Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules
Abstract
:1. Introduction
1.1. Solar Photovoltaics (PV)
1.2. Agrivoltaics
1.3. Rooftop Agrivoltaics (RAPV)
1.4. Agrivoltaic Deployment
2. APV Experiments
2.1. ARDEC South (ARDEC)
2.2. Foothills Campus (Foothills)
2.3. Data Collected
3. Results and Discussion
3.1. Spectroradiometer
3.2. Spectroradiometer Results
3.3. Air Temperatures
3.4. Soil Temperature
3.4.1. ARDEC South Soil Temperature
3.4.2. Foothills Soil Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natural Resources Defense Council (NRDC). The Cost of Climate Change: What We’ll Pay If Global Warming Continues Unchecked. May 2008. Available online: https://www.nrdc.org/sites/default/files/cost.pdf (accessed on 12 August 2021).
- European Commission. The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 1 December 2022).
- Solar Power Europe. 100% Renewable Europe. 2020. Available online: https://www.solarpowereurope.org/100-renewable-europe/ (accessed on 20 September 2022).
- US Energy Information Administration (EIA). Electric Power Monthly Preliminary Data. February 2022. Available online: https://www.eia.gov/energyexplained/electricity/ (accessed on 1 December 2022).
- Lazard 2021: Lazard’s Levelized Cost of Energy Analysis—Version 15.0. October 2021. Available online: https://www.lazard.com/media/451881/lazards-levelized-cost-of-energy-version-150-vf.pdf (accessed on 12 January 2023).
- Food and Agricultural Organization. 2014. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 12 January 2023).
- Fu, X.; Niu, H. Key technologies and applications of agricultural energy internet for agricultural planting and fisheries industry. Inf. Process. Agric. 2022; in press, corrected proof. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Dargusch, P.; Wadley, D.; Zulkarnain, N.A.; Aziz, A.A. A review of research on agrivoltaic systems. Renew. Sustain. Energy Rev. 2022, 161, 112351. [Google Scholar] [CrossRef]
- Neupane Bhandari, S.; Schlüter, S.; Kuckshinrichs, W.; Schlör, H.; Adamou, R.; Bhandari, R. Economic feasibility of agrivoltaic systems in food-energy nexus context: Modelling and a case study in Niger. Agronomy 2021, 11, 1906. [Google Scholar] [CrossRef]
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Appl. Energy 2021, 281, 116102. [Google Scholar] [CrossRef]
- Williams, H.J.; Hashad, K.; Wang, H.; Zhang, K.M. The potential for agrivoltaics to enhance solar farm cooling. Appl. Energy 2023, 332, 120478. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wéry, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Barron-Gafford, G.; Pavao-Zuckerman, M.; Minor, R.; Sutter, L.; Barnett-Moreno, I.; Blackett, D.; Thompson, M.; Dimond, Y.; Gerlak, A.; Nabhan, G.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725. [Google Scholar] [CrossRef]
- Marrou, H.; Dufour, L.; Guglioni, L.; Salles, J.-M.; Loisel, P.; Nogier, A.; Wery, J. Designing farming system combining food and electricity production. In Proceedings of the 4th International Symposium for Farming Systems Design, Lanzhou, China, 19–22 August 2013. [Google Scholar]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Mustapha, A.; Anand, A.; Kant, K.; Chopra, S.S. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Cossu, M.; Cossu, A.; Paola, A.D.; Ledda, L.; Li, Z.; Fatnassi, H.; Poncet, C.; Yano, A. Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe. Renew. Sustain. Energy Rev. 2018, 94, 822–834. [Google Scholar] [CrossRef]
- Barichello, J.; Vesce, L.; Mariani, P.; Leonardi, E.; Braglia, R.; Di Carlo, A.; Canini, A.; Reale, A. Stable semi-transparent dye-sensitized solar modules and panels for greenhouse application. Energies 2021, 14, 6393. [Google Scholar] [CrossRef]
- Munshi, A.H.; Sasidharan, N.; Pinkayan, S.; Barth, K.L.; Sampath, W.S.; Ongsakul, W. Thin-film CdTe photovoltaics–The technology for utility scale sustainable energy generation. Sol. Energy 2018, 173, 511–516. [Google Scholar] [CrossRef]
- Sun, Y.; Shanks, K.; Baig, H.; Zhang, W.; Hao, X.; Li, Y.; He, B.; Wilson, R.; Liu, H.; Sundaram, S.; et al. Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs. Appl. Energy 2018, 231, 972–984. [Google Scholar] [CrossRef]
- Alrashidi, H.; Issa, W.; Sellami, N.; Ghosh, A.; Mallick, T.K.; Sundaram, S. Performance assessment of cadmium telluride-based semi-transparent glazing for power saving in façade buildings. Energy Build. 2020, 215, 109585. [Google Scholar] [CrossRef]
- Bousselot, J.; Russell, V.; Tolderlund, L.; Celik, S.; Retzlaff, B.; Morgan, S.; Buffam, I.; Coffman, R.; Williams, J.; Mitchell, M. Green roof research in North America: A recent history and future strategies. J. Living Archit. 2020, 7, 27–64. [Google Scholar] [CrossRef]
- Buehler, D.; Junge, R. Global trends and current status of commercial urban rooftop farming. Sustainability 2016, 8, 1108. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.H.; Imran, H.; Younas, R.; Alam, M.A.; Butt, N.Z. Module technology for agrivoltaics: Vertical bifacial versus tilted monofacial farms. IEEE J. Photovolt. 2021, 11, 469–477. [Google Scholar] [CrossRef]
- Soil Survey Staff; Natural Resources Conservation Service; U.S. Department of Agriculture. Soil 2018: 2018 Web Soil Survey. 24 February 2018. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 20 September 2022).
- Wu, X.; (Chairman of Advanced Solar Power (ASP), 801 Lingyun St, Jianggan District, Hangzhou, Zhejiang, China, 310018). In conversation with author, December 2017.
- Bousselot, J.; Slabe, T.; Klett, J.; Koski, R. Photovoltaic array influences the growth of green roof plants. J. Living Archit. 2017, 4, 9–18. [Google Scholar] [CrossRef]
- Stapleton, A.E. Ultraviolet radiation and plants: Burning questions. Plant Cell 1992, 4, 1353–1358. [Google Scholar] [CrossRef] [Green Version]
- Maughan, T.; Drost, D.; Black, B.; Day, S. Using Shade for Fruit and Vegetable Production. 2017. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2673&context=extension_curall (accessed on 12 January 2023).
- Stallknecht, E.J.; Herrera, C.K.; Yang, C.; King, I.; Sharkey, T.D.; Lunt, R.R. Designing plant–transparent agrivoltaics. Sci. Rep. 2023, 13, 1903. [Google Scholar] [CrossRef]
- Sabri, N.S.A.; Zakaria, Z.; Mohamad, S.E.; Jaafar, A.B.; Hara, H. Importance of soil temperature for the growth of temperate crops under a tropical climate and functional role of soil microbial diversity. Microbes Environ. 2018, 33, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
Location | ARDEC | Foothills | ||
---|---|---|---|---|
Array Configuration | 9 Pole Mounted Arrays | Ground Mounted System | ||
Panel Types | ST-CdTe | O-Si | ST-CdTe | O-CdTe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchanski, M.; Hickey, T.; Bousselot, J.; Barth, K.L. Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules. Energies 2023, 16, 3012. https://doi.org/10.3390/en16073012
Uchanski M, Hickey T, Bousselot J, Barth KL. Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules. Energies. 2023; 16(7):3012. https://doi.org/10.3390/en16073012
Chicago/Turabian StyleUchanski, Mark, Thomas Hickey, Jennifer Bousselot, and Kurt L. Barth. 2023. "Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules" Energies 16, no. 7: 3012. https://doi.org/10.3390/en16073012
APA StyleUchanski, M., Hickey, T., Bousselot, J., & Barth, K. L. (2023). Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules. Energies, 16(7), 3012. https://doi.org/10.3390/en16073012