Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Examined Samples
2.2. Sample Preparation
2.3. Sample Characteristics
2.4. Mild Pyrolysis Procedure
3. Results and Discussion
3.1. Mercury Removal Effectiveness from Solid Fuel Samples Analyzed by a Mild Pyrolysis Process
- ηHg is the mercury removal effectiveness from analyzed fuel samples in mild pyrolysis process (%);
- Hgraw is the mercury content in the sample before mild pyrolysis (µg Hg/kg);
- Hgmp is the mercury content in the sample after mild pyrolysis (µg Hg/kg);
- qp,net,ad_raw is the lower heating values of the sample before mild pyrolysis (MJ/kg);
- qp,net,ad_mp is the lower heating values of the sample after mild pyrolysis (MJ/kg).
3.2. Influence of Mercury Content in Fuel Samples Analyzed on Its Removal Effectiveness in the Mild Pyrolysis Process
3.3. Possibility of Reducing Mercury Emissions through the Use of Chars Obtained from the Mild Pyrolysis Process
3.4. Additional Benefits of the Mild Pyrolysis Process
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eisler, R. Mercury Hazards to Living Organisms; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–312. [Google Scholar] [CrossRef]
- UN Environment. Global Mercury Assessment—2018; UN Environment Programme Chemicals and Health Branch: Geneva, Switzerland, 2019. [Google Scholar]
- National Centre for Emissions Management (KOBiZE). Poland’s Informative Inventory Report 2022—Submission under the UNECE CLRTAP and NEC Directive; Ministry of Climate and Environment: Warsaw, Poland, 2022.
- Jiang, X.; Wang, F. Mercury emissions in China: A general review. Waste Dispos. Sustain. Energy 2019, 1, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Teng, Y.; Zhang, K.; Peng, H.; Cheng, F.; Yoshikawa, K. Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant. Energies 2020, 13, 1040. [Google Scholar] [CrossRef] [Green Version]
- BAT-LCP, Commission Implementing Decision (EU) 2017/1442 of 31 July 2017 Establishing Best Available Techniques (BAT) Conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for Large Combustion Plants. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017D1442 (accessed on 1 March 2023).
- Pavlish, J.H.; Sondreal, E.A.; Mann, M.D.; Olson, E.S.; Galbreath, K.C.; Laudal, D.L.; Benson, S.A. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 2003, 82, 89–165. [Google Scholar] [CrossRef]
- Joy, A.; Qureshi, A. Reducing mercury emissions from coal-fired power plants in India: Possibilities and challenges. Ambio 2023, 52, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Zajusz-Zubek, E.; Konieczyński, J. Coal cleaning versus the reduction of mercury and other trace elements’ emissions from coal combustion processes. Arch. Environ. Prot. 2014, 40, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yanai, R.D.; Driscoll, C.T.; Montesdeoca, M.; Smith, K.T. Concentrations and content of mercury in bark, wood, and leaves in hardwoods and conifers in four forested sites in the northeastern USA. PLoS ONE 2018, 13, 0196293. [Google Scholar] [CrossRef] [Green Version]
- Commission Implementing Regulation (EU) 2022/2448 of 13 December 2022 on Establishing Operational Guidance on the Evidence for Demonstrating Compliance with the Sustainability Criteria for Forest Biomass Laid Down in Article 29 of Directive (EU) 2018/2001 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R2448 (accessed on 1 March 2023).
- Dziok, T.; Kołodziejska, E.K.; Kołodziejska, E.L. Mercury Content in Woody Biomass and Its Removal in the Torrefaction Process. Biomass Bioenergy 2020, 143, 105832. [Google Scholar] [CrossRef]
- Chiarantini, L.; Rimondi, V.; Benvenuti, M.; Beutel, M.W.; Costagliola, P.; Gonnelli, C.; Lattanzi, P.; Paolieri, M. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci. Total Environ. 2016, 569, 105–113. [Google Scholar] [CrossRef]
- Psomopoulos, C.S.; Kiskira, K.; Kalkanis, K.; Leligou, H.C.; Themelis, N.J. The Role of Energy Recovery from Wastes in the Decarbonization Efforts of the EU Power Sector. IET Renew. Power Gener. 2022, 16, 48–64. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Bytnar, K.; Burmistrz, P. Possibility of Using Alternative Fuels in Polish Power Plants in the Context of Mercury Emissions. Waste Manag. 2021, 126, 578–584. [Google Scholar] [CrossRef]
- Lee, S.-S.; Wilcox, J. Behavior of mercury emitted from the combustion of coal and dried sewage sludge: The effect of unburned carbon, Cl, Cu and Fe. Fuel 2017, 203, 749–756. [Google Scholar] [CrossRef]
- Tao, Z.; Dai, S.; Chai, X. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review. Atmos. Environ. 2017, 170, 303–311. [Google Scholar] [CrossRef]
- ISO 21640:2021; Solid Recovered Fuels—Specifications and Classes. ISO: London, UK, 2021.
- Misztal, E.; Chmielniak, T.; Mazur, I.; Sajdak, M. The Release and Reduction of Mercury from Solid Fuels through Therma Treatment Prior to Combustion. Energies 2022, 15, 7987. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Sokhansanj, S.; Hess, J.R.; Wright, C.T.; Boardman, R.D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2021, 7, 384–401. [Google Scholar] [CrossRef] [Green Version]
- Dziok, T.; Bury, M.; Burmistrz, P. Mercury release from municipal solid waste in the thermal treatment process. Fuel 2022, 329, 125528. [Google Scholar] [CrossRef]
- Chiarantini, L.; Rimondi, V.; Bardelli, F.; Benvenuti, M.; Cosio, C.; Costagliola, P.; Di Benedetto, F.; Lattanzi, P.; Sarret, G. Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study. Environ. Pollut. 2017, 227, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Xue, M.; Wang, S.; Huang, C. Determination of heavy metals (Pb, Cd, Cr and Hg) in printed paper as food packaging materials and analysis of their sources. CIESC J. 2010, 12, 32. [Google Scholar]
- Tian, Z.; Yang, Y.; Wang, L. An improved method for assessing environmental impacts caused by chemical pollutants: A case study in textiles production. Toxicol. Ind. Health 2020, 36, 228–236. [Google Scholar] [CrossRef]
- Rezić, I. Historical Textiles and Their Characterization; Cambridge Scholars Publishing: Cambridge, UK, 2022. [Google Scholar]
- Turner, A.; Filella, M. Hazardous Metal Additives in Plastics and Their Environmental Impacts. Environ. Int. 2021, 156, 106622. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, L.; Geng, Y.; Wang, N.; Mao, Y.; Cai, Y. Occurrence, Speciation and Fate of Mercury in the Sewage Sludge of China. Ecotoxicol. Environ. Saf. 2019, 186, 109787. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Liu, G.; Qi, C.; Zhang, Y.; Wong, M. The use of sequential extraction to determine the distribution and modes of occurrence of Mercury in Permian Huaibei coal, Anhui Province, China. Int. J. Coal Geol. 2008, 73, 139–155. [Google Scholar] [CrossRef]
- Ding, Z.; Zheng, B.; Long, J.; Belkin, H.E.; Finkelman, R.B.; Chen, C.; Zhou, D.; Zhou, Y. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Appl. Geochem. 2001, 16, 1353–1360. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Mercury in coal: A review—Part 1. Geochemistry. Int. J. Coal Geol. 2005, 62, 107–134. [Google Scholar] [CrossRef]
- Dziok, T. Thermal removal of mercury from hard coal and biomass. Przemysł Chem. 2019, 98, 1757–1759. [Google Scholar] [CrossRef]
- Sotiropoulou, R.E.P.; Serafidou, M.; Skodras, G. Thermal mercury removal from coals: Effect of pyrolysis conditions and kinetic analysis. Fuel 2019, 238, 44–50. [Google Scholar] [CrossRef]
- Bury, M.; Dziok, T.; Borovec, K.; Burmistrz, P. Influence of RDF Composition on Mercury Release during Thermal Pretreatment. Energies 2023, 16, 772. [Google Scholar] [CrossRef]
- Merdes, A.C.; Keener, T.C.; Khang, S.-J.; Jenkins, R.G. Investigation into the fate of mercury in bituminous coal during mild pyrolysis. Fuel 1998, 77, 1783–1792. [Google Scholar] [CrossRef]
- Chatziaras, N.; Psomopoulos, C.S.; Themelis, N.J. Use of Waste Derived Fuels in Cement Industry: A Review. Manag. Environ. Qual. Int. J. 2016, 27, 178–193. [Google Scholar] [CrossRef]
- Pilar, L.; Borovec, K.; Szeliga, Z.; Górecki, J. Mercury Emission from Three Lignite-Fired Power Plants in the Czech Republic. Fuel Process. Technol. 2021, 212, 106628. [Google Scholar] [CrossRef]
- Wichliński, M.; Wielgosz, G.; Kobyłecki, R. The effect of circulating fluidized bed boiler load on the emission of mercury. J. Energy Inst. 2019, 92, 1800–1806. [Google Scholar] [CrossRef]
- Li, H.; Huang, G.; Yang, Q.; Zhao, J.; Liu, Z.; Yang, J. Numerical simulation of sorbent injection for mercury removal within an electrostatic precipitator: In-flight plus wall-bounded mechanism. Fuel 2022, 309, 122142. [Google Scholar] [CrossRef]
- Shen, A.; Wang, Y.; Wang, R.; Duan, Y.; Tao, J.; Gu, X.; Wang, P.; Xu, Z. Numerical Simulation of Sorbent Injection into Flue Gas for Mercury Removal in Coal-Fired Power Plant. Part 2. Operational Parameters and Optimization. Fuel 2022, 326, 124990. [Google Scholar] [CrossRef]
- Iwashita, A.; Tanamachi, S.; Nakajima, T.; Takanashi, H.; Ohki, A. Removal of Mercury from Coal by Mild Pyrolysis and Leaching Behavior of Mercury. Fuel 2004, 83, 631–638. [Google Scholar] [CrossRef]
- Chmielniak, T. Reduction of Mercury Emissions to the Atmosphere from Coal Combustion Processes of Using Low-Temperature Pyrolysis—A Concept of Process Implementation on a Commercial Scale. Rynek Energii 2011, 93, 176–181. [Google Scholar]
- Jastrząb, K.; Mazurek, I. The Study of Thermal Desorption of Mercury Compounds from Spent Active Cokes Used for Exhaust Gas Treatment in Waste Incineration Plants. Inżynieria I Ochr. Sr. 2013, 16, 273–285. [Google Scholar]
- Antuña-Nieto, C.; Rodríguez, E.; Lopez-Anton, M.A.; García, R.; Martínez-Tarazona, M.R. Noble Metal-Based Sorbents: A Way to Avoid New Waste after Mercury Removal. J. Hazard. Mater. 2020, 400, 123168. [Google Scholar] [CrossRef]
- Graydon, J.W.; Zhang, X.; Kirk, D.W.; Jia, C.Q. Sorption and stability of mercury on activated carbon for emission control. J. Hazard. Mater. 2009, 168, 978–982. [Google Scholar] [CrossRef]
- Bentley, M.; Fan, M.; Dutcher, B.; Tang, M.; Argyle, M.D.; Russell, A.G.; Zhang, Y.; Sharma, M.P.; Swapp, S.M. Catalytic regeneration of mercury sorbents. J. Hazard. Mater. 2013, 262, 642–648. [Google Scholar] [CrossRef]
- Chalkidis, A.; Jampaiah, D.; Aryana, A.; Wood, C.D.; Hartley, P.G.; Sabri, Y.M.; Bhargava, S.K. Mercury-bearing wastes: Sources, policies and treatment technologies for mercury recovery and safe disposal. J. Environ. Manag. 2020, 270, e110945. [Google Scholar] [CrossRef]
- Zhang, X.; Kou, J.; Sun, C. A comparative study of the thermal decomposition of pyrite under microwave and conventional heating with different temperatures. J. Anal. Appl. Pyrolysis. 2019, 138, 41–53. [Google Scholar] [CrossRef]
- Stępień, P.; Białowiec, A. Kinetic parameters of torrefaction process of alternative fuel produced from municipal solid waste and characteristic of carbonized refuse derived fuel. Detritus 2018, 3, 75–83. [Google Scholar] [CrossRef]
- Özkan, A.; Banar, M.; Çokaygil, Z.; Tezer, Ö. Characterization of the pyrolysis products of RDF. In Proceedings of the 3rd International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS3), Nisyros, Greece, 7–9 July 2013. [Google Scholar]
- Czerski, G.; Śpiewak, K.; Grzywacz, P.; Wierońska-Wiśniewska, F. Assessment of the catalytic effect of various biomass ashes on CO2 gasification of tire char. J. Energy Inst. 2021, 99, 170–177. [Google Scholar] [CrossRef]
- Grzywacz, P.; Czerski, G.; Gańczarczyk, W. Effect of pyrolysis atmosphere on the gasification of waste tire char. Energies 2022, 15, 34. [Google Scholar] [CrossRef]
Fuel Type | Sample | Mad (%) | Aad 550 °C (%) | Aad 815 °C (%) | VMad (%) | qp.net.ad (kJ/kg) | Cad (%) | Had (%) | St.ad (%) | Hgad/qp.net.ad (µg/MJ) |
---|---|---|---|---|---|---|---|---|---|---|
Waste | RDF | 2.9 | 16.7 | 14.1 | 70.46 | 23,713 | 56.0 | 8.44 | 0.64 | 32.2 |
Waste paper | 6.7 | 15.7 | 13.2 | 71.32 | 14,067 | 39.5 | 6.99 | 0.11 | 1.3 | |
Sewage sludge | 10.6 | 30.3 | 25.5 | 50.95 | 12,284 | 30.6 | 4.82 | 1.14 | 37.6 | |
Rubber | 1.4 | 7.5 | 5.6 | 64.24 | 33,338 | 80.0 | 7.83 | 1.70 | 1.9 | |
Woody biomass | Hornbeam leaves | 7.0 | 4.1 | 3.1 | 72.54 | 16,356 | 45.5 | 6.22 | 0.12 | 2.6 |
Pine bark | 9.7 | 0.9 | 0.7 | 61.32 | 17,900 | 50.2 | 5.66 | 0.02 | 2.2 | |
Spruce bark | 8.1 | 1.3 | 1.0 | 66.21 | 17,413 | 47.7 | 6.19 | 0.02 | 1.0 | |
Coal | Coal-1 | 9.1 | ND | 7.1 | 31.94 | 23,179 | 63.4 | 3.79 | 1.02 | 1.8 |
Coal-2 | 3.3 | ND | 29.2 | 24.22 | 19,430 | 53.2 | 3.31 | 0.93 | 5.0 | |
Coal-3 | 2.4 | ND | 35.2 | 21.63 | 18,208 | 49.6 | 3.02 | 0.60 | 11.1 | |
Coal-4 | 2.0 | ND | 8.1 | 27.83 | 29,716 | 78.4 | 4.80 | 0.68 | 2.2 | |
Coal-5 | 1.3 | ND | 6.4 | 18.94 | 31,091 | 83.8 | 4.40 | 0.43 | 1.5 | |
Coal-6 | 1.5 | ND | 10.0 | 21.10 | 29,762 | 79.0 | 4.37 | 0.58 | 6.4 |
Group of Mercury Compounds | Temperature Range for Mercury Compound Release | ||
---|---|---|---|
Biomass [32] | Waste [21] | Coal [33] | |
Low release temperature (LRT) | up to 250 °C | up to 200 °C | up to 300 °C |
Medium release temperature (MRT) | 200–350 °C | 200–300 °C | 300–600 °C |
High release temperature (HRT) | above 350 °C | above 300 °C | above 600 °C |
Sample | Mad (%) | Aad 550 °C (%) | Aad 815 °C (%) | VMad (%) | qp.net.ad (kJ/kg) | Cad (%) | Had (%) | St.ad (%) |
---|---|---|---|---|---|---|---|---|
RDF char | 1.1 | 38.6 | 32.5 | 53.33 | 21,238 | 51.7 | 6.42 | 0.49 |
Waste paper char | 2.5 | 29.1 | 24.5 | 54.47 | 15,697 | 44.4 | 3.97 | 0.07 |
Sewage sludge char | 2.5 | 44.0 | 37.1 | 37.82 | 13,516 | 35.0 | 3.37 | 0.96 |
Rubber char | 0.7 | 8.6 | 6.4 | 60.88 | 33,261 | 79.0 | 7.91 | 1.50 |
Hornbeam leaves char | 0.5 | 5.4 | 4.0 | 65.48 | 20,341 | 53.4 | 6.15 | 0.13 |
Pine bark char | 0.5 | 1.1 | 0.8 | 61.19 | 22,396 | 58.3 | 5.71 | 0.02 |
Spruce bark char | 0.5 | 1.9 | 1.4 | 64.17 | 21,292 | 57.1 | 6.23 | 0.02 |
Coal-1 char | 1.1 | ND | 7.4 | 32.70 | 26,189 | 71.2 | 4.08 | 0.82 |
Coal-2 char | 0.6 | ND | 29.3 | 23.38 | 20,338 | 56.0 | 3.27 | 0.95 |
Coal-3 char | 1.1 | ND | 37.0 | 20.86 | 18,378 | 50.7 | 2.96 | 0.61 |
Coal-4 char | 0.4 | ND | 6.9 | 28.10 | 30,494 | 80.3 | 4.73 | 0.68 |
Coal-5 char | 0.6 | ND | 6.6 | 18.88 | 31,771 | 83.9 | 4.17 | 0.42 |
Coal-6 char | 0.4 | ND | 10.0 | 21.18 | 30,113 | 82.8 | 4.49 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziok, T. Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process. Energies 2023, 16, 3046. https://doi.org/10.3390/en16073046
Dziok T. Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process. Energies. 2023; 16(7):3046. https://doi.org/10.3390/en16073046
Chicago/Turabian StyleDziok, Tadeusz. 2023. "Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process" Energies 16, no. 7: 3046. https://doi.org/10.3390/en16073046
APA StyleDziok, T. (2023). Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process. Energies, 16(7), 3046. https://doi.org/10.3390/en16073046