The “Smart” Concept from an Electrical Sustainability Viewpoint
Abstract
:1. Introduction
2. Overview of the “Smart” Concept
2.1. Sensors
2.2. Communications Infrastructure
2.3. Decision Making
2.4. Power Usage and the Smartification
3. Hierarchical Application of Smart Technologies
3.1. Smart Devices
3.2. Smart Homes
3.3. Smart Buildings
- Smart energy management
- Comfort of the inhabitants
- Response to natural disasters
- Waste treatment
- Sustainability
3.4. Smart Cities
3.5. Smart Grids
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AC | Alternating Current |
AI | Artificial Intelligence |
AmI | Ambient Intelligence |
AMI | Advanced Metering Infrastructure |
BEM | Building Energy Modeling |
BIM | Building Information Modeling |
ERP | Enterprise Resource Planning |
HES | Head End System |
IoT | Internet of Things |
IEC | International Electrotechnical Commission |
ISO | International Organization for Standardization |
KDD | Knowledge Discovery in Databases |
M2M | machine-to-machine |
MES | Manufacturing Execution and System |
PV | Photovoltaic |
UN | United Nations |
V2G | Vehicle to Grid |
References
- UN Water. Water, Food and Energy. Available online: https://www.unwater.org/water-facts/water-food-and-energy (accessed on 21 January 2022).
- Masera, M.; Bompard, E.F.; Profumo, F.; Hadjsaid, N. Smart (electricity) grids for smart cities: Assessing roles and societal impacts. Proc. IEEE 2018, 106, 613–625. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Ishii, H.; Hayashi, Y. Designing sustainable smart cities: Cooperative energy management systems and applications. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 1256–1270. [Google Scholar] [CrossRef]
- Şerban, A.C.; Lytras, M.D. Artificial intelligence for smart renewable energy sector in europe—smart energy infrastructures for next generation smart cities. IEEE Access 2020, 8, 77364–77377. [Google Scholar] [CrossRef]
- Chou, J.S.; Hsu, S.C.; Ngo, N.T.; Lin, C.W.; Tsui, C.C. Hybrid machine learning system to forecast electricity consumption of smart grid-based air conditioners. IEEE Syst. J. 2019, 13, 3120–3128. [Google Scholar] [CrossRef]
- Sojan, S.; Kulkarni, R.K. A Comprehensive Review of energy harvesting techniques and its potential applications. Int. J. Comput. Appl. 2016, 139, 14–19. [Google Scholar] [CrossRef]
- Jozić, S.; Bajić, D.; Dumanić, I.; Bagavac, Ž. Optimization for an efficient and highly productive turning process. Rep. Mech. Eng. 2021, 2, 212–221. [Google Scholar] [CrossRef]
- Roberto, M.; Araújo, A.; Varela, M.L.; Machado, J.; Mendonça, J.P. Methods time measurement on the optimization of a productive process: A case study. In Proceedings of the 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017; IEEE: New York, NY, USA, 2017; pp. 0980–0985. [Google Scholar]
- Mohamed, M.A.; Abdullah, H.M.; El-Meligy, M.A.; Sharaf, M.; Soliman, A.T.; Hajjiah, A. A novel fuzzy cloud stochastic framework for energy management of renewable microgrids based on maximum deployment of electric vehicles. Int. J. Electr. Power Energy Syst. 2021, 129, 106845. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 2016, 127, 19–36. [Google Scholar] [CrossRef]
- Formela, K. Sustainable development of waste tires recycling technologies–recent advances, challenges and future trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. [Google Scholar] [CrossRef]
- Miura, H. What is robot intelligence. In Proceedings of the ETFA ’94: 1994 IEEE Symposium on Emerging Technologies and Factory Automation—(SEIKEN) Symposium)—Novel Disciplines for the Next Century—Proceedings, Tokyo, Japan, 6–10 November 1994; pp. 2–9. [Google Scholar] [CrossRef]
- Longo, M.; Zaninelli, D.; Roscia, M.; Lazaroiu, G.C. Smart planning for ecoefficient cities. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23 October 2013; IEEE: New York, NY, USA, 2013; pp. 366–370. [Google Scholar]
- Raff, S.; Wentzel, D.; Obwegeser, N. Smart Products: Conceptual Review, Synthesis, and Research Directions*. J. Prod. Innov. Manag. 2020, 37, 379–404. [Google Scholar] [CrossRef]
- Molina, A.; Ponce, P.; Miranda, J.; Cortés, D. Enabling Systems for Intelligent Manufacturing in Industry 4.0: Sensing, Smart and Sustainable Systems for the Design of S3 Products, Processes, Manufacturing Systems, and Enterprises; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Cortés, D.; Ramírez, J.; Ponce, P.; Molina, A. S3 Manufacturing Process Taxonomy. J. Manuf. Process. 2021, 67, 579–610. [Google Scholar] [CrossRef]
- Büyük, M.; Avşar, E.; İnci, M. Overview of Smart Home Concepts through Energy Management Systems, Numerical Research, and Future Perspective. Energy Sources Part Recover. Util. Environ. Eff. 2022, 1–26. [Google Scholar] [CrossRef]
- Szewczenko, A. The Concept of Smart City in Terms of Improving the Quality and Accessibility of Urban Space for the Elderly; Literature Review. Archit. Civ. Eng. Environ. 2020, 13, 27–35. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; Vettorato, D. Defining smart city. A conceptual framework based on keyword analysis. TeMA J. Land Use Mobil. Environ. 2014. [Google Scholar] [CrossRef]
- Materializing artificial intelligence. Nat. Mach. Intell. 2020, 2, 653. [CrossRef]
- Esmaeilian, B.; Wang, B.; Lewis, K.; Duarte, F.; Ratti, C.; Behdad, S. The Future of Waste Management in Smart and Sustainable Cities: A Review and Concept Paper. Waste Manag. 2018, 81, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Qadir, Z.; Ullah, F.; Munawar, H.S.; Al-Turjman, F. Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Comput. Commun. 2021, 168, 114–135. [Google Scholar] [CrossRef]
- Zhou, S.; Hu, Z.; Gu, W.; Jiang, M.; Zhang, X.P. Artificial intelligence based smart energy community management: A reinforcement learning approach. CSEE J. Power Energy Syst. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Ram, S.K.; Das, B.B.; Mahapatra, K.; Mohanty, S.P.; Choppali, U. Energy perspectives in IoT driven smart villages and smart cities. IEEE Consum. Electron. Mag. 2020, 10, 19–28. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Islam, S.N.; Lilley, I. A smart energy hub for smart cities: Enabling peer-to-peer energy sharing and trading. IEEE Consum. Electron. Mag. 2021, 10, 97–105. [Google Scholar] [CrossRef]
- Arun, S.; Selvan, M. Intelligent residential energy management system for dynamic demand response in smart buildings. IEEE Syst. J. 2017, 12, 1329–1340. [Google Scholar] [CrossRef]
- Humayun, M.; Alsaqer, M.S.; Jhanjhi, N. Energy Optimization for Smart Cities Using IoT. Appl. Artif. Intell. 2022, 36, 2037255. [Google Scholar] [CrossRef]
- Nesmachnow, S.; Colacurcio, G.; Rossit, D.G.; Toutouh, J.; Luna, F. Optimizing household energy planning in smart cities: A multiobjective approach. Rev. Fac. Ing. Univ. Antioq. 2021, 8–19. [Google Scholar] [CrossRef]
- Shareef, H.; Ahmed, M.S.; Mohamed, A.; Al Hassan, E. Review on home energy management system considering demand responses, smart technologies, and intelligent controllers. IEEE Access 2018, 6, 24498–24509. [Google Scholar] [CrossRef]
- Chan, J.; Ip, R.; Cheng, K.; Chan, K.S. Advanced metering infrastructure deployment and challenges. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; IEEE: New York, NY, USA, 2019; pp. 435–439. [Google Scholar]
- Buzau, M.M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gómez-Expósito, A. Hybrid deep neural networks for detection of non-technical losses in electricity smart meters. IEEE Trans. Power Syst. 2019, 35, 1254–1263. [Google Scholar] [CrossRef]
- Abdulla, G. The deployment of advanced metering infrastructure. In Proceedings of the 2015 First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 22–23 March 2015; IEEE: New York, NY, USA, 2015; pp. 1–3. [Google Scholar]
- Körner, M.F.; Bauer, D.; Keller, R.; Rösch, M.; Schlereth, A.; Simon, P.; Bauernhansl, T.; Fridgen, G.; Reinhart, G. Extending the automation pyramid for industrial demand response. Procedia CIRP 2019, 81, 998–1003. [Google Scholar] [CrossRef]
- Javadinasab Hormozabad, S.; Gutierrez Soto, M.; Adeli, H. Integrating structural control, health monitoring, and energy harvesting for smart cities. Expert Syst. 2021, 38, e12845. [Google Scholar] [CrossRef]
- Low, K.S.; Win, W.N.N.; Er, M.J. Wireless sensor networks for industrial environments. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; IEEE: New York, NY, USA, 2005; Volume 2, pp. 271–276. [Google Scholar]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2018, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.; Alhadad, R.; Chilamkurti, N.; Mahmood, A. A survey of privacy preserving schemes in IoE enabled smart grid advanced metering infrastructure. Clust. Comput. 2019, 22, 43–69. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, S.; Bhattacharjee, P. Real time monitoring of AMR enabled energy meter for AMI in smart city-an IoT application. In Proceedings of the 2018 IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS), Hyderabad, India, 17–19 December 2018; IEEE: New York, NY, USA, 2018; pp. 219–222. [Google Scholar]
- Mohammadi, F.; Rashidzadeh, R. An overview of IoT-enabled monitoring and control systems for electric vehicles. IEEE Instrum. Meas. Mag. 2021, 24, 91–97. [Google Scholar] [CrossRef]
- Din, I.U.; Guizani, M.; Hassan, S.; Kim, B.S.; Khan, M.K.; Atiquzzaman, M.; Ahmed, S.H. The Internet of Things: A review of enabled technologies and future challenges. IEEE Access 2018, 7, 7606–7640. [Google Scholar] [CrossRef]
- Farooq, M.U.; Waseem, M.; Mazhar, S.; Khairi, A.; Kamal, T. A review on internet of things (IoT). Int. J. Comput. Appl. 2015, 113, 1–7. [Google Scholar]
- International Standard 30118-5; Information Technology—Open Connectivity Foundation (OCF) Specification. ISO/IEC: Geneva, Switzerland, 2021.
- Pitatzis, S.; Drosos, N.; Goumopoulos, C.; Kameas, A. AmIoT: A microservices-based IoT platform to orchestrate AmI environments. In Proceedings of the 2020 16th International Conference on Intelligent Environments (IE), Madrid, Spain, 20–23 July 2020; IEEE: New York, NY, USA, 2020; pp. 21–28. [Google Scholar]
- Marinakis, V.; Doukas, H. An advanced IoT-based system for intelligent energy management in buildings. Sensors 2018, 18, 610. [Google Scholar] [CrossRef] [Green Version]
- Alamri, A.; Ansari, W.S.; Hassan, M.M.; Hossain, M.S.; Alelaiwi, A.; Hossain, M.A. A survey on sensor-cloud: Architecture, applications, and approaches. Int. J. Distrib. Sens. Netw. 2013, 9, 917923. [Google Scholar] [CrossRef]
- Abbas, S.; Khan, M.A.; Falcon-Morales, L.E.; Rehman, A.; Saeed, Y.; Zareei, M.; Zeb, A.; Mohamed, E.M. Modeling, simulation and optimization of power plant energy sustainability for IoT enabled smart cities empowered with deep extreme learning machine. IEEE Access 2020, 8, 39982–39997. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent edge computing for IoT-based energy management in smart cities. IEEE Netw. 2019, 33, 111–117. [Google Scholar] [CrossRef]
- Mohammadi, M.; Al-Fuqaha, A.; Guizani, M.; Oh, J.S. Semisupervised deep reinforcement learning in support of IoT and smart city services. IEEE Internet Things J. 2017, 5, 624–635. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, G.; Ravindran, V. IT service management automation and its impact to IT industry. In Proceedings of the 2017 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, India, 2–3 June 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Donepudi, P.K. Application of artificial intelligence in automation industry. Asian J. Appl. Sci. Eng. 2018, 7, 7–20. [Google Scholar]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Khan, S.; Paul, D.; Momtahan, P.; Aloqaily, M. Artificial intelligence framework for smart city microgrids: State of the art, challenges, and opportunities. In Proceedings of the 2018 third international conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; IEEE: New York, NY, USA, 2018; pp. 283–288. [Google Scholar]
- Shrouf, F.; Ordieres, J.; Miragliotta, G. Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Selangor, Malaysia, 9–12 December 2014; IEEE: New York, NY, USA, 2014; pp. 697–701. [Google Scholar]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Mohamed Shah, N. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Jannati, J.; Yazdaninejadi, A.; Talavat, V. Simultaneous Planning of Renewable/Non-Renewable Distributed Generation Units and Energy Storage Systems in Distribution Networks. Trans. Electr. Electron. Mater. 2017, 18, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Kuhlman, T.; Farrington, J. What is sustainability? Sustainability 2010, 2, 3436–3448. [Google Scholar] [CrossRef] [Green Version]
- Abdennahder, I.; Rodriguez, I.B.; Jmaiel, M. A decision approach for energy distribution management in smart cities. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Pau, France, 9–13 April 2018; pp. 1668–1673. [Google Scholar]
- Gandoman, F.H.; Ahmadi, A.; Sharaf, A.M.; Siano, P.; Pou, J.; Hredzak, B.; Agelidis, V.G. Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renew. Sustain. Energy Rev. 2018, 82, 502–514. [Google Scholar] [CrossRef]
- Bozchalui, M.C.; Hashmi, S.A.; Hassen, H.; Canizares, C.A.; Bhattacharya, K. Optimal operation of residential energy hubs in smart grids. IEEE Trans. Smart Grid 2012, 3, 1755–1766. [Google Scholar] [CrossRef]
- Paudyal, S.; Cañizares, C.A.; Bhattacharya, K. Optimal operation of industrial energy hubs in smart grids. IEEE Trans. Smart Grid 2014, 6, 684–694. [Google Scholar] [CrossRef]
- Silverio-Fernández, M.; Renukappa, S.; Suresh, S. What is a smart device?—A conceptualisation within the paradigm of the internet of things. Vis. Eng. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Sikder, A.K.; Petracca, G.; Aksu, H.; Jaeger, T.; Uluagac, A.S. A survey on sensor-based threats and attacks to smart devices and applications. IEEE Commun. Surv. Tutor. 2021, 23, 1125–1159. [Google Scholar] [CrossRef]
- Fan, Y.; Lee, J.H. A remotely controlled automated field measurement system for light extinction in coastal waters. Mar. Pollut. Bull. 2023, 186, 114423. [Google Scholar] [CrossRef] [PubMed]
- Callegaro, N.; Endrizzi, L.; Zaniboni, L.; Albatici, R. Management of indoor thermal conditions in heavy and lightweight buildings: An experimental comparison. In Sustainability in Energy and Buildings 2022; Springer: Cham, Switzerland, 2023; pp. 249–260. [Google Scholar]
- Vătăşoiu, R.I.; Brătulescu, R.A.; Mitroi, S.A.; Sachian, M.A.; Tudor, A.M.; Vintilă, A.G. The Importance of Security and Safety in a Smart City. In Proceedings of the Education, Research and Business Technologies: Proceedings of 21st International Conference on Informatics in Economy (IE 2022), Bucharest, Romania, 14 May 2022; Springer: Cham, Switzerland, 2023; pp. 11–23. [Google Scholar]
- Robles, R.J.; Kim, T.h.; Cook, D.; Das, S. A review on security in smart home development. Int. J. Adv. Sci. Technol. 2010, 15, 13–22. [Google Scholar]
- Senthil, M.; Krishnan, G.N.; Anitha, P.; Heena, S.; Sri, T.J. Smart Home Automation System Based on IOT. Recent Trends Androids IOS Appl. 2023, 4. [Google Scholar]
- Malik, I.; Bhardwaj, A.; Bhardwaj, H.; Sakalle, A. IoT-Enabled Smart Homes: Architecture, Challenges, and Issues. In Revolutionizing Industrial Automation through the Convergence of Artificial Intelligence and the Internet of Things; IGI International: Hershey, PA, USA, 2023; pp. 160–176. [Google Scholar]
- Zhang, X.; Ma, Z.; Zheng, H.; Li, T.; Chen, K.; Wang, X.; Liu, C.; Xu, L.; Wu, X.; Lin, D.; et al. The combination of brain-computer interfaces and artificial intelligence: Applications and challenges. Ann. Transl. Med. 2020, 8, 11. [Google Scholar] [CrossRef]
- Shvets, O.; Seebauer, M.; Naizabayeva, A.; Toleugazin, A. Monitoring and Control of Energy Consumption Systems, using Neural Networks. Acta Polytech. Hung. 2023, 20, 125–144. [Google Scholar]
- Arayici, Y.; Aouad, G. Building information modelling (BIM) for construction lifecycle management. Constr. Build. Des. Mater. Tech. 2010, 2010, 99–118. [Google Scholar]
- Martínez-Aires, M.D.; López-Alonso, M.; Martínez-Rojas, M. Building information modeling and safety management: A systematic review. Saf. Sci. 2018, 101, 11–18. [Google Scholar] [CrossRef]
- Guillen, A.; Crespo, A.; Gómez, J.; González-Prida, V.; Kobbacy, K.; Shariff, S. Building information modeling as assest management tool. IFAC-PapersOnLine 2016, 49, 191–196. [Google Scholar] [CrossRef]
- Naganathan, H.; Chong, W.O.; Chen, X. Building energy modeling (BEM) using clustering algorithms and semi-supervised machine learning approaches. Autom. Constr. 2016, 72, 187–194. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Lin, Y.H.; Kung, C.C.; Chung, M.H.; Yen, I.H. Design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes. Sensors 2019, 19, 2047. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Muhammad, K.; Lloret, J.; Baik, S.W. Intelligent and energy-efficient data prioritization in green smart cities: Current challenges and future directions. IEEE Commun. Mag. 2019, 57, 60–65. [Google Scholar] [CrossRef]
- Konstantinou, C. Toward a secure and resilient all-renewable energy grid for smart cities. IEEE Consum. Electron. Mag. 2021, 11, 33–41. [Google Scholar] [CrossRef]
- Tantau, A.; Şanta, A.M.I. New Energy Policy Directions in the European Union Developing the Concept of Smart Cities. Smart Cities 2021, 4, 241–252. [Google Scholar] [CrossRef]
- Tang, J. The Discussion on Hot Spot and Frontier of Energy Research in Smart Cities. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 631, p. 012085. [Google Scholar]
- Igbinovia, F.O.; Krupka, J.; Hajek, P.; Muller, Z.; Tlusty, J. Electricity storage in internet of renewable energy (IoRE) domain for sustainable smart cities. In Proceedings of the 2020 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, Czech Republic, 19–21 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Martins, F.; Patrão, C.; Moura, P.; de Almeida, A.T. A Review of Energy Modeling Tools for Energy Efficiency in Smart Cities. Smart Cities 2021, 4, 1420–1436. [Google Scholar] [CrossRef]
- Brutti, A.; De Sabbata, P.; Frascella, A.; Gessa, N.; Ianniello, R.; Novelli, C.; Pizzuti, S.; Ponti, G. Smart city platform specification: A modular approach to achieve interoperability in smart cities. In The Internet of Things for Smart Urban Ecosystems; Springer: Cham, Switzerland, 2019; pp. 25–50. [Google Scholar]
- Ko, E.; Han, M. The Overview of Smart City Convergence Service Platform. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; IEEE: New York, NY, USA, 2018; pp. 1494–1496. [Google Scholar]
- Dash, A. Modeling the moderating effect of technology anxiety on the relationship between smart city—Built environment and the quality of life of citizens. J. Facil. Manag. 2022; ahead of print. [Google Scholar] [CrossRef]
- Babar, M.; Khattak, A.S.; Jan, M.A.; Tariq, M.U. Energy aware smart city management system using data analytics and Internet of Things. Sustain. Energy Technol. Asses. 2021, 44, 100992. [Google Scholar] [CrossRef]
- International Standard 37120; Sustainable Cities and Communities—Indicators for City Services and Quality of Life. ISO: Geneva, Switzerland, 2018.
- Zhang, Q.S. Environment pollution analysis on smart cities using wireless sensor networks. Strateg. Plan. Energy Environ. 2023, 42, 239–262. [Google Scholar] [CrossRef]
- El Mrabet, Z.; Kaabouch, N.; El Ghazi, H.; El Ghazi, H. Cyber-security in smart grid: Survey and challenges. Comput. Electr. Eng. 2018, 67, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Ibarra, L.; Rosales, A.; Ponce, P.; Molina, A.; Ayyanar, R. Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment. Energies 2017, 10, 817. [Google Scholar] [CrossRef] [Green Version]
- Eseye, A.T.; Lehtonen, M.; Tukia, T.; Uimonen, S.; Millar, R.J. Machine learning based integrated feature selection approach for improved electricity demand forecasting in decentralized energy systems. IEEE Access 2019, 7, 91463–91475. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Vahidinasab, V. Overview of the optimal smart energy coordination for microgrid applications. IEEE Access 2019, 7, 163063–163084. [Google Scholar] [CrossRef]
- De Araújo, P.R.C.; Filho, R.H.; Rodrigues, J.J.; Oliveira, J.P.; Braga, S.A. Infrastructure for integration of legacy electrical equipment into a smart-grid using wireless sensor networks. Sensors 2018, 18, 1312. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Li, F. Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning. IEEE Trans. Smart Grid 2019, 11, 1066–1076. [Google Scholar] [CrossRef]
- Chawda, G.S.; Shaik, A.G.; Shaik, M.; Padmanaban, S.; Holm-Nielsen, J.B.; Mahela, O.P.; Kaliannan, P. Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration. IEEE Access 2020, 8, 146807–146830. [Google Scholar] [CrossRef]
- Forti, S. Keynote: The fog is rising, in sustainable smart cities. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; IEEE: New York, NY, USA, 2022; pp. 469–471. [Google Scholar]
- International Standard 15118-20; Road Vehicles—Vehicle to Grid Communication Interface—Part 20: 2nd Generation Network Layer and Application Layer Requirements. ISO: Geneva, Switzerland, 2022.
- Mültin, M.; Allerding, F.; Schmeck, H. Integration of electric vehicles in smart homes—An ICT-based solution for V2G scenarios. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Zhao, D.; Thakur, N.; Chen, J. Optimal design of energy storage system to buffer charging infrastructure in smart cities. J. Manag. Eng. 2020, 36, 04019048. [Google Scholar] [CrossRef]
- Yao, X.; Ma, S.C.; Fan, Y.; Zhu, L.; Su, B. An investigation of battery storage operating strategies in the context of smart cities. Ind. Manag. Data Syst. 2022; ahead of print. [Google Scholar] [CrossRef]
- Gorla, P.; Chamola, V. Battery lifetime estimation for energy efficient telecommunication networks in smart cities. Sustain. Energy Technol. Assessments 2021, 46, 101205. [Google Scholar] [CrossRef]
- Laroui, M.; Dridi, A.; Afifi, H.; Moungla, H.; Marot, M.; Cherif, M.A. Energy management for electric vehicles in smart cities: A deep learning approach. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; IEEE: New York, NY, USA, 2019; pp. 2080–2085. [Google Scholar]
- Babu, T.S.; Vasudevan, K.R.; Ramachandaramurthy, V.K.; Sani, S.B.; Chemud, S.; Lajim, R.M. A comprehensive review of hybrid energy storage systems: Converter topologies, control strategies and future prospects. IEEE Access 2020, 8, 148702–148721. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Li, G.; Zhao, D.; Tian, W. Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties. IEEE Trans. Ind. Electron. 2018, 66, 1565–1575. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Luo, H.; Zeng, X.; Yu, Z.; Liu, A.; Sangaiah, A.K. Mobility based trust evaluation for heterogeneous electric vehicles network in smart cities. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1797–1806. [Google Scholar] [CrossRef]
- Braman, J.; Brown, A.D. Death Analytics and the Potential Role in Smart Cities. In Encyclopedia of Data Science and Machine Learning; IGI Global: Hershey, PA, USA, 2023; pp. 2906–2916. [Google Scholar]
Classification | Approach | Supporting References |
---|---|---|
IoT | Information and communication technologies | [27,46,77] |
to enhance the quality and efficiency of | [52,75] | |
services and resources. | [43,76] | |
Infrastructure | Intended to facilitate mobility, | [34,57] |
improve energy efficiency and conservation, | ||
air and water quality, and data sharing. | ||
Data, processing, storage | Information gathering, processing, big data | [40,51] |
Minimize problems | Minimize energy consumption and waste, | [46] |
through resource optimization | ||
Life quality and services | Satisfying the needs and security of | [9,48,78] |
citizens, improve comfort | ||
Energy storage | Manage the collection of energy from renewable | [25,27,79] |
energy sources, supply clean electricity products | [80,81] | |
Efficiency | Adopt innovative technologies for energy optimization | [27,34] |
[51,82] | ||
Sustainability | Optimizing energy consumption and managing | [13,79,82] |
its generation, prioritizing alternative sources | [27,83,84] | |
[85,86,87] |
Classification | Approach | References |
---|---|---|
Alternative energy sources | Aimed to reduce CO2 emissions and transmission losses | [5,88,89] |
[54,75,91] | ||
Bi-directionality | Network users are both producers and consumers of energy | [75,91,92] |
Instrumentation | Allow monitoring and management of the energy flow, to prevent | [37,93,94] |
or promptly correct any inconvenience that may arise | ||
Security | Prevent accidents and ensure power quality | [95,96] |
Decision-making | Control systems must be able to act based on real-time data, | [91,94] |
forecasted scenarios, expected objectives, and sudden variations |
Approaches | Opportunities Areas | References |
---|---|---|
Human behavior | - The interest of society toward a sustainable future | [79,85] |
- Consumption habits and active users | [2] | |
- Public policies such as recycling | [3] | |
Alternatives power generators | - Power quality | [26,58,101] |
- Infrastructure | [55,95,103] | |
- Supply in low-generation situations | [81,104] | |
- Management of the generated energy | [54,99] | |
- Storage energy (batteries) | [95,100] | |
Electric vehicles | - In-vehicle energy storage | [9] |
- Ultra-fast charging system | [39] | |
- Infrastructure of the electrical network | [98] | |
- Data management in real-time | [102] | |
- Decision-making systems | [105] | |
Cybersecurity | - Data protection during transfer | [65,89] |
- Data protection in the storage system | [49] | |
- Point-to-point protection between devices | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanez-Caballero, I.; Ibarra, L.; Peña-Quintal, A.; Catzín-Contreras, G.; Ponce, P.; Molina, A.; Ramirez-Mendoza, R. The “Smart” Concept from an Electrical Sustainability Viewpoint. Energies 2023, 16, 3072. https://doi.org/10.3390/en16073072
Llanez-Caballero I, Ibarra L, Peña-Quintal A, Catzín-Contreras G, Ponce P, Molina A, Ramirez-Mendoza R. The “Smart” Concept from an Electrical Sustainability Viewpoint. Energies. 2023; 16(7):3072. https://doi.org/10.3390/en16073072
Chicago/Turabian StyleLlanez-Caballero, Ignacio, Luis Ibarra, Angel Peña-Quintal, Glendy Catzín-Contreras, Pedro Ponce, Arturo Molina, and Ricardo Ramirez-Mendoza. 2023. "The “Smart” Concept from an Electrical Sustainability Viewpoint" Energies 16, no. 7: 3072. https://doi.org/10.3390/en16073072
APA StyleLlanez-Caballero, I., Ibarra, L., Peña-Quintal, A., Catzín-Contreras, G., Ponce, P., Molina, A., & Ramirez-Mendoza, R. (2023). The “Smart” Concept from an Electrical Sustainability Viewpoint. Energies, 16(7), 3072. https://doi.org/10.3390/en16073072