Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers
Abstract
:1. Introduction
2. Methodology
2.1. NILM Formulation
2.2. Appliance Models
- Type I—On/off devices: most appliances in households, such as light bulbs and toasters;
- Type II—Finite-state machines (FSM): the appliances in this category present states, typically in a periodical fashion; examples include washers and dryers. Figure 2 displays an example for a type II appliance’s active power over time.
- Type III—Continuously varying devices: the power of these appliances varies over time but not in a periodic fashion; examples are dimmers and power tools.
- Type IV—Permanent consumer devices: these are devices with constant power that operate for 24 h, such as alarm systems and external power supplies.
2.3. Reasoning for Adopting BIRCH Algorithm for NILM
2.4. BIRCH Clustering Overview
- (1)
- Data Structure
- (2)
- BIRCH Algorithm
3. BIRCH for Power Applications
3.1. Solution Overview
- (1)
- Requirements
- (2)
- Input data
3.2. DNB Process Phases
- Dimensions selection instructs which features to choose from the raw data (depending on the meter’s model capabilities);
- Weight parameters instructs how to determine (or to define) an event occurrence during the time samples’ scan;
- Clustering parameters, such as the threshold T, which have been elaborated in an earlier section.
- (1)
- First Step: Data Acquisition and Event Detection
- (2)
- Second Step: Feature Extraction
- (3)
- Third Step: Load Classification
- If a new device is detected, a new device affiliation is created (as a new cluster) and the event at is identified as part of the new affiliation.
- If an existing device is detected (namely, there is already an appropriate cluster) the event at is identified as part of an existing cluster.
- (4)
- Fourth Step: Event Data Record
3.3. DNB Post-Processing (Optional)
- (1)
- Considering Appliance Type
- (2)
- Auxiliary Timer
3.4. Multi-Dimension and Feature Selection
4. Private Dataset Simulations
- (1)
- Settings and test scenarios
- (2)
- Results Analysis
5. Public Dataset Simulations
5.1. Evaluation Metrices
5.2. Settings and Test Scenarios
- (1)
- Public Dataset
- (2)
- Compared Methods
5.3. Experimental Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A.B. Recent advances in the analysis of residential electricity consumption and applications of smart meter data. Appl. Energy 2017, 208, 402–427. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications, Renew. Energy 2020, 146, 2589–2625. [Google Scholar]
- Winett, R.; Neale, M.; Grier, H. Effects of Self-Monitoring and Feedback on Residential Electricity Consumption. J. Appl. Behav. Anal. 1979, 12, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sintov, N.D.; Schultz, P.W. Unlocking the potential of smart grid technologies with behavioral science Frontiers in Psychology. Front. Psychol. 2015, 6, 410. [Google Scholar] [CrossRef] [PubMed]
- Zangheri, P.; Serrenho, T.; Bertoldi, P. Energy savings from feedback systems: A meta-studies’ review. Energies 2019, 12, 3788. [Google Scholar] [CrossRef] [Green Version]
- Arian, M.; Ameli, M.; Soleimani, V. Ghazalizadeh, Intelligent migration from smart metering to smart grid. In Proceedings of the 2011 IEEE Power Engineering and Automation Conference, Wuhan, China, 8–9 September 2011; Volume 2, pp. 547–552. [Google Scholar]
- Kukuča, P.; Chrapčiak, I. From Smart Metering to Smart Grid Meas. Science 2016, 16, 142–148. [Google Scholar]
- Walker, B.J. Smart Grid System Report; 2018 Report to Congress, U.S.; Dep. of Energy: Washington, DC, USA, 2018. [Google Scholar]
- Giordano, V.; Gangale, F.; Fulli, G.; Jiménez, M.S. Smart Grid Projects in Europe: Lessons Learned and Current Developments; European Commission Joint Research Centre Institute for Energy: Luxembourg, 2013. [Google Scholar]
- Hart, G.W.; Kern, E.C., Jr.; Schweppe, F.C. Non-intrusive appliance monitor apparatus. U.S. Patent 4,858,141, 15 August 1989. [Google Scholar]
- Hart, G.W. Residential energy monitoring and computerized surveillance via utility power flows. IEEE Technol. Soc. Mag. 1989, 8, 12–16. [Google Scholar] [CrossRef]
- Hart, G.W. Nonintrusive appliance load monitoring. Proc. IEEE 1992, 80, 1870–1891. [Google Scholar] [CrossRef]
- Kim, H.; Marwah, M.; Arlitt, M.; Lyon, G.; Han, J. Unsupervised disaggregation of low frequency power measurements. In Proceedings of the 2011 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, Mesa, AZ, USA, 28–30 April 2011; pp. 28–30. [Google Scholar]
- Wu, Z.; Wang, C.; Zhang, H.; Peng, W.; Liu, W. A time-efficient factorial hidden Semi-Markov model for non-intrusive load monitoring. Electr. Power Syst. Res. 2021, 199, 107372. [Google Scholar] [CrossRef]
- Raiker, G.A.; Reddy, S.B.; Umanand, L.; Yadav, A.; Shaikh, M.M. Approach to non-intrusive load monitoring using factorial hidden markov model. In Proceedings of the 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 1–2 December 2018; pp. 381–386. [Google Scholar]
- Dong, M.; Meira, P.C.M.; Xu, W.; Freitas, W. An event window-based load monitoring technique for smart meters. IEEE Trans. Smart Grid 2012, 3, 787–796. [Google Scholar] [CrossRef]
- Jin-Gyeom, K.; Lee, B. Appliance classification by power signal analysis based on multi-feature combination multi-layer LSTM. Energies 2019, 12, 2804. [Google Scholar]
- He, K.; Stankovic, L.; Liao, J.; Stankovic, V. Non-intrusive load disaggregation using graph signal processing. IEEE Trans. Smart Grid 2016, 9, 1739–1747. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, F.M.; López, J.C.; Rider, M.J. Nonintrusive Load Monitoring Algorithm Using Mixed-Integer Linear Programming. IEEE Trans. Consum. Electron. 2018, 64, 180–187. [Google Scholar] [CrossRef]
- Machlev, R.; Levron, Y.; Beck, Y. Modified Cross Entropy method for classification events in NILM system. IEEE Trans. Smart Grid 2018, 10, 4962–4973. [Google Scholar] [CrossRef]
- Machlev, R.; Tolkachov, D.; Levron, Y.; Beck, Y. Dimension reduction for NILM classification based on principle component analysis. Elec. Power Sys. Res. 2020, 187, 106459. [Google Scholar] [CrossRef]
- Machlev, R.; Belikov, J.; Beck, Y.; Levron, Y. MO-NILM: A multi-objective evolutionary algorithm for NILM classification. Energy Build. 2019, 199, 134–144. [Google Scholar] [CrossRef]
- Shunfu, L.; Zhao, L.; Li, F.; Liu, Q.; Li, D.; Fu, Y. A nonintrusive load identification method for residential applications based on quadratic programming. Electr. Power Syst. Res. 2016, 133, 241–248. [Google Scholar]
- Samira, G.; Pamulapati, T.; Mallipeddi, R. Swarm and evolutionary algorithms for energy disaggregation: Challenges and prospects. Int. J. Bio-Inspired Comput. 2021, 17, 215–226. [Google Scholar]
- Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Bouras, A. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267–279. [Google Scholar] [CrossRef]
- Ullah, A.; Haydarov, K.; Haq, I.U.; Muhammad, K.; Rho, S.; Lee, M.; Baik, S.W. Deep learning assisted buildings energy consumption profiling using smart meter data. Sensors 2020, 20, 873. [Google Scholar] [CrossRef] [Green Version]
- Kwac, J.; Flora, J.; Rajagopal, R. Household energy consumption segmentation using hourly data. IEEE Trans. Smart Grid 2014, 5, 420–430. [Google Scholar] [CrossRef]
- Lin, Y.; Tsai, M. Non-intrusive load monitoring by novel neuro-fuzzy classification considering uncertainties. IEEE Trans. Smart Grid 2014, 5, 2376–2384. [Google Scholar] [CrossRef]
- Henao, N.; Agbossou, K.; Kelouwani, S.; Dubé, Y.; Fournier, M. Approach in nonintrusive type I load monitoring using subtractive clustering. IEEE Trans. Smart Grid 2015, 99, 1. [Google Scholar] [CrossRef]
- Wang, A.; Longjun, B.; Chen, X.; Wang, C.G.; Hua, D. Non-intrusive load monitoring algorithm based on features of V–I trajectory. Electr. Power Syst. Res. 2018, 157, 134–144. [Google Scholar] [CrossRef]
- Egarter, D.; Bhuvana, V.P.; Elmenreich, W. PALDi: Online load disaggregation via particle filtering. IEEE Trans. Inst. Meas. 2015, 64, 467–477. [Google Scholar] [CrossRef]
- Qian, W.; Wang, F. Concatenate convolutional neural networks for non-intrusive load monitoring across complex background. Energies 2019, 12, 1572. [Google Scholar]
- Min, X.; Wang, K.; Zhang, X.; Xu, Y. Non-intrusive load disaggregation based on deep dilated residual network. Electr. Power Syst. Res. 2019, 170, 277–285. [Google Scholar]
- Kim, H.; Lim, S. Temporal patternization of power signatures for appliance classification in nilm. Energies 2021, 10, 2931. [Google Scholar] [CrossRef]
- Fionn, M.; Legendre, P. Ward’s hierarchical clustering method: Clustering criterion and agglomerative algorithm. arXiv 2011, arXiv:1111.6285. [Google Scholar]
- Said, B.K.; Streubel, R.; Yang, B. An approach for unsupervised non-intrusive load monitoring of residential appliances. In Proceedings of the 2nd International Workshop on Non-Intrusive Load Monitoring, Austin, TX, USA, 3 June 2014. [Google Scholar]
- Chinthaka, D.; Makonin, S.; Bajić, I.V. Residential power forecasting using load identification and graph spectral clustering. IEEE Trans. Circuits Syst. II: Express Briefs 2019, 66, 1900–1904. [Google Scholar]
- Bochao, Z.; Stankovic, L.; Stankovic, V. On a training-less solution for non-intrusive appliance load monitoring using graph signal processing. IEEE Access 2016, 4, 1784–1799. [Google Scholar]
- Zhenyu, W.; Zheng, G. Residential appliances identification and monitoring by a nonintrusive method. IEEE Trans. Smart Grid 2011, 3, 80–92. [Google Scholar]
- Jazizadeh, F.; Becerik-Gerber, B.; Berges, M.; Soibelman, L. An unsupervised hierarchical clustering-based heuristic algorithm for facilitated training of electricity consumption disaggregation systems. Adv. Eng. Inform. 2014, 28, 311–326. [Google Scholar] [CrossRef]
- Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: A new data clustering algorithm and its applications Data Min. Knowl. Discov. 1997, 1, 141–182. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Fontanini, A.D.; Abreu, J. A Data-Driven BIRCH Clustering Method for Extracting Typical Load Profiles for Big Data. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Chaudhari, A.; Mulay, P. A bibliometric survey on incremental clustering algorithm for electricity smart meter data analysis. Iran Jour. Comp. Sci. 2019, 2, 197–206. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, K.; Yang, S. An ensemble clustering based framework for household load profiling and driven factors identification. Sustain. Cities Soc. 2020, 53, 101958. [Google Scholar] [CrossRef]
- Ma, R.; Yu, N. A New Route for Energy Efficiency Diagnosis and Potential Analysis of Energy Consumption from Air-Conditioning System. In Proceedings of the 14th International Conference for Enhanced Building Operations (ICEBO2014), Beijing, China, 15–16 September 2014; pp. 14–17. [Google Scholar]
- Makonin, S.; Popowich, F.; Bartram, L.; Gill, B.; Bajic, I.V. AMPds: A public dataset for load disaggregation and eco-feedback research. In Proceedings of the Electrical Power & Energy Conference (EPEC), Halifax, NS, Canada, 21–23 August 2013; pp. 1–6. [Google Scholar]
- Ruano, A.; Hernandez, A.; Ruano, J.U.M.; Garcia, J. NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review. Energies 2019, 12, 2203. [Google Scholar] [CrossRef] [Green Version]
- Nayyar, A.; Puri, V. Comprehensive Analysis & Performance Comparison of Clustering Algorithms for Big Data Review of Computer. Eng. Res. 2017, 4, 54–80. [Google Scholar]
- Hripcsak, G.; Rothschild, A.S. Agreement, the f-measure, and reliability in information retrieval. J. Amer. Med. Inform. Assoc. 2005, 12, 296–298. [Google Scholar] [CrossRef]
- Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Proceedings of the Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, USA, 24 August 2011; pp. 1–6. [Google Scholar]
- Brown, M.; Bossley, K.M.; Mills, D.J.; Harris, C.J. High dimensional neurofuzzy systems: Overcoming the curse of dimensionality. In Proceedings of the 1995 IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 20–24 March 1995; pp. 2139–2146. [Google Scholar] [CrossRef]
- Cong, Y.; Liu, J.; Fan, B.; Zeng, P.; Yu, H.; Luo, J. Online Similarity Learning for Big Data with Overfitting. IEEE Trans. Big Data 2018, 4, 78–89. [Google Scholar] [CrossRef]
- Zhu, X. Knowledge Discovery and Data Mining: Challenges and Realities; IGI Global: Hershey, PA, USA, 2007; pp. 118–119. [Google Scholar]
- Samira, G.; Pamulapati, T.; Mallipeddi, R.; Lee, M. Energy disaggregation considering least square error and temporal sparsity: A multi-objective evolutionary approach. Swarm Evol. Comput. 2021, 64, 100909. [Google Scholar]
- Adrian, F. Blued: A fully labeled public dataset for event-based nonintrusive load monitoring research. In Proceedings of the 2nd Workshop on Data Mining Applications in Sustainability (SustKDD), San Diego, CA, USA, 24 August 2011; Volume 2012. [Google Scholar]
Categories | Method | Dataset Size | Type of Dataset | O(n) Complexity? |
---|---|---|---|---|
Partitional | K-Means | Large | Numerical | Yes |
K-Modes | Large | Categorical | Yes | |
K-Medoids | Small | Categorical | No | |
PAM | Small | Numerical | No | |
CLARA | Large | Numerical | No | |
CLARANS | Large | Numerical | No | |
FCM | Large | Numerical | Yes | |
Hierarchical | BIRCH | Large | Numerical | Yes |
CURE | Large | Numerical | No | |
ROCK | Large | Numerical/Categorical | No | |
Chameleon | Large | All types | No | |
Echidna | Large | Multivariate | No | |
Density-Based | DBSCAN | Large | Numerical | No |
OPTICS | Large | Numerical | No | |
DBCLASD | Large | Numerical | No | |
DENCLUE | Large | Numerical | No | |
Grid-Based | Wave | Large | Spatial | Yes |
STING | Large | Spatial | No | |
CLIQUE | Large | Numerical | No | |
OptiGrid | Large | Spatial | No | |
Model-Based | EM | Large | Spatial | No |
COBWEB | Small | Numerical | No | |
CLASSIT | Small | Numerical | No | |
SOM | Small | Multivariate | No |
Appliance | Avg. P [kW] | Avg. Q [kVAR] | Avg. ANG [Deg] |
---|---|---|---|
Light 1 | 0.55 | 0.43 | −15.54 |
Light 2 | 0.89 | 0.61 | −34.05 |
Appliance | Avg. P [kW] | Avg. Q [kVAR] | Avg. THD [%] | Avg. I [A] | Avg. ANG [Deg] |
---|---|---|---|---|---|
Microwave | 1.061 | 0.130 | 34.632 | 4.806 | −2.303 |
AC | 2.947 | 1.563 | 17.882 | 4.884 | −25.466 |
Kettle | 1.869 | 0.002 | 2.28 | 8.151 | −1.383 |
Light 1 | 0.366 | 0.253 | 26.449 | 1.312 | −15.544 |
Light 2 | 0.706 | 0.433 | 20.632 | 3.924 | −34.046 |
Computer | 0.155 | 0.017 | 25.438 | 0.785 | −7.851 |
Appliance | Avg. P [W] | Avg. Q [VAR] |
---|---|---|
Dishwasher (DWE) | 770 | 40 |
Dryer (CDE) | 4613 | 425 |
Fan thermostat (FRE) | 370, 110 | 26 |
Heat Pump (HPE) | 1810 | 358 |
Kitchen Fridge (FGE) | 127 | 0 |
Oven (WOE) | 3570 | 120 |
Appliance | Accuracy | Precision/Recall | F-Measure |
---|---|---|---|
WOE | 0.9987 | 0.833/0.856 | 0.8446 |
HPE | 0.9801 | 0.958/0.891 | 0.9232 |
CDE | 0.9944 | 0.690/0.782 | 0.7331 |
DWE | 0.9834 | 0.638/0.533 | 0.5806 |
FGE | 0.9919 | 0.315/0.824 | 0.4561 |
FRE | 0.9985 | 0.998/0.999 | 0.9992 |
AVG | 0.9912 | 0.739/0.814 | 0.7561 |
TPCA | 0.8313 |
Appliance/Features | DNB P, Q | MCE PC1 | MCE PC1, PC2 | CO PC1 | CO PC1, PC2 |
---|---|---|---|---|---|
WOE | 0.845 | 0.247 | 0.390 | 0.126 | 0.342 |
HPE | 0.923 | 0.255 | 0.226 | 0.107 | 0.261 |
CDE | 0.733 | 0.406 | 0.564 | 0.300 | 0.562 |
DWE | 0.581 | 0.445 | 0.517 | 0.163 | 0.450 |
FGE | 0.456 | 0.602 | 0.742 | 0.140 | 0.074 |
FRE | 0.999 | 0.619 | 0.912 | 0.259 | 0.128 |
AVG F1 | 0.756 | 0.429 | 0.559 | 0.183 | 0.303 |
TPCA (2) | 0.801 | 0.715 | 0.788 | 0.361 | 0.583 |
Appliance/Features | DNB P, Q | MCE PC1 | MCE PC1, PC2 | CO PC1 | CO PC1, PC2 |
---|---|---|---|---|---|
WOE | 0.845 | 0.510 | 0.654 | 0.184 | 0.340 |
HPE | 0.923 | 0.264 | 0.206 | 0.235 | 0.229 |
CDE | 0.733 | 0.852 | 0.923 | 0.704 | 0.541 |
DWE | 0.581 | 0.051 | 0.500 | 0.420 | 0.477 |
FGE | 0.456 | 0.768 | 0.313 | 0.386 | 0.403 |
FRE | 0.999 | 0.803 | 0.946 | 0.705 | 0.786 |
AVG F1 | 0.756 | 0.541 | 0.590 | 0.439 | 0.463 |
TPCA (2) | 0.801 | 0.719 | 0.760 | 0.616 | 0.701 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kligman, A.; Yaniv, A.; Beck, Y. Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers. Energies 2023, 16, 3027. https://doi.org/10.3390/en16073027
Kligman A, Yaniv A, Beck Y. Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers. Energies. 2023; 16(7):3027. https://doi.org/10.3390/en16073027
Chicago/Turabian StyleKligman, Amitay, Arbel Yaniv, and Yuval Beck. 2023. "Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers" Energies 16, no. 7: 3027. https://doi.org/10.3390/en16073027
APA StyleKligman, A., Yaniv, A., & Beck, Y. (2023). Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers. Energies, 16(7), 3027. https://doi.org/10.3390/en16073027