Advanced Torque Ripple Minimization of Synchronous Reluctance Machine for Electric Vehicle Application
Abstract
:1. Introduction
2. SynRM Modeling and Description of the Velocity/Currents Cascade Control Strategy
2.1. SynRM Modeling
2.1.1. Electric Model
- -
- Magnetic materials are isotropic and non-saturable.
- -
- The hysteresis effect and iron losses are neglected.
- -
- The inductance variations are sinusoidal (first harmonic hypothesis).
- -
- The capacitive coupling between the machine’s windings is ignored.
- : the stator voltage vector;
- : the stator current vector;
- : the vector of the total fluxes through the windings ;
- : the resistance of a stator phase;
- and p: the mechanical position and the number of pole pairs, respectively;
- : the stator inductance matrix given by [38]
- and are the stator voltage in the d and q axes.
- is the machine velocity.
- , , and are the total stator and flux linkage in the d and q axes given by
- , are the d and q-axes stator inductances.
2.1.2. Electromechanical Model
- : rotational velocity of the machine, in rad/s.
- : electromagnetic torque produced by the machine, in Nm.
- : load torque, in Nm.
- : viscous friction coefficient, in .
2.1.3. Vehicle Load Torque Modeling
- : the slope force or tractive force that is required to drive the vehicle up.
- : the aerodynamic force created by the friction of the vehicle’s body moving through the air.
- : the rolling resistance force.
- : the resistance force exerted by the vehicle weight as it goes up and down a hill.
- M: the vehicle mass.
- g: the acceleration due to gravity on Earth.
- : the density of the air, in kg/m.
- : the drag coefficient.
- : frontal cross-sectional area, in m.
- : rolling resistance value, in N.
2.2. SynRM Cascade Control Strategy
3. Torque Ripple Minimization by Using the Currents References Calculation
3.1. Conventional Field-Oriented Control (FOC)
3.2. Maximum Torque per Ampere (MTPA)
3.3. Optimal Currents Calculations
- : zero sequence current assumed to be null;
- : Park’s matrix;
- : rotation matrix;
- : Concordia matrix.
3.4. Simulation Results of Different Techniques of Current Calculation with PI Regulators
3.4.1. Simulation with the Conventional Field-Oriented Control
- -
- : the maximum torque value.
- -
- : the minimum torque value.
- -
- : the average torque value.
3.4.2. Simulation with the Maximum Torque per Ampere Method
3.4.3. Simulation with the Optimal Currents Calculations Method (OCCM)
4. Torque Ripple Minimization by Using Advanced Control Techniques
4.1. Sliding Mode Control
4.1.1. Synthesis of a Conventional Sliding Mode for Velocity Controller
4.1.2. Synthesis of a Conventional Sliding Mode for Currents Controllers
4.1.3. Simulation Results
4.2. Higher-Order Sliding Mode Control
4.2.1. Synthesis of the Velocity Controller by Super-Twisting Algorithm
4.2.2. Synthesis of Current Controllers by Super-Twisting Algorithm
4.2.3. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EV | Electric vehicle |
SynRM | Synchronous reluctance machines |
PMSM | Permanent magnet synchronous machine |
WRSM | Wound rotor synchronous machine |
REMs | Rare-earth materials |
FOC | Field-oriented control |
DFOC | Direct field-oriented control |
IFOC | Indirect field-oriented control |
MTPA | Maximum torque per ampere |
OCCM | Optimum current calculation method |
PI | Proportional integral |
SMC | Sliding mode control |
STA | Super-twisting algorithm |
, , | Stator flux linkage in the d and q axes |
, | Stator current in the d and q axes |
, | Voltages in the d and q axes |
, | Inductance in the d and q axes |
Stator inductance of phase i | |
Mutual inductance between phases i and j | |
Rotational velocity of the machine, in rad/s. | |
Rotational velocity reference of the machine, in rad/s. | |
Electromagnetic torque produced by the machine, in Nm | |
Load torque, in Nm | |
Viscous friction coefficient, in Ns/m | |
The slope force or tractive force that is required to drive the vehicle up | |
Aerodynamic force created by the friction of the vehicle’s body moving through the air | |
Rolling resistance force | |
Resistance force exerted by the vehicle weight as it goes up and down a hill | |
M | Vehicle mass |
g | The acceleration due to gravity on Earth |
Density of the air, in kg/m | |
Drag coefficient | |
Frontal cross-sectional area, in m | |
Rolling resistance opposing the slope | |
, | Reference current in the d and q axis |
Lagrangian function used to optimize the currents |
Appendix A
Parameter | Value |
---|---|
Rated power | kW |
Number of pole pairs | |
Rated RMS current | I = 3 A |
Power supply voltage | V |
Phase resistance | Ohm |
Direct inductance | H |
Quadrature inductance | H |
Rated speed | 1500 r.p.m |
Maximum velocity | 1800 r.p.m |
Torque at rated velocity | 7 Nm |
Torque at maximum velocity | N m |
Machine inertia | kg · m |
Viscous friction coefficient | f = 0.01 Nm/s |
References
- Ashok, B.; Chidambaram, K.; Muhammad Usman, K.; Rajasekar, V.; Deepak, C.; Ramesh, R.; Narendhra, T.; Chellappan, K. Transition to Electric Mobility in India: Barriers Exploration and Pathways to Powertrain Shift through MCDM Approach. J. Inst. Eng. (India) Ser. 2022, 103, 1251–1277. [Google Scholar] [CrossRef]
- Upadhyay, A.; Dalal, M.; Sanghvi, N.; Nair, S.; Scurtu, I.C.; Dragan, C. Electric Vehicles over Contemporary Combustion Engines. Iop Conf. Ser. Earth Environ. Sci. 2021, 635, 012004. [Google Scholar] [CrossRef]
- El Hadraoui, H.; Zegrari, M.; Chebak, A.; Laayati, O.; Guennouni, N. A Multi-Criteria Analysis and Trends of Electric Motors for Electric Vehicles. World Electr. Veh. J. 2022, 13, 65. [Google Scholar] [CrossRef]
- Rodríguez, E.; Rivera, N.; Fernández-González, A.; Pérez, T.; González, R.; Battez, A.H. Electrical compatibility of transmission fluids in electric vehicles. Tribol. Int. 2022, 171, 107544. [Google Scholar] [CrossRef]
- Mohammad, K.S.; Jaber, A.S. Comparison of electric motors used in electric vehicle propulsion system. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 11–19. [Google Scholar] [CrossRef]
- Gielen, D.; Lyons, M. Critical Materials for the Energy Transition: Rare Earth Elements; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022; Volume 48. [Google Scholar]
- Luo, X.; Qiu, Q.; Jing, L.; Zhang, D.; Huang, P.; Jia, S. Heavy Rare Earth Doped Nd-Fe-B Permanent Magnetic Material Performance Enhancement Methods and Their Motor Application Research. In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nanjing, China, 27–29 May 2022; IEEE: New York, NY, USA, 2022; pp. 3121–3126. [Google Scholar]
- Alves Dias, P.; Bobba, S.; Carrara, S.; Plazzotta, B. The Role of Rare Earth Elements in Wind Energy and Electric Mobility; European Commission: Luxembourg, 2020. [Google Scholar]
- Singh, B.; Chowdhury, A.; Dixit, A.K.; Mishra, V.; Jain, A.; Kumar, N. Investigation on electric vehicle motor challenges, solutions and control strategies. J. Inf. Optim. Sci. 2022, 43, 185–191. [Google Scholar] [CrossRef]
- Maciejewska, M.; Fuć, P.; Kardach, M. Analysis of electric motor vehicles market. Combust. Engines 2019, 58, 169–175. [Google Scholar] [CrossRef]
- Heidari, H.; Rassõlkin, A.; Kallaste, A.; Vaimann, T.; Andriushchenko, E.; Belahcen, A.; Lukichev, D.V. A review of synchronous reluctance motor-drive advancements. Sustainability 2021, 13, 729. [Google Scholar] [CrossRef]
- Mohanarajah, T.; Rizk, J.; Hellany, A.; Nagrial, M.; Klyavlin, A. Torque Ripple Improvement in Synchronous Reluctance Machines. In Proceedings of the 2018 2nd International Conference On Electrical Engineering (EECon), Colombo, Sri Lanka, 28 September 2018; pp. 44–50. [Google Scholar] [CrossRef]
- Muteba, M.; Twala, B.; Nicolae, D.V. Torque ripple minimization in synchronous reluctance motor using a sinusoidal rotor lamination shape. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 1–4 September 2016; pp. 606–611. [Google Scholar] [CrossRef]
- Liang, J.; Dong, Y.; Sun, H.; Liu, R.; Zhu, G. Flux-Barrier Design and Torque Performance Analysis of Synchronous Reluctance Motor with Low Torque Ripple. Appl. Sci. 2022, 12, 3958. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Qu, R. Design of synchronous reluctance motors with asymmetrical flux barriers for torque ripple reduction. In Proceedings of the 2021 IEEE 4th Student Conference on Electric Machines and Systems (SCEMS), Virtually, 2–3 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Wu, H.; Depernet, D.; Lanfranchi, V.; Benkara, K.E.K.; Rasid, M.A.H. A novel and simple torque ripple minimization method of synchronous reluctance machine based on torque function method. IEEE Trans. Ind. Electron. 2020, 68, 92–102. [Google Scholar] [CrossRef]
- Singh, A.K.; Raja, R.; Sebastian, T.; Rajashekara, K. Torque ripple minimization control strategy in synchronous reluctance machines. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–6. [Google Scholar]
- Abou-ElSoud, A.M.; Nada, A.S.A.; Aziz, A.A.M.A.; Sabry, W. Synchronous Reluctance Motors Torque Ripples Reduction using Feedback Cascaded PII Controller. In Proceedings of the 2022 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 13 December 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Moghaddam, H.A.; Vahedi, A.; Ebrahimi, S.H. Design Optimization of Transversely Laminated Synchronous Reluctance Machine for Flywheel Energy Storage System Using Response Surface Methodology. IEEE Trans. Ind. Electron. 2017, 64, 9748–9757. [Google Scholar] [CrossRef]
- Yan, D.; Xia, C.; Guo, L.; Wang, H.; Shi, T. Design and Analysis for Torque Ripple Reduction in Synchronous Reluctance Machine. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Gallicchio, G.; Palmieri, M.; Cupertino, F.; Di Nardo, M.; Degano, M.; Gerada, C. Design Methodologies of High Speed Synchronous Reluctance Machines. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 448–454. [Google Scholar] [CrossRef]
- Donaghy-Spargo, C.M. Electromagnetic–Mechanical Design of Synchronous Reluctance Rotors With Fine Features. IEEE Trans. Magn. 2017, 53, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, N.; Degano, M.; Fornasiero, E. Sensitivity Analysis of Torque Ripple Reduction of Synchronous Reluctance and Interior PM Motors. IEEE Trans. Ind. Appl. 2015, 51, 187–195. [Google Scholar] [CrossRef]
- Bonthu, S.S.R.; Tarek, M.T.B.; Choi, S. Optimal Torque Ripple Reduction Technique for Outer Rotor Permanent Magnet Synchronous Reluctance Motors. IEEE Trans. Energy Convers. 2018, 33, 1184–1192. [Google Scholar] [CrossRef]
- Liu, H.C.; Kim, I.G.; Oh, Y.J.; Lee, J.; Go, S.C. Design of Permanent Magnet-Assisted Synchronous Reluctance Motor for Maximized Back-EMF and Torque Ripple Reduction. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Huynh, T.A.; Hsieh, M.F.; Shih, K.J.; Kuo, H.F. An Investigation Into the Effect of PM Arrangements on PMa-SynRM Performance. IEEE Trans. Ind. Appl. 2018, 54, 5856–5868. [Google Scholar] [CrossRef]
- Zhang, X.; Foo, G.H.B.; Vilathgamuwa, D.M.; Maskell, D.L. An Improved Robust Field-Weakeaning Algorithm for Direct-Torque-Controlled Synchronous-Reluctance-Motor Drives. IEEE Trans. Ind. Electron. 2015, 62, 3255–3264. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X. A Duty Ratio Control Strategy to Reduce Both Torque and Flux Ripples of DTC for Permanent Magnet Synchronous Machines. IEEE Access 2019, 7, 11820–11828. [Google Scholar] [CrossRef]
- Mohan, D.; Zhang, X.; Beng Foo, G.H. Generalized DTC Strategy for Multilevel Inverter Fed IPMSMs With Constant Inverter Switching Frequency and Reduced Torque Ripples. IEEE Trans. Energy Convers. 2017, 32, 1031–1041. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; Zhang, G.; Xu, D.; Xiao, D. Saliency-Based Sensorless Control for SynRM Drives With Suppression of Position Estimation Error. IEEE Trans. Ind. Electron. 2019, 66, 5839–5849. [Google Scholar] [CrossRef]
- Ortombina, L.; Tinazzi, F.; Zigliotto, M. Adaptive Maximum Torque per Ampere Control of Synchronous Reluctance Motors by Radial Basis Function Networks. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2531–2539. [Google Scholar] [CrossRef]
- Truong, P.H.; Flieller, D.; Nguyen, N.K.; Mercklé, J.; Sturtzer, G. Torque ripple minimization in non-sinusoidal synchronous reluctance motors based on artificial neural networks. Electr. Power Syst. Res. 2016, 140, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Raja, R.; Sebastian, T.; Rajashekara, K. Torque Ripple Minimization Control Strategy in Synchronous Reluctance Machines. IEEE Open J. Ind. Appl. 2022, 3, 141–151. [Google Scholar] [CrossRef]
- Moghaddam, R.R.; Magnussen, F.; Sadarangani, C. A FEM1 investigation on the Synchronous Reluctance Machine rotor geometry with just one flux barrier as a guide toward the optimal barrier’s shape. In IEEE Eurocon 2009; IEEE: New York, NY, USA, 2009; pp. 663–670. [Google Scholar]
- Agrebi, Y.; Triki, M.; Koubaa, Y.; Boussak, M. Rotor speed estimation for indirect stator flux oriented induction motor drive based on MRAS scheme JES. 2007. Available online: https://www.researchgate.net/profile/Youssef-Agrebi/publication/274892152_Rotor_resistance_estimation_for_indirect_stator_oriented_induction_motor_drive_based_on_MRAS_scheme/links/5a82c7860f7e9bda869fb0ce/Rotor-resistance-estimation-for-indirect-stator-oriented-induction-motor-drive-based-on-MRAS-scheme.pdf (accessed on 9 February 2023).
- Xi, T.; Kehne, S.; Fey, M.; Brecher, C. Application of Optimal Control for Synchronous Reluctance Machines in Feed Drives of Machine Tools. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 20–22 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Lubin, T. Modélisation et Commande de la Machine Synchrone à Réluctance Variable: Prise en Compte de la Saturation Magnétique. Ph.D. Thesis, Université Henri Poincaré, Nancy, France, 2003. [Google Scholar]
- Im, J.B.; Kim, W.; Kim, K.; Jin, C.S.; Choi, J.H.; Lee, J. Inductance Calculation Method of Synchronous Reluctance Motor Including Iron Loss and Cross Magnetic Saturation. IEEE Trans. Magn. 2009, 45, 2803–2806. [Google Scholar] [CrossRef]
- Dilys, J.; Baskys, A. Self-identification of permanent magnet synchronous motor inductance for efficient sensorless control. In Proceedings of the 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 27 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Dursun, D.C.; Yildiz, A.; Polat, M. Modeling of Synchronous Reluctance Motor and Open and Closed Loop Speed Control. In Proceedings of the 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 16–18 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Bao, C.; Chen, H.; Yang, C.; Zhong, J.; Gao, H.; Song, S. Synchronous reluctance motor flux linkage saturation modeling based on stationary identification and neural networks. In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Santos, J.; Andrade, D.; Viajante, G.; Freitas, M.; Bernadeli, V. Analysis and Mathematical Modeling Of The Synchronous Reluctance Motor. IEEE Lat. Am. Trans. 2015, 13, 3820–3825. [Google Scholar] [CrossRef]
- Hassan, M.R.M.; Mossa, M.A.; Dousoky, G.M. Evaluation of Electric Dynamic Performance of an Electric Vehicle System Using Different Control Techniques. Electronics 2021, 10, 2586. [Google Scholar] [CrossRef]
- Deuszkiewicz, P.; Radkowski, S. On-line condition monitoring of a power transmission unit of a rail vehicle. Mech. Syst. Signal Process. 2003, 17, 1321–1334. [Google Scholar] [CrossRef]
- Minakawa, M.; Nakahara, J.; Ninomiya, J.; Orimoto, Y. Method for measuring force transmitted from road surface to tires and its applications. Jsae Rev. 1999, 20, 479–485. [Google Scholar] [CrossRef]
- Liang, H.; To Chong, K.; Soo No, T.; Yi, S.Y. Vehicle longitudinal brake control using variable parameter sliding control. Control. Eng. Pract. 2003, 11, 403–411. [Google Scholar] [CrossRef]
- Saadi, Y.; Sehab, R.; Chaibet, A.; Boukhnifer, M.; Diallo, D. Performance Comparison between Conventional and Robust Control for the Powertrain of an Electric Vehicle Propelled by a Switched Reluctance Machine. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 14–17 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Adhavan, B.; Kuppuswamy, A.; Jayabaskaran, G.; Jagannathan, V. Field oriented control of Permanent Magnet Synchronous Motor (PMSM) using fuzzy logic controller. In Proceedings of the 2011 IEEE Recent Advances in Intelligent Computational Systems, Trivandrum, India, 22–24 September 2011; IEEE: New York, NY, USA, 2011; pp. 587–592. [Google Scholar]
- Diao, K.; Sun, X.; Bramerdorfer, G.; Cai, Y.; Lei, G.; Chen, L. Design optimization of switched reluctance machines for performance and reliability enhancements: A review. Renew. Sustain. Energy Rev. 2022, 168, 112785. [Google Scholar] [CrossRef]
- Truong, P.H.; Flieller, D.; Nguyen, N.K.; Mercklé, J.; Sturtzer, G. An investigation of Adaline for torque ripple minimization in Non-Sinusoidal Synchronous Reluctance Motors. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; IEEE: New York, NY, USA, 2013; pp. 2602–2607. [Google Scholar]
- Truong, P.H.; Flieller, D.; Nguyen, N.K.; Mercklé, J.; Dat, M.T. Optimal efficiency control of synchronous reluctance motors-based ANN considering cross magnetic saturation and iron losses. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; IEEE: New York, NY, USA, 2015; pp. 004690–004695. [Google Scholar]
- Utkin, V.; Lee, H. Chattering problem in sliding mode control systems. In Proceedings of the International Workshop on Variable Structure Systems, VSS’06, Alghero, Italy, 5–7 June 2006; IEEE: New York, NY, USA, 2006; pp. 346–350. [Google Scholar]
- Dong, L.; Nguang, S.K. Chapter 5—Sliding mode control for multiagent systems with continuously switching topologies based on polytopic model. In Consensus Tracking of Multi-Agent Systems with Switching Topologies; Dong, L., Nguang, S.K., Eds.; Emerging Methodologies and Applications in Modelling; Academic Press: Cambridge, MA, USA, 2020; pp. 87–105. [Google Scholar] [CrossRef]
- Shao, K.; Zheng, J.; Wang, H.; Wang, X.; Lu, R.; Man, Z. Tracking Control of a Linear Motor Positioner Based on Barrier Function Adaptive Sliding Mode. IEEE Trans. Ind. Inform. 2021, 17, 7479–7488. [Google Scholar] [CrossRef]
- Edwards, C.; Colet, E.F.; Fridman, L.; Colet, E.F.; Fridman, L.M. Advances in Variable Structure and Sliding Mode Control; Springer: Berlin/Heidelberg, Germany, 2006; Volume 334. [Google Scholar]
- Bandyopadhyay, B.; Deepak, F.; Kim, K.S. Sliding Mode Control Using Novel Sliding Surfaces; Springer: Berlin/Heidelberg, Germany, 2009; Volume 392. [Google Scholar]
- Saadi, Y.; Sehab, R.; Chaibet, A.; Boukhnifer, M.; Diallo, D. Sensorless control of switched reluctance motor for EV application using a sliding mode observer with unknown inputs. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 19–22 February 2018; pp. 516–521. [Google Scholar] [CrossRef] [Green Version]
- Koshkouei, A.J.; Burnham, K.J.; Zinober, A.S. Dynamic sliding mode control design. IEE-Proc.-Control. Theory Appl. 2005, 152, 392–396. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Utkin, V.I. Chattering suppression methods in sliding mode control systems. Annu. Rev. Control. 2007, 31, 179–188. [Google Scholar] [CrossRef]
- Dorel, L.; Levant, A. On chattering-free sliding-mode control. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; IEEE: New York, NY, USA, 2008; pp. 2196–2201. [Google Scholar]
- Levant, A. Sliding order and sliding accuracy in sliding mode control. Int. J. Control. 1993, 58, 1247–1263. [Google Scholar] [CrossRef]
- Barth, A.; Reichhartinger, M.; Reger, J.; Horn, M.; Wulff, K. Lyapunov-design for a super-twisting sliding-mode controller using the certainty-equivalence principle. IFAC-PapersOnLine 2015, 48, 860–865. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
FOC | MTPA | OCCM | ||||
---|---|---|---|---|---|---|
Without Load | With Load | Without Load | With Load | Without Load | With Load | |
At | ||||||
At |
PI | SMC | STA | ||||
---|---|---|---|---|---|---|
Without Load | With Load | Without Load | With Load | Without Load | With Load | |
At | ||||||
At |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aladetola, O.D.; Ouari, M.; Saadi, Y.; Mesbahi, T.; Boukhnifer, M.; Adjallah, K.H. Advanced Torque Ripple Minimization of Synchronous Reluctance Machine for Electric Vehicle Application. Energies 2023, 16, 2701. https://doi.org/10.3390/en16062701
Aladetola OD, Ouari M, Saadi Y, Mesbahi T, Boukhnifer M, Adjallah KH. Advanced Torque Ripple Minimization of Synchronous Reluctance Machine for Electric Vehicle Application. Energies. 2023; 16(6):2701. https://doi.org/10.3390/en16062701
Chicago/Turabian StyleAladetola, Olaoluwa Demola, Mondher Ouari, Yakoub Saadi, Tedjani Mesbahi, Moussa Boukhnifer, and Kondo Hloindo Adjallah. 2023. "Advanced Torque Ripple Minimization of Synchronous Reluctance Machine for Electric Vehicle Application" Energies 16, no. 6: 2701. https://doi.org/10.3390/en16062701
APA StyleAladetola, O. D., Ouari, M., Saadi, Y., Mesbahi, T., Boukhnifer, M., & Adjallah, K. H. (2023). Advanced Torque Ripple Minimization of Synchronous Reluctance Machine for Electric Vehicle Application. Energies, 16(6), 2701. https://doi.org/10.3390/en16062701