65 | 309.2 | 204 | 68.34 | 18.55 |
34 | 31.39 | 706.1 | 750.9 | 939.2 | 30.31 | 727.5 | 778.8 | 941.5 |
35 | 309.5 | 37.26 | −241.3 | 191.1 | 321.7 | 38.54 | −239.2 | 191.1 |
36 | 297.5 | 144 | −27.81 | 21.85 | 309.2 | 204 | 68.34 | 15.17 |
37 | 297.5 | 144 | −27.81 | 13.39 | 309.2 | 204 | 68.34 | 17.86 |
38 | 29.58 | 39.26 | −75.3 | 939.2 | 28.56 | 40.54 | −74.98 | 941.5 |
39 | 297.5 | 144 | −27.81 | 16.25 | 309.2 | 204 | 68.34 | 17.97 |
40 | 30.17 | 41.75 | −72.68 | 939.2 | 29.13 | 118.9 | 70.83 | 941.5 |
41 | 30.78 | 172.3 | 127.1 | 939.2 | 29.71 | 253 | 214.4 | 941.5 |
42 | 297.5 | 144 | −27.81 | 11.09 | 309.2 | 204 | 68.34 | 11.17 |
43 | 297.5 | 144 | −27.81 | 16.45 | 309.2 | 204 | 68.34 | 20.95 |
44 | 297.5 | 144 | −27.81 | 7.215 | 309.2 | 204 | 68.34 | 10.2 |
45 | 297.5 | 144 | −27.81 | 6.174 | 309.2 | 204 | 68.34 | 5.976 |
46 | 297.5 | 144 | −27.81 | 3.058 | 309.2 | 204 | 68.34 | 4.776 |
48 | 297.5 | 144 | −27.81 | 40.92 | 309.2 | 204 | 68.34 | 49.98 |
49 | 297.5 | 144 | −27.81 | 59.75 | 309.2 | 204 | 68.34 | 51.7 |
References
- IEA. Global Energy Review: CO2 Emissions in 2021—Global Emissions Rebound Sharply to Highest Ever Level; International Renewable Energy Agency: Paris, France, 2022. [Google Scholar]
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Zimm, C.; Rogelj, J.; Creutzig, F.; Ürge-Vorsatz, D.; et al. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Global Electricity Review 2022. Available online: https://ember-climate.org/insights/research/global-electricity-review-2022/ (accessed on 11 January 2023).
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Nuclear Energy and Sustainable Development. Available online: https://www.world-nuclear.org/information-library/energy-and-the-environment/nuclear-energy-and-sustainable-development.aspx (accessed on 11 January 2023).
- Lau, H.C.; Ramakrishna, S.; Zhang, K.; Radhamani, A.V. The Role of Carbon Capture and Storage in the Energy Transition. Energy Fuels 2021, 35, 7364–7386. [Google Scholar] [CrossRef]
- UNECE. How Natural Gas Can Support the Uptake of Renewable Energy; ECE ENERGY SERIES No. 66; United Nations: New York, NY, USA, 2019; ISBN 978-92-1-117229-4. [Google Scholar]
- Sifat, N.S.; Haseli, Y. A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies 2019, 12, 4143. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Advanced Technologies for Gas Turbines; The National Academies Press: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Allam, R.J.; Palmer, M.R.; Brown, G.W., Jr. System and Method for High Efficiency Power Generation Using a Carbon Dioxide Circulating Working Fluid. Assignee: 8 Rivers Capital LLC Palmer Labs LLC. U.S. Patent US8596075B2, 3 December 2013. [Google Scholar]
- Rogalev, A.; Rogalev, N.; Kindra, V.; Zlyvko, O.; Vegera, A. A Study of Low-Potential Heat Utilization Methods for Oxy-Fuel Combustion Power Cycles. Energies 2021, 14, 3364. [Google Scholar] [CrossRef]
- Crespi, F.; Gavagnin, G.; Sánchez, D.; Martínez, G.S. Analysis of the thermodynamic potential of supercritical carbon dioxide cycles: A systematic approach. J. Eng. Gas Turbines Power 2018, 140, 051701. [Google Scholar] [CrossRef]
- Isles, J. Gearing up for a new supercritical CO2 power cycle system. Gas Turbine World 2014, 44, 14–18. [Google Scholar]
- NET Power Consolidates Business to Gear Up for Allam Cycle Power Plant Deployment. Available online: https://www.powermag.com/net-power-consolidates-business-to-gear-up-for-allam-cycle-power-plant-deployment/ (accessed on 12 January 2023).
- Allam, R.J.; Palmer, M.R.; Brown, G.W., Jr.; Fetvedt, J.; Freed, D.; Nomoto, H.; Jones, C., Jr. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide. Energy Procedia 2013, 37, 1135–1149. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, L.; Ferrari, N.; Chiesa, P.; Martelli, E.; Romano, M. Oxy-Combustion Turbine Power Plants; IEAGHG report 2015/05; IEA: Paris, France, 2015. [Google Scholar]
- Allam, R.J.; Fetvedt, J.E.; Forrest, B.A.; Freed, D.A. The oxy-fuel, supercritical CO2 Allam Cycle: New cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions. In Proceedings of the ASME Turbo Expo 2014: Turbomachinery Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Freed, D.; Forrest, B.; Patel, T.; Duffney, J. A Gas Turbine-driven, Integrally Gear Compressor solution: Enabling the Carbon Capture of the sCO2 Allam Cycle Power Plant. In Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, Pennsylvania, 27–29 March 2018. [Google Scholar]
- Iwai, Y.; Itoh, M.; Morisawa, Y.; Suzuki, S.; Cusano, D.; Harris, M. Development approach to the combustor of gas turbine for oxy-fuel, supercritical CO2 cycle. In Proceedings of the ASME Turbo Expo 2015: Turbomachinery Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Nomoto, H.; Itoh, M.; Brown, W.; Fetvedt, J.; Sato, I. Cycle and Turbine Development for the Supercritical Carbon Dioxide Allam Cycle. In Proceedings of the International Conference on Power Engineering, Yokohama, Japan, 30 November–4 December 2015. [Google Scholar]
- Allam, R.; Martin, S.; Forrest, B.; Fetvedt, J.; Lu, X.; Freed, D.; Brown, G.W.; Sasaki, T.; Itoh, M.; Manning, J. Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture. Energy Procedia 2017, 114, 5948–5966. [Google Scholar] [CrossRef]
- White, C.W.; Weiland, N.T. Evaluation of Property Methods for Modeling Direct-Supercritical CO2 Power Cycles. J. Eng. Gas Turbines Power 2018, 140, 011701. [Google Scholar] [CrossRef] [Green Version]
- Haseli, Y. Analytical Formulation of the Performance of the Allam Power Cycle. In Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Virtual, 21–25 September 2020. [Google Scholar]
- Haseli, Y. Efficiency Maximization of Allam Cycle at a Given Combustion Temperature. In Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, Virtual, 7–11 June 2021. [Google Scholar]
- Haseli, Y. Approximate Relations for Optimum Turbine Operating Parameters in Allam Cycle. J. Eng. Gas Turbines Power 2021, 143, 064501. [Google Scholar] [CrossRef]
- Scaccabarozzi, R.; Gatti, M.; Martelli, E. Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle. Appl. Energy 2016, 178, 505–526. [Google Scholar] [CrossRef]
- Wimmer, K.; Sanz, W. Optimization and comparison of the two promising oxy-combustion cycles NET Power cycle and Graz Cycle. Int. J. Greenh. Gas Control 2020, 99, 103055. [Google Scholar] [CrossRef]
- Mitchell, C.; Avagyan, V.; Chalmers, H.; Lucquiaud, M. An initial assessment of the value of Allam Cycle power plants with liquid oxygen storage in future GB electricity system. Int. J. Greenh. Gas Control 2019, 87, 1–18. [Google Scholar] [CrossRef]
- Haseli, Y.; Sifat, N. Performance modeling of Allam cycle integrated with a cryogenic air separation process. Comput. Chem. Eng. 2021, 148, 107263. [Google Scholar] [CrossRef]
- Rogalev, A.; Rogalev, N.; Kindra, V.; Komarov, I.; Zlyvko, O. Research and Development of the Oxy-Fuel Combustion Power Cycles with CO2 Recirculation. Energies 2021, 14, 2927. [Google Scholar] [CrossRef]
- Kindra, V.; Rogalev, A.; Lisin, E.; Osipov, S.; Zlyvko, O. Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions. Energies 2021, 14, 5358. [Google Scholar] [CrossRef]
- El-Masri, M.A. On Thermodynamics of Gas-Turbine Cycles: Part 2—A Model for Expansion in Cooled Turbines. J. Eng. Gas Turbines Power 1986, 108, 151–159. [Google Scholar] [CrossRef]
- El-Masri, M.A. GASCAN—An Interactive Code for Thermal Analysis of Gas Turbine Systems. J. Eng. Gas Turbines Power 1988, 110, 201–209. [Google Scholar] [CrossRef]
- El-Masri, M.A. Design of Gas Turbine Combined Cycles and Cogeneration Systems; Thermoflow Inc.: Southborough, MA, USA, 2009; pp. 5.1–5.16. [Google Scholar]
- Kolmetz Handbook of Process Equiment Design-Air separation units Selection, Sizing and Troubleshooting. Available online: https://www.klmtechgroup.com/PDF/EDG-SPE/ENGINEERING-DESIGN-GUIDELINES-air-separation-unit-Rev1.2web.pdf (accessed on 25 January 2023).
α | z | th/cs | λTBC (kW/(m °C)) | ||
---|---|---|---|---|---|
Stator-convective cooling | 0.064 | 1.25 | 0.85 | 0.008 | 0.002 |
Rotor-convective cooling | 0.0576 | 1.25 | 0.85 | 0.008 | 0.002 |
Stator-film cooling | 0.05 | 0.9 | 1 | 0.008 | 0.002 |
Rotor-film cooling | 0.04 | 0.9 | 1 | 0.008 | 0.002 |
Parameter | TFX | Data from [6] | ∆% |
---|---|---|---|
Turbine inlet pressure (bar) | 292 | 300 | 2.67 |
Turbine inlet temperature (°C) | 1158 | 1158 | - |
Turbine outlet pressure (bar) | 31 | 30 | 3.30 |
Turbine outlet temperature (°C) | 706 | 727 | 2.89 |
Minimum cycle temperature (°C) | 17 | 17 | - |
Turbine coolant mass fraction (%) | 11 | 11.3 | 0.30 |
Turbine exhaust flow (kg/s) | 939 | 923 | 1.73 |
ASU penalty (%LHV) | 10.64 | 10.95 | 0.31 |
Parameter | Base Case | Optimized Case | ∆% |
---|---|---|---|
Turbine inlet pressure (bar) | 292 | 303 | 3.8 |
Turbine inlet temperature (°C) | 1158 | 1194 | 3.1 |
Turbine outlet pressure (bar) | 31 | 30 | −3.2 |
Turbine outlet temperature (°C) | 706 | 728 | 3.1 |
Turbine coolant mass fraction (%) | 11 | 12 | -- |
Turbine exhaust flow (kg/s) | 939 | 942 | 0.3 |
Expansion power (MW) | 421 | 447 | 6.2 |
CO2 compression power (MW) | 70 | 73 | 4.3 |
Fuel input (MW) | 574 | 597 | 4.0 |
Recuperator heat transfer (MW) | 768 | 797 | 3.8 |
ASU penalty (%LHV) | 10.64 | 10.66 | 0.2 |
Fuel compressor power (MW) | 3.6 | 3.9 | 8.3 |
Net electric efficiency (%) | 49 | 50.4 | -- |
Net power output (MW) | 281 | 301 | 7.1 |
Net specific work (kJ/kg) | 335 | 358 | 6.9 |
Minimum cycle temperature (°C) | 17 | 17 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colleoni, L.; Sindoni, A.; Ravelli, S. Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load. Energies 2023, 16, 2597. https://doi.org/10.3390/en16062597
Colleoni L, Sindoni A, Ravelli S. Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load. Energies. 2023; 16(6):2597. https://doi.org/10.3390/en16062597
Chicago/Turabian StyleColleoni, Lorenzo, Alessio Sindoni, and Silvia Ravelli. 2023. "Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load" Energies 16, no. 6: 2597. https://doi.org/10.3390/en16062597
APA StyleColleoni, L., Sindoni, A., & Ravelli, S. (2023). Comprehensive Thermodynamic Evaluation of the Natural Gas-Fired Allam Cycle at Full Load. Energies, 16(6), 2597. https://doi.org/10.3390/en16062597