Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy
Abstract
:1. Introduction
2. Materials and Methods
- -
- Biodegradable waste: 49 kg per capita (42 kg in 2020);
- -
- Glass: 21 kg per capita (19 kg in 2020);
- -
- Bulky waste: 20 kg per capita (19 kg in 2020);
- -
- Mixed packaging waste: 16 kg per capita (14 kg in 2020);
- -
- Paper and cardboard: 14 kg per capita (13 kg in 2020);
- -
- Plastics: 14 kg per capita (13 kg in 2020).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Famulska, T.; Kaczmarzyk, J.; Grząba-Włoszek, M. Environmental Taxes in the Member States of the European Union—Trends in Energy Taxes. Energies 2022, 15, 8718. [Google Scholar] [CrossRef]
- Bajan, B.; Łukasiewicz, J.; Mrówczyńska-Kamińska, A. Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with Eu-15 Countries. Energies 2021, 14, 3945. [Google Scholar] [CrossRef]
- Beal, C.M.; King, C.W. The zero-emissions cost of energy: A policy concept. Prog. Energy 2022, 3, 023001. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- Dall-Orsoletta, A.; Romero, F.; Ferreira, P. Open and collaborative innovation for the energy transition: An exploratory study. Technol. Soc. 2022, 69, 101955. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Grebski, W.W. An Econometric Model of the Operation of the Steel Industry in Poland in the Context of Process Heat and Energy Consumption. Energies 2022, 15, 7909. [Google Scholar] [CrossRef]
- Garcia-Torea, N.; Giordano-Spring, S.; Larrinaga, C.; Rivière-Giordano, G. Accounting for Carbon Emission Allowances: An Empirical Analysis in the EU ETS Phase 3. Soc. Environ. Account. J. 2022, 42, 93–115. [Google Scholar]
- Khandaker, S.; Das, S.; Hossain, M.T.; Islam, A.; Miah, M.R.; Awual, M.R. Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation—A comprehensive review. J. Mol. Liq. 2021, 344, 117795. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Nadagouda, M.N.; Badawi, M.; Bonilla-Petriciolet, A.; Aminabhavi, T.M. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. J. Environ. Manag. 2023, 332, 117410. [Google Scholar]
- Açar, T.S.; Öz, N.A. The Determination of Optimal Cluster Number by Silhouette Index at Clustering of the European Union Member Countries and Candidate Turkey by Waste Indicators. Pamukkale Üniversitesi Mühendis. Bilim. Derg. 2020, 26, 481–487. [Google Scholar]
- Kastanaki, E.; Giannis, A. Energy decarbonisation in the European Union: Assessment of photovoltaic waste recycling potential. Renew. Energy 2022, 192, 1–13. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Ibrahim, R.L.; Al-Amin, A.Q.; Yu, Z. An Ideology of Sustainability under Technological Revolution: Striving towards Sustainable Development. Sustainability 2022, 14, 4415. [Google Scholar] [CrossRef]
- Khandaker, S.; Bashar, M.M.; Islam, A.; Hossain, M.T.; Teo, S.H.; Awual, M.R. Sustainable energy generation from textile biowaste and its challenges: A comprehensive review. Renew. Sustain. Energy Rev. 2022, 157, 112051. [Google Scholar] [CrossRef]
- Łukasiewicz, K.; Pietrzak, P.; Kraciuk, J.; Kacperska, E.; Cieciora, M. Sustainable Energy Development—A Systematic Literature Review. Energies 2022, 15, 8284. [Google Scholar] [CrossRef]
- Miskinis, V.; Galinis, A.; Konstantinaviciute, I.; Lekavicius, V.; Neniskis, E. Comparative Analysis of the Energy Sector Development Trends and Forecast of Final Energy Demand in the Baltic States. Sustainability 2019, 11, 521. [Google Scholar]
- Liu, J.; Chen, Y.; Wang, X. Factors driving waste sorting in construction projects in China. J. Clean. Prod. 2022, 336, 130397. [Google Scholar]
- Howie, P.; Atakhanova, Z. Assessing initial conditions and ETS outcomes in a fossil-fuel dependent economy. Energy Strategy Rev. 2022, 40, 100818. [Google Scholar] [CrossRef]
- Xiao, Y.; Zuo, X.; Huang, J.; Konak, A.; Xu, Y. The continuous pollution routing problem. Appl. Math. Comput. 2020, 387, 125072. [Google Scholar]
- Monforti, F.; Huld, T.; Bódis, K.; Vitali, L.; D’isidoro, M.; Lacal-Arántegui, R. Assessing Complementarity of Wind and Solar Resources for Energy Production in Italy. A Monte Carlo Approach. Renew. Energy 2014, 63, 576–586. [Google Scholar] [CrossRef]
- Nielsen, H.; Warde, P.; Kander, A. East versus West: Energy intensity in coal-rich Europe, 1800–2000. Energy Policy 2018, 122, 75–83. [Google Scholar]
- Zhang, T.; Wu, X.; Shaheen, S.M.; Abdelrahman, H.; Ali, E.F.; Bolan, N.S.; Sik Ok, Y.; Li, G.; Tsang, D.C.W.; Rinklebe, J. Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. J. Hazard. Mater. 2022, 425, 127906. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.D.L.E.M.; Scholten, D.; Stegen, K.S. The multi-speed energy transition in Europe: Opportunities and challenges for EU energy security. Energy Strat. Rev. 2019, 26, 100415. [Google Scholar] [CrossRef]
- Pietrzak, M.B.; Olczyk, M.; Kuc-Czarnecka, M.E. Assessment of the Feasibility of Energy Transformation Processes in European Union Member States. Energies 2022, 15, 661. [Google Scholar] [CrossRef]
- Pilpola, S.; Arabzadeh, V.; Mikkola, J.; Lund, P.D. Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland. Energies 2019, 12, 949. [Google Scholar] [CrossRef] [Green Version]
- Potrč, S.; Čuček, L.; Martin, M.; Kravanja, Z. Sustainable renewable energy supply networks optimization—The gradual transition to a renewable energy system within the European Union by 2050. Renew. Sustain. Energy Rev. 2021, 146, 111186. [Google Scholar] [CrossRef]
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef] [Green Version]
- Wolde-Rufael, Y.; Weldemeskel, E.M. Environmental policy stringency, renewable energy consumption and CO2 emissions: Panel cointegration analysis for BRIICTS countries. Int. J. Green Energy 2020, 17, 568–582. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Elsaid, K.; Wilberforce, T.; Kamil, M.; Sayed, E.T.; Olabi, A. Environmental Aspects of Fuel Cells: A Review. Sci. Total Environ. 2021, 752, 141803. [Google Scholar] [CrossRef]
- Salami, R.; Kordi, M.; Bolouri, P.; Delangiz, N.; Lajayer, B.A. Algae-Based Biorefinery as a Sustainable Renewable Resource. Circ. Econ. Sustain. 2021, 1, 1349–1365. [Google Scholar] [CrossRef]
- Afshan, S.; Ozturk, I.; Yaqoob, T. Facilitating renewable energy transition, ecological innovations and stringent environmental policies to improve ecological sustainability: Evidence from MM-QR method. Renew. Energy 2022, 196, 151–160. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Demir, M.H.; Kaplan, M.D.; Solak, B. Individuals, collectives, and energy transition: Analysing the motivators and barriers of European decarbonisation. Energy Res. Soc. Sci. 2020, 66, 101493. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Pustejovska, P.; Blaut, A.; Jursova, S.; Korol, J. Comparative Life Cycle Assessment of Current and Future Electricity Generation Systems in the Czech Republic and Poland. Int. J. Life Cycle Assess. 2018, 23, 2165–2177. [Google Scholar] [CrossRef] [Green Version]
- Demetriou, E.; Mallouppas, G.; Hadjistassou, C. Embracing Carbon Neutral Electricity and Transportation Sectors in Cyprus. Energy 2021, 229, 120625. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Policy Framework for Climate and Energy in the Period from 2020 to 2030; European Commission: Brussel, Belgium, 2014. [Google Scholar]
- Wałachowska, A.; Ignasiak-Szulc, A. Comparison of Renewable Energy Sources in ‘New’ EU Member States in the Context of National Energy Transformations. Energies 2021, 14, 7963. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, R.; Tan, L. Emission trading scheme, technological innovation, and competitiveness: Evidence from China’s thermal power enterprises. J. Environ. Manag. 2022, 320, 115874. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, Y.-J. Does China’s carbon emissions trading scheme affect the market power of high-carbon enterprises? Energy Econ. 2022, 108, 105906. [Google Scholar] [CrossRef]
- Van De Putte, J.; Short, R.; Beranek, J.; Thies, F.; Teske, S.; Dawe, A.; Hunter, J. Battle of the Grids. How Europe Can Go 100% Renewable and Phase out Dirty Energy; Greenpeace International: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Swain, R.B.; Karimu, A.; Gråd, E. Sustainable development, renewable energy transformation and employment impact in the EU. Int. J. Sustain. Dev. World Ecol. 2022, 29, 695–708. [Google Scholar] [CrossRef]
- Suharevska, K.; Blumberga, D. Progress in Renewable Energy Technologies: Innovation Potential in Latvia. Environ. Clim. Technol. 2019, 23, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Stec, M.; Grzebyk, M. Statistical Analysis of the Level of Development of Renewable Energy Sources in the Countries of the European Union. Energies 2022, 15, 8278. [Google Scholar] [CrossRef]
- Safarzynska, K.; van den Bergh, J.C. Industry Evolution, Rational Agents and the Transition to Sustainable Electricity Production. Energy Policy 2011, 39, 6440–6452. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A. Diversity and Changes in the Energy Balance in EU Countries. Energies 2021, 14, 1098. [Google Scholar] [CrossRef]
- Quaranta, E.; Aggidis, G.; Boes, R.M.; Comoglio, C.; De Michele, C.; Patro, E.R.; Georgievskaia, E.; Harby, A.; Kougias, I.; Muntean, S.; et al. Assessing the energy potential of modernizing the European hydropower fleet. Energy Convers. Manag. 2021, 246, 114655. [Google Scholar] [CrossRef]
- Bórawski, P.; Bełdycka-Bórawska, A.; Szymańska, E.J.; Jankowski, K.J.; Dubis, B.; Dunn, J.W. Development of Renewable Energy Sources Market and Biofuels in The European Union. J. Clean. Prod. 2019, 228, 467–484. [Google Scholar] [CrossRef]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible Electricity Generation, Grid Exchange and Storage for the Transition to a 100% Renewable Energy System in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Chudy-Laskowska, K.; Pisula, T. An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation. Energies 2022, 15, 7369. [Google Scholar] [CrossRef]
- Gaigalis, V.; Katinas, V. Analysis of the Renewable Energy Implementation and Prediction Prospects in Compliance with the EU Policy: A Case of Lithuania. Renew. Energy 2020, 151, 1016–1027. [Google Scholar] [CrossRef]
- Holjevac, N.; Baškarad, T.; Daković, J.; Krpan, M.; Zidar, M.; Kuzle, I. Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia. Energies 2021, 14, 1047. [Google Scholar] [CrossRef]
- Kacperska, E.; Łukasiewicz, K.; Pietrzak, P. Use of Renewable Energy Sources in the European Union and the Visegrad Group Countries-Results of Cluster Analysis. Energies 2021, 14, 5680. [Google Scholar] [CrossRef]
- Wolniak, R.; Skotnicka-Zasadzień, B. Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels. Energies 2022, 15, 662. [Google Scholar] [CrossRef]
- Zdonek, I.; Tokarski, S.; Mularczyk, A.; Turek, M. Evaluation of the Program Subsidizing Prosumer Photovoltaic Sources in Poland. Energies 2022, 15, 846. [Google Scholar] [CrossRef]
- Bluszcz, A.; Manowska, A. Differentiation of the Level of Sustainable Development of Energy Markets in the European Union Countries. Energies 2020, 13, 4882. [Google Scholar] [CrossRef]
- Mularczyk, A.; Zdonek, I.; Turek, M.; Tokarski, S. Intentions to Use Prosumer Photovoltaic Technology in Poland. Energies 2022, 15, 6300. [Google Scholar] [CrossRef]
- Poland’s Energy Policy until 2040. Urząd Regulacji Energetyki. Available online: www.ure.gov.pl (accessed on 27 December 2022).
- Miłek, D.; Nowak, P.; Latosińska, J. The Development of Renewable Energy Sources in the European Union in the Light of the European Green Deal. Energies 2022, 15, 5576. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A.; Joostberens, J.; Kolev, S.D. Cluster Analysis of the EU-27 Countries in Light of the Guiding Principles of the European Green Deal, with Particular Emphasis on Poland. Energies 2022, 15, 5082. [Google Scholar] [CrossRef]
- Balezentis, T. Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A case from Eastern Europe. Energy Policy 2020, 140, 111433. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Towards the reduction of CO2 emissions. Paths of pro-ecological transformation of energy mixes in European countries with an above-average share of coal in energy consumption. Resour. Policy 2022, 77, 102701. [Google Scholar] [CrossRef]
- CSO. Environmental Protection; CSO: Warsaw, Poland, 2022. [Google Scholar]
- Gils, H.C.; Scholz, Y.; Pregger, T.; de Tena, D.L.; Heide, D. Integrated Modelling of Variable Renewable Energy-Based Power Supply in Europe. Energy 2017, 123, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Capros, P.; Zazias, G.; Evangelopoulou, S.; Kannavou, M.; Fotiou, T.; Siskos, P.; De Vita, A.; Sakellaris, K. Energy-System Modelling of the EU Strategy towards Climate-Neutrality. Energy Policy 2019, 134, 110960. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable Energy Communities under the 2019 European Clean Energy Package—Governance Model for the Energy Clusters of the Future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- Mehrtash, M.; Capitanescu, F.; Heiselberg, P.K.; Gibon, T.; Bertrand, A. An Enhanced Optimal PV and Battery Sizing Model for Zero Energy Buildings Considering Environmental Impacts. IEEE Trans. Ind. Appl. 2020, 56, 6846–6856. [Google Scholar] [CrossRef]
- Thomas, S. The British Model in Britain: Failing Slowly. Energy Policy 2006, 34, 583–600. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Rupich, S.M.; Shafiq, N.; Gartstein, Y.N.; Malko, A.V.; Chabat, Y.J. Silicon Surface Modification and Charakterization for Emergent Photovoltaic Applications Based on Energy Transfer. Chem. Rev. 2015, 115, 12764. [Google Scholar] [CrossRef] [PubMed]
- Reimagining Energy for People and Our Planet; BP Energy Outlook 2020 Report; BP Australia Pty Limited: Docklands, Australia, 2020; p. 61.
Specification | 2017 | 2018 | 2019 | 2020 | 2021 | 2018/17 | 2019/18 | 2020/19 | 2021/20 |
---|---|---|---|---|---|---|---|---|---|
wTJ | w % | ||||||||
Indigenous Production | 3871 | 4117 | 4271 | 6008 | 6223 | 106.4 | 103.7 | 140.7 | 103.6 |
Inland Consumption | 3871 | 4117 | 4271 | 6008 | 6223 | 106.4 | 103.7 | 140.7 | 103.6 |
Transformation Sector | 1420 | 1544 | 2055 | 3576 | 4411 | 108.7 | 133.1 | 174.1 | 123.4 |
Final Energy Consumption: | 2451 | 2573 | 2216 | 2432 | 1811 | 104.9 | 86.1 | 109.7 | 74.5 |
Industry Sector | 2411 | 2554 | 2214 | 2422 | 1445 | 105.9 | 86.7 | 109.4 | 59.7 |
Commerce and Public Services | 40 | 19 | 2 | 11 | 366 | 47.5 | 10.5 | 550.0 | 3327.3 |
Year | t | yt | yt t | t2 | ŷt | (yt − ŷt)2 | (yt − ȳt)2 |
---|---|---|---|---|---|---|---|
2008 | 1 | 9 | 9 | 1 | −575.09 | 341,161.13 | 6,032,284.76 |
2009 | 2 | 29 | 58 | 4 | −116.58 | 21,193.54 | 5,934,441.92 |
2010 | 3 | 123 | 369 | 9 | 341.93 | 47,930.34 | 5,485,296.57 |
2011 | 4 | 1338 | 5352 | 16 | 800.44 | 288,970.75 | 1,270,289.04 |
2012 | 5 | 1360 | 6800 | 25 | 1258.95 | 10,211.10 | 1,221,181.92 |
2013 | 6 | 1391 | 8346 | 36 | 1717.46 | 106,576.13 | 1,153,628.51 |
2014 | 7 | 1544 | 10,808 | 49 | 2175.97 | 399,386.08 | 848,371.79 |
2015 | 8 | 1673 | 13,384 | 64 | 2634.48 | 924,443.79 | 627,376.47 |
2016 | 9 | 2554 | 22,986 | 81 | 3092.99 | 290,510.22 | 7908.37 |
2017 | 10 | 3871 | 38,710 | 100 | 3551.5 | 102,080.25 | 1,976,636.35 |
2018 | 11 | 4117 | 45,287 | 121 | 4010.01 | 11,446.86 | 2,728,869.42 |
2019 | 12 | 4271 | 51,252 | 144 | 4468.52 | 39,014.15 | 3,261,379.55 |
2020 | 13 | 6008 | 78,104 | 169 | 4927.03 | 1,168,496.14 | 12,552,345.90 |
2021 | 14 | 6223 | 87,122 | 196 | 5385.54 | 701,339.25 | 14,122,030.37 |
- | ṫ = 7.5 | ȳt = 2465.07 | ∑368,587 | ∑1015 | - | ∑4,452,759.742 | ∑57,222,040.93 |
Years | 2023 | 2024 | 2025 | 2030 |
---|---|---|---|---|
Biodegradable municipal waste consumption forecasts in TJ | 6565.79 | 7048.23 | 7530.66 | 9942.85 |
Mean residual error | 609.149 | 609.149 | 609.149 | 609.149 |
Coefficient of residual variation in % | 0.2471 | 0.2471 | 0.2471 | 0.2471 |
Convergence coefficient | 0.0747 | 0.0747 | 0.0747 | 0.0747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciniuk-Kluska, A.; Kluska, M. Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy. Energies 2023, 16, 2732. https://doi.org/10.3390/en16062732
Marciniuk-Kluska A, Kluska M. Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy. Energies. 2023; 16(6):2732. https://doi.org/10.3390/en16062732
Chicago/Turabian StyleMarciniuk-Kluska, Anna, and Mariusz Kluska. 2023. "Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy" Energies 16, no. 6: 2732. https://doi.org/10.3390/en16062732
APA StyleMarciniuk-Kluska, A., & Kluska, M. (2023). Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy. Energies, 16(6), 2732. https://doi.org/10.3390/en16062732