Evaluation of the Feasibility of Using TCR-Derived Chars from Selected Biomass Wastes and MSW Fractions in CO2 Sequestration on Degraded and Post-Industrial Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermo-Catalytic Reforming
2.2. Properties of Various Chars Obtained from TCR Technologies
Material | Proximate Analysis | Ultimate Analysis | Ref | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | VM | FC | M | C | H | N | S | O | LHV | HHV | ||
[%] | MJ/kg | |||||||||||
MSW Blend char | 44.9 | - | - | 1.6 | 47.3 | 0.8 | 1.0 | 0.3 | 5.7 | 16.7 | 17.0 | [3] |
Waste clean wipes | 4.1 | - | - | - | 83.9 | 1.66 | 0.49 | 0.06 | 1.9 | 30.42 | 30.79 | [11] |
Paper waste (pulper rejects) | 26.1 | - | - | 2.6 | 66.7 | 1.69 | 0.45 | 0.12 | 4.94 | 24.79 | 25.16 | [15] |
Wheat husk | 11.8 | - | - | - | 76.5 | 2.2 | 3.3 | 0.1 | 6.1 | - | 28.4 | [18] |
FMW | 24.6 | - | - | - | 63.75 | 2.05 | 4.36 | 0.45 | 4.79 | 23.47 | 23.64 | [25] |
DIS Dre-ink sludge (char) | 82.1 | - | - | - | 16.85 | 0.62 | 0.1 | 0.1 | 0.24 | 6.54 | 6.67 | [16] |
Wood | 4.2 | - | - | - | 90.18 | 1.57 | 0.32 | 0.1 | 3.62 | 32.86 | 33.2 | [16] |
Digestate pellets | 29.1 | - | - | 0.7 | 65.0 | 1.2 | 1.5 | 0.3 | 2.2 | 23.5 | 23.9 | [17] |
RSB biochar | 32.46 | - | - | - | 63.63 | 1.31 | 0.55 | 0.21 | - | - | 22.1 | [26] |
RSB at 500 °C | 30.5 | - | - | - | 67.90 | 1.60 | 0.52 | 0.51 | - | - | 24.0 | [26] |
RSB at 600 °C | 32.57 | - | - | - | 65.84 | 0.87 | 0.48 | 0.04 | - | - | 23.1 | [26] |
RSB at 700 °C | 32.15 | - | - | - | 64.47 | 0.70 | 0.54 | 0.03 | - | - | 21.2 | [26] |
Sewage sludge | 74.4 | - | - | 22.2 | 0.9 | 2.0 | 1.0 | 0.0 | 18.2 | - | [12] | |
Digestate | 32.0 | - | - | 64.0 | 1.0 | 1.4 | 0.5 | 0.7 | 23.0 | - | [12] | |
Brewer spent grain | 17.5 | - | - | - | 72.6 | 0.1 | 4.6 | 0.4 | 4.9 | 26.0 | - | [12] |
Wood | 3.1 | - | - | - | 89.8 | 2.2 | 0.3 | 0.1 | 4.5 | 34.4 | - | [12] |
Straw biochar at 500 °C | 14.83 | 23.69 | 57.85 | 3.63 | 65.50 | 3.51 | 11.03 | 1.29 | 0.21 | - | 25.07 | [27] |
Straw biochar at 700 °C | 16.93 | 6.99 | 74.87 | 1.21 | 69.02 | 1.92 | 9.51 | 1.18 | 0.23 | - | 25.61 | [27] |
Straw biomass | 4.78 | 70.50 | 18.19 | 6.53 | 43.80 | 5.48 | 38.69 | 0.62 | 0.10 | - | 17.52 | [27] |
3. Biochar’s Application in Mitigating the Impacts of Environmental Degradation
3.1. Utilisation of Biochar in the Remediation of Degraded Post-Industrial Areas
- chemical interaction between ions on the surface of the biochar;
- creation of complexes with active functional groups;
- physical adsorption on the surface of the biochar;
- the precipitation of phosphate ions on the surface of the biochar;
- the precipitation of insoluble compounds generated by an increase in pH in the contaminated soil, particularly when the soil is acidic.
3.2. Biochar Application in CO2 Soil Sequestration
4. Potential of the Use of Different Carbonates Produced by TCR Technology—Future Perspective and Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keppert, M.; Tydlitát, V.; Volfová, P.; Šyc, M.; Černý, R. Characterization of Solid Waste Materials from Municipal Solid Waste Incineration Facility. In Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 28–30 June 2010; pp. 737–743. [Google Scholar]
- Anthraper, D.; McLaren, J.; Baroutian, S.; Munir, M.T.; Young, B.R. Hydrothermal Deconstruction of Municipal Solid Waste for Solid Reduction and Value Production. J. Clean. Prod. 2018, 201, 812–819. [Google Scholar] [CrossRef]
- Ouadi, M.; Jaeger, N.; Greenhalf, C.; Santos, J.; Conti, R.; Hornung, A. Thermo-Catalytic Reforming of Municipal Solid Waste. Waste Manag. 2017, 68, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Sajdak, M. Characteristics of Chars from Biomass and Waste Co-Pyrolysis. In Proceedings of the ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum, Lake Buena Vista, FL, USA, 24–28 June 2018; Volume 2. [Google Scholar] [CrossRef]
- Sajdak, M. Porosity and Pore Size Distribution of Biochar from Straw Biomass—Data for DOE. Mendeley Data 2022, 1. [Google Scholar] [CrossRef]
- Sajdak, M. Application of Chemometrics to Identifying Solid Fuels and Their Origin. Cent. Eur. J. Chem. 2013, 11, 151–159. [Google Scholar] [CrossRef]
- Sajdak, M. Impact of Plastic Blends on the Product Yield from Co-Pyrolysis of Lignin-Rich Materials. J. Anal. Appl. Pyrolysis 2017, 124, 415–425. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass Pyrolysis: Past, Present, and Future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Muhammad, C.; Onwudili, J.A.; Williams, P.T. Thermal Degradation of Real-World Waste Plastics and Simulated Mixed Plastics in a Two-Stage Pyrolysis-Catalysis Reactor for Fuel Production. Energy Fuels 2015, 29, 2601–2609. [Google Scholar] [CrossRef]
- Ouadi, M.; Greenhalf, C.; Jaeger, N.; Speranza, L.G.; Hornung, A. Thermo-Catalytic Reforming of Co-Form® Rejects (Waste Cleansing Wipes). J. Anal. Appl. Pyrolysis 2018, 132, 33–39. [Google Scholar] [CrossRef]
- Schmitt, N.; Apfelbacher, A.; Jäger, N.; Daschner, R.; Stenzel, F.; Hornung, A. Thermo-Chemical Conversion of Biomass and Upgrading to Biofuel: The Thermo-Catalytic Reforming Process—A Review. Biofuels Bioprod. Biorefin. 2019, 13, 822–837. [Google Scholar] [CrossRef] [Green Version]
- Gunarathne, V.; Ashiq, A.; Ramanayaka, S.; Wijekoon, P.; Vithanage, M. Biochar from Municipal Solid Waste for Resource Recovery and Pollution Remediation. Environ. Chem. Lett. 2019, 17, 1225–1235. [Google Scholar] [CrossRef]
- Huang, Y.; Anderson, M.; McIlveen-Wright, D.; Lyons, G.A.; McRoberts, W.C.; Wang, Y.D.; Roskilly, A.P.; Hewitt, N.J. Biochar and Renewable Energy Generation from Poultry Litter Waste: A Technical and Economic Analysis Based on Computational Simulations. Appl. Energy 2015, 160, 656–663. [Google Scholar] [CrossRef]
- Ouadi, M.; Greenhalf, C.; Jaeger, N.; Speranza, L.G.; Hornung, A. Thermo-Catalytic Reforming of Pulper Rejects from a Secondary Fibre Mill. Renew. Energy Focus 2018, 26, 39–45. [Google Scholar] [CrossRef]
- Fivga, A.; Jahangiri, H.; Bashir, M.A.; Majewski, A.J.; Hornung, A.; Ouadi, M. Demonstration of Catalytic Properties of De-Inking Sludge Char as a Carbon Based Sacrificial Catalyst. J. Anal. Appl. Pyrolysis 2020, 146, 104773. [Google Scholar] [CrossRef]
- Neumann, J.; Binder, S.; Apfelbacher, A.; Gasson, J.R.; Ramírez García, P.; Hornung, A. Production and Characterization of a New Quality Pyrolysis Oil, Char and Syngas from Digestate—Introducing the Thermo-Catalytic Reforming Process. J. Anal. Appl. Pyrolysis 2015, 113, 137–142. [Google Scholar] [CrossRef]
- Santos, J.; Ouadi, M.; Jahangiri, H.; Hornung, A. Integrated Intermediate Catalytic Pyrolysis of Wheat Husk. Food Bioprod. Process. 2019, 114, 23–30. [Google Scholar] [CrossRef]
- Król, D.; Gałko, G. Stoichometric Equilibrium Model of Sewage Sludge Gasification with Athmospheric Air. Przem. Chem. 2018, 97, 1698–1702. [Google Scholar] [CrossRef]
- Wang, S.; Faravelli, T.; Yang, H. Special Issue of Thermo-Chemical Conversion of Biomass. Appl. Energy Combust. Sci. 2022, 11, 100075. [Google Scholar] [CrossRef]
- Gill, M.; Kurian, V.; Kumar, A.; Stenzel, F.; Hornung, A.; Gupta, R. Thermo-Catalytic Reforming of Alberta-Based Biomass Feedstock to Produce Biofuels. Biomass Bioenergy 2021, 152, 106203. [Google Scholar] [CrossRef]
- Hornung, A.; Jahangiri, H.; Ouadi, M.; Kick, C.; Deinert, L.; Meyer, B.; Grunwald, J.; Daschner, R.; Apfelbacher, A.; Meiller, M.; et al. Thermo-Catalytic Reforming (TCR)–An Important Link between Waste Management and Renewable Fuels as Part of the Energy Transition. Appl. Energy Combust. Sci. 2022, 12, 100088. [Google Scholar] [CrossRef]
- Neumann, J.; Jäger, N.; Apfelbacher, A.; Daschner, R.; Binder, S.; Hornung, A. Upgraded Biofuel from Residue Biomass by Thermo-Catalytic Reforming and Hydrodeoxygenation. Biomass Bioenergy 2016, 89, 91–97. [Google Scholar] [CrossRef]
- Phyllis2. Available online: https://phyllis.nl/ (accessed on 5 December 2019).
- Ouadi, M.; Bashir, M.A.; Speranza, L.G.; Jahangiri, H.; Hornung, A. Food and Market Waste-A Pathway to Sustainable Fuels and Waste Valorization. Energy Fuels 2019, 33, 9843–9850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, E.; Jäger, N.; Apfelbacher, A.; Daschner, R.; Hornung, A.; Pant, K.K. Integrated Thermo-Catalytic Reforming of Residual Sugarcane Bagasse in a Laboratory Scale Reactor. Fuel Process. Technol. 2018, 171, 277–286. [Google Scholar] [CrossRef]
- Muzyka, R.; Misztal, E.; Hrabak, J.; Banks, S.W.; Sajdak, M. Various Biomass Pyrolysis Conditions Influence the Porosity and Pore Size Distribution of Biochar. Energy 2023, 263, 126128. [Google Scholar] [CrossRef]
- Guinée, J.B.; van den Bergh, J.C.J.M.; Boelens, J.; Fraanje, P.J.; Huppes, G.; Kandelaars, P.P.A.A.H.; Lexmond, T.M.; Moolenaar, S.W.; Olsthoorn, A.A.; Udo De Haes, H.A.; et al. Evaluation of Risks of Metal Flows and Accumulation in Economy and Environment. Ecol. Econ. 1999, 30, 47–65. [Google Scholar] [CrossRef]
- EUR-Lex-31986L0278-EN. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Official Journal L 181, 04/07/1986 P. 0006-0012; Finnish Ppecial Edition: Chapter 15 Volume 7 P. 0127; Swedish special edition: Chapter 15 Volume 7 P. 0127. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31986L0278:EN:HTML (accessed on 19 February 2023).
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Wijitkosum, S. Biochar Derived from Agricultural Wastes and Wood Residues for Sustainable Agricultural and Environmental Applications. Int. Soil Water Conserv. Res. 2022, 10, 335–341. [Google Scholar] [CrossRef]
- Sánchez-Reinoso, A.D.; Ávila-Pedraza, E.Á.; Restrepo-Díaz, H. Use of Biochar in Agriculture. Acta Biol. Colomb. 2020, 25, 327–338. [Google Scholar] [CrossRef]
- Gałko, G. The influence of infiltration of leachate from landfills on the changes of chemical parameters of the soil. J. Ecol. Eng. 2015, 16, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Tabak, M.; Lisowska, A.; Filipek-Mazur, B.; Antonkiewicz, J. The Effect of Amending Soil with Waste Elemental Sulfur on the Availability of Selected Macroelements and Heavy Metals. Processes 2020, 8, 1245. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, B.; Petropoulos, E.; Duan, J.; Yang, L.; Xue, L. The Potential of Biochar as N Carrier to Recover N from Wastewater for Reuse in Planting Soil: Adsorption Capacity and Bioavailability Analysis. Separations 2022, 9, 337. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global Soil Pollution by Toxic Elements: Current Status and Future Perspectives on the Risk Assessment and Remediation Strategies—A Review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of Soil Quality Using Biochar and Brown Coal Waste: A Review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Stringfellow, A.; Powrie, W.; Tejada, W.C.; Whatmore, S.; Gilbert, A.; Manser, R.; Maslen, R. Mechanical Heat Treatment of Municipal Solid Waste. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2015, 164, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Mulyani, O.; Joy, B.; Kurnia, D. The Various Forms of Cow Manure Waste as Adsorbents of Heavy Metals. Appl. Sci. 2022, 12, 5763. [Google Scholar] [CrossRef]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of Sewage Sludge Biochar on Plant Metal Availability after Application to a Mediterranean Soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Beesley, L. Biochar Application to a Contaminated Soil Reduces the Availability and Plant Uptake of Zinc, Lead and Cadmium. J. Environ. Manag. 2015, 159, 86–93. [Google Scholar] [CrossRef]
- van Zwieten, L.; Kimber, S.; Downie, A.; Morris, S.; Petty, S.; Rust, J.; Chan, K.Y. A Glasshouse Study on the Interaction of Low Mineral Ash Biochar with Nitrogen in a Sandy Soil. Soil Res. 2010, 48, 569–576. [Google Scholar] [CrossRef]
- Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic Values of Greenwaste Biochar as a Soil Amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 63002. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Soil Carbon Sequestration and Biochar as Negative Emission Technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- EEA SIGNALS 2019—Land and Soil in Europe—European Environment Agency. Available online: https://www.eea.europa.eu/publications/eea-signals-2019-land (accessed on 19 February 2023).
- Global Land Outlook|UNCCD. Available online: https://www.unccd.int/resources/global-land-outlook/overview (accessed on 19 February 2023).
Parameters | Limit Values (mg/kg) |
---|---|
Cadmium | 1–3 |
Copper | 50–140 |
Nickel | 30–75 |
Lead | 50–300 |
Zink | 150–300 |
Mercury | 1–1.5 |
Material | Cd (mg/kg) | Cu (mg/kg) | Ni (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | Hg (mg/kg) | Ref |
---|---|---|---|---|---|---|---|
MSW Blend char | 2.59 | 354.84 | 45.17 | 161.3 | - | 0.13 | [3] |
Digestate | <0.2 | 68 | 3 | <2 | 300 | <0.07 | [12] |
Demolition wood char 350 | 2.2 | 51.5 | 8.7 | 409.7 | 785.1 | - | [24] |
Demolition wood char 550 | 0.9 | 31.7 | 17.9 | 561.6 | 1047.9 | - | [24] |
Straw pellets char 550 | 0.2 | 16.0 | 91.3 | 11.3 | 43.4 | [24] | |
Biochar Beech wood | 0.2 | 10.0 | 6.0 | 10.0 | 5.0 | 0.1 | [24] |
Pepper residues biochar 670 | 0.2 | 29.0 | 7.0 | 63.0 | 25.0 | 0.1 | [24] |
Pepper residues biochar 600 | 0.2 | 26.5 | 12.8 | 12.3 | 68.0 | - | [24] |
Pepper residues biochar 700 | 0.2 | 28.0 | 8.0 | 8.0 | 26.0 | - | [24] |
Charcoal briquette | 0.2 | 21.4 | 3.1 | 12.1 | 0.6 | - | [24] |
Oak wood biochar 400 | 0.3 | 23.9 | 14.6 | 19.0 | 83.0 | - | [24] |
Straw pellets char 350 | 0.3 | 11.4 | 6.8 | 12.0 | 33.1 | - | [24] |
Willow char 550 | 0.3 | 13.7 | 4.0 | 1.3 | 261.7 | - | [24] |
Willow char 350 | 4.8 | 9.2 | 27.4 | 4.9 | 151.0 | - | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajdak, M.; Majewski, A.; Di Gruttola, F.; Gałko, G.; Misztal, E.; Rejdak, M.; Hornung, A.; Ouadi, M. Evaluation of the Feasibility of Using TCR-Derived Chars from Selected Biomass Wastes and MSW Fractions in CO2 Sequestration on Degraded and Post-Industrial Areas. Energies 2023, 16, 2964. https://doi.org/10.3390/en16072964
Sajdak M, Majewski A, Di Gruttola F, Gałko G, Misztal E, Rejdak M, Hornung A, Ouadi M. Evaluation of the Feasibility of Using TCR-Derived Chars from Selected Biomass Wastes and MSW Fractions in CO2 Sequestration on Degraded and Post-Industrial Areas. Energies. 2023; 16(7):2964. https://doi.org/10.3390/en16072964
Chicago/Turabian StyleSajdak, Marcin, Artur Majewski, Francesca Di Gruttola, Grzegorz Gałko, Edyta Misztal, Michał Rejdak, Andreas Hornung, and Miloud Ouadi. 2023. "Evaluation of the Feasibility of Using TCR-Derived Chars from Selected Biomass Wastes and MSW Fractions in CO2 Sequestration on Degraded and Post-Industrial Areas" Energies 16, no. 7: 2964. https://doi.org/10.3390/en16072964
APA StyleSajdak, M., Majewski, A., Di Gruttola, F., Gałko, G., Misztal, E., Rejdak, M., Hornung, A., & Ouadi, M. (2023). Evaluation of the Feasibility of Using TCR-Derived Chars from Selected Biomass Wastes and MSW Fractions in CO2 Sequestration on Degraded and Post-Industrial Areas. Energies, 16(7), 2964. https://doi.org/10.3390/en16072964