Allowing Large Penetration of Concentrated RES in Europe and North Africa via a Hybrid HVAC-HVDC Grid
Abstract
:1. Introduction
2. Integrating an HVDC Network into the Existing HVAC Grid
3. Grid Calculations Related to RES Penetration
3.1. DC Bus Allocation Model
3.2. Electricity Matching Model
3.2.1. Pure AC Network
3.2.2. Hybrid AC and DC Network
4. Comparison of Possible Scenarios of RES Penetration in EU
4.1. Emissions
4.2. Percentage of RES in TFC
4.3. Reserve Margin
4.4. Carbon Emission over GDP
4.5. Investment for DC Lines
4.6. Investment for Additional Storages
4.7. Number of Deaths
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
DC Generator Buses | Longitude | Latitude | Carrier |
---|---|---|---|
Shetland | −1.27686 | 60.31516 | wind |
Oslo | 10.75211 | 59.92592 | wind |
Harspranget | 19.72371 | 67.57072 | wind |
North_sea_1 | 4.289222 | 53.94362 | wind |
North_sea_2 | 6.476374 | 54.80273 | wind |
Atlantic | −11.828 | 54.99067 | wind |
Morocco | −6.76444 | 33.77547 | solar |
Algeria | 5.991758 | 31.16178 | solar |
Tunisia | 9.73213 | 34.17042 | solar |
Libya | 18.10944 | 27.2245 | solar |
DC Generator Buses | Longitude | Latitude | DC Generator Buses | Longitude | Latitude |
---|---|---|---|---|---|
Vienna | 16.37979 | 48.20468 | Glasgow | −4.26822 | 55.86747 |
Sarajevo | 18.38017 | 43.85774 | Athens | 23.72802 | 37.9913 |
Brussels | 4.352742 | 50.85677 | Crete | 25.04414 | 35.1648 |
Zurich | 8.541149 | 47.38227 | Dublin | −6.28165 | 53.34433 |
Munich | 11.50861 | 48.12606 | Milan | 9.188647 | 45.48454 |
Bremen | 8.801285 | 53.10803 | Napoli | 14.27177 | 40.86158 |
Rostock | 12.06175 | 54.16894 | Sicily | 13.70237 | 37.6604 |
Jutland | 8.833933 | 56.07809 | Sardinia | 8.995972 | 40.22472 |
Tallinn | 24.74354 | 59.45514 | Amsterdam | 4.89869 | 52.37202 |
Cordoba | −4.78758 | 37.89018 | Oslo | 10.75211 | 59.92592 |
Madrid | −3.70397 | 40.41776 | Gdansk | 18.62038 | 54.35726 |
Abo | 22.26441 | 60.44973 | Malmo | 13.00493 | 55.61098 |
Toulouse | 1.440377 | 43.60758 | Jonkoping | 14.16623 | 57.7945 |
Paris | 2.344222 | 48.86394 | Uppsala | 17.6323 | 59.87092 |
Lille | 3.059241 | 50.6323 | Harspranget | 19.72371 | 67.57072 |
Corsica | 9.02502 | 42.18225 | |||
London | −0.07438 | 51.51363 |
Line | Resistance (Ω/km) | Length (km) | Number of Cables | Line | Resistance (Ω/km) | Length (km) | Number of Cables |
---|---|---|---|---|---|---|---|
Algeria-Sardinia | 0.6625 | 1000 | 4 | Sicily-Tunisia | 0.6625 | 1000 | 4 |
Sardinia-Corsica | 0.265 | 300 | 3 | Munich-Zurich | 0.33125 | 250 | 2 |
Corsica-Milan | 0.309167 | 350 | 3 | Zurich-Milan | 0.265 | 300 | 3 |
Munich-Rostock | 0.86125 | 650 | 2 | Milan-Vienna | 0.86125 | 650 | 2 |
Rostock-Malmo | 0.53 | 200 | 1 | Vienna-Gdansk | 1.9875 | 750 | 1 |
Malmo-Jonkoping | 0.6625 | 250 | 1 | Gdansk-Tallinn | 1.59 | 600 | 1 |
Jonkoping-Harspranget | 2.65 | 1000 | 1 | Tallinn-Abo | 0.795 | 300 | 1 |
Jonkoping-Uppsala | 1.06 | 400 | 1 | Abo-Harspranget | 1.59 | 600 | 1 |
Uppsala-Abo | 0.6625 | 250 | 1 | Lille-Brussels | 0.265 | 100 | 1 |
London-Glasgow | 1.4575 | 550 | 1 | Brussels-Amsterdam | 0.265 | 200 | 2 |
Glasgow-Shetland | 1.855 | 700 | 1 | Amsterdam-Bremen | 0.795 | 300 | 1 |
London-Lille | 0.220833 | 250 | 3 | Bremen-Rostock | 0.33125 | 250 | 2 |
Munich-Lille | 0.795 | 600 | 2 | Rostock-Gdansk | 1.59 | 600 | 1 |
Lille-Paris | 0.265 | 200 | 2 | Sardinia-Napoli | 0.6625 | 250 | 1 |
Paris-Toulouse | 0.795 | 600 | 2 | Napoli-Athens | 1.59 | 600 | 1 |
Toulouse-Milan | 1.7225 | 650 | 1 | Glasgow-Atlantic | 1.325 | 500 | 1 |
Toulouse-Madrid | 0.795 | 600 | 2 | Atlantic-Dublin | 0.33125 | 250 | 2 |
Madrid-Cordoba | 0.309167 | 350 | 3 | Dublin-London | 0.59625 | 450 | 2 |
Cordoba-Marocco | 0.6625 | 1000 | 4 | London-North_sea_1 | 0.265 | 300 | 3 |
Munich-Vienna | 1.06 | 400 | 1 | London-Amsterdam | 1.06 | 400 | 1 |
Vienna-Sarajevo | 0.72875 | 550 | 2 | North_sea_1-North_sea_2 | 0.33125 | 250 | 2 |
Sarajevo-Athens | 0.750833 | 850 | 3 | North_sea_2-Jutland | 1.06 | 400 | 1 |
Athens-Crete | 0.19875 | 300 | 4 | Jutland-Oslo | 1.06 | 400 | 1 |
Crete-Libya | 0.6625 | 1000 | 4 | Oslo-Shetland | 2.7825 | 1050 | 1 |
Milan-Napoli | 0.618333 | 700 | 3 | Oslo-Jonkoping | 0.46375 | 350 | 2 |
Napoli-Sicily | 0.485833 | 550 | 3 | North_sea_2-Bremen | 0.220833 | 250 | 3 |
Country Name | Load-MaxFactor | Load-MinFactor | Country Name | Load-MaxFactor | Load-MinFactor |
---|---|---|---|---|---|
Austria | 1.456 | 0.632 | Hungary | 1.348 | 0.698 |
Belgium | 1.313 | 0.698 | Ireland | 1.347 | 0.649 |
ulgaria | 1.662 | 0.676 | Italy | 1.444 | 0.648 |
Czech Republic | 1.433 | 0.638 | Lithuania | 1.379 | 0.683 |
Germany | 1.285 | 0.595 | Luxembourg | 1.159 | 0.876 |
Denmark | 1.561 | 0.623 | Latvia | 1.411 | 0.649 |
Estonia | 1.178 | 0.775 | Netherlands | 1.291 | 0.722 |
Greece | 1.323 | 0.702 | Poland | 1.321 | 0.64 |
Spain | 1.16 | 0.677 | Portugal | 1.285 | 0.701 |
Finland | 1.418 | 0.713 | Romania | 1.339 | 0.706 |
France | 1.764 | 0.576 | Sweden | 1.654 | 0.614 |
Croatia | 1.501 | 0.643 | Slovenia | 1.4 | 0.711 |
Slovakia | 1.357 | 0.767 |
References
- Stollinger, R. The EU’s Most Urgent Industrial Mission: Zero Imports of Fossil Energy. Available online: https://wiiw.ac.at/the-eu-s-most-urgent-industrial-mission-zero-imports-of-fossil-energy-n-547.html (accessed on 29 November 2022).
- Wettengel, J. Germany and the EU Remain Heavily Dependent on Imported Fossil Fuels. Available online: https://www.cleanenergywire.org/factsheets/germanys-dependence-imported-fossil-fuels (accessed on 10 January 2023).
- ENTSO-E. Statistical Facts 2018-Provisional Values As of 5 June 2019; ENTSO-E: Brussels, Belgium, 2018. [Google Scholar]
- Li, X.; Yuan, Z.; Fu, J.; Wang, Y.; Liu, T.; Zhu, Z. Nanao multi-terminal VSC-HVDC project for integrating large-scale wind generation. In Proceedings of the 2014 IEEE PES General Meeting, Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- ENTSO-E. Bidding Zone Configuration Technical Report 2021: Regular Reporting on Bidding Zone Configuration; ENTSO-E: Brussels, Belgium, 2021. [Google Scholar]
- ENTSO-E. Completing the Map—Power System Needs in 2030 and 2040; ENTSO-E: Brussels, Belgium, 2020. [Google Scholar]
- Europe’s Future Secure and Sustainable Electricity Infrastructure—E-Highway2050 Project Results. Available online: http://www.e-highway2050.eu (accessed on 30 November 2022).
- Kalair, A.; Abas, N.; Khan, N. Comparative study of HVAC and HVDC transmission systems. Renew. Sustain. Energy Rev. 2016, 59, 1653–1675. [Google Scholar] [CrossRef]
- Halder, T. Comparative study of HVDC and HVAC for a bulk power transmission. In Proceedings of the 2013 International Conference on Power, Energy and Control (ICPEC), Dindigul, India, 6–8 February 2013; pp. 139–144. [Google Scholar]
- Hussein, I.I.; Essallah, S.; Khedher, A. Comparative study of HVDC and HVAC systems in presence of large scale renewable energy sources. In Proceedings of the 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 20–22 March 2020; pp. 225–230. [Google Scholar]
- Nguyen, M.H.; Saha, T.K.; Eghbal, M. A comparative study of voltage stability for long distance HVAC and HVDC interconnections. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Albannai, B. Comparative Study of HVAC and HVDC Transmission Systems With Proposed Machine Learning Algorithms for Fault Location Detection. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2019. [Google Scholar]
- Pillay, C.J. Transmission Systems: HVAC vs HVDC. In Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management Detroit, Michigan, MI, USA, 10–14 August 2021; Volume 2. [Google Scholar]
- Hussein, I.I.; Essallah, S.; Khedher, A. Improvement of the Iraqi Super Grid Performance Using HVDC/HVAC Links by the Integration of Large-Scale Renewable Energy Sources. Energies 2022, 15, 1142. [Google Scholar] [CrossRef]
- Moradi-Sepahvand, M.; Amraee, T. Hybrid AC/DC transmission expansion planning considering HVAC to HVDC conversion under renewable penetration. IEEE Trans. Power Syst. 2020, 36, 579–591. [Google Scholar] [CrossRef]
- Stanojev, O.; Garrison, J.; Hedtke, S.; Franck, C.M. Demiray. Benefit Analysis of a Hybrid HVAC/HVDC Transmission Line: A Swiss Case Study. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Siregar, Y.; Pardede, C. Study of Hybrid Transmission HVAC/HVDC by Particle Swarm Optimization (PSO). Energies 2022, 15, 7638. [Google Scholar] [CrossRef]
- Verseille, J.; Staschus, K. The Mesh-Up: ENTSO-E and European TSO Cooperation in Operations, Planning, and R&D. IEEE Power Energy Mag. 2015, 13, 20–29. [Google Scholar] [CrossRef]
- ENTSO-E. Market Report 2022; ENTSO-E: Brussels, Belgium, 2022. [Google Scholar]
- Semerow, A.; Höhn, S.; Luther, M.; Sattinger, W.; Abildgaard, H.; Garcia, A.D.; Giannuzzi, G. Dynamic Study Model for the interconnected power system of Continental Europe in different simulation tools. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Hutcheon, N.; Bialek, J.W. Updated and validated power flow model of the main continental European transmission network. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France, 16–20 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Glowacki Law Firm Report: European Network of Transmission System Operators for Electricity (ENTSO-E); ENTSO-E: Brussels, Belgium, 26 August 2015. Available online: https://emissions-euets.com/internal-electricity-market-glossary/894-european-network-of-transmission-system-operators-for-electricity-entso-e (accessed on 26 January 2023).
- European Commission. Transcontinental and Global Power Grids. Available online: https://ses.jrc.ec.europa.eu/transcontinental-and-global-power-grids (accessed on 15 October 2022).
- Tranberg, B.; Thomsen, A.B.; Rodriguez, R.A.; Andresen, G.B.; Schäfer, M.; Greiner, M. Power flow tracing in a simplified highly renewable European electricity network. New J. Phys. 2015, 17, 105002. [Google Scholar] [CrossRef]
- Raunbak, M.; Zeyer, T.; Zhu, K.; Greiner, M. Principal mismatch patterns across a simplified highly renewable European electricity network. Energies 2017, 10, 1934. [Google Scholar] [CrossRef] [Green Version]
- Asplund, G.; Jacobson, B.; Berggren, B.; Linden, K. Continental Overlay HVDC-Grid, Paris 2010. Available online: http://www.cigre.org (accessed on 22 August 2022).
- Jin, X.; Wen, Z.; Weidong, L.; Yan, L.; Xinshou, T.; Chao, L.; Linjun, W. Study on the driving force and challenges of developing power grid with high penetration of renewable energy. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 7–10 August 2017; pp. 1–5. [Google Scholar]
- Jafari, M.; Bompard, E.; Delmastro, C.; Botterud, A.; Grosso, D. Electrify Italy; Enel Foundation: Torino, Italy, 2020. [Google Scholar]
- Lei, X.; Huang, T.; Yang, Y.; Fang, Y.; Wang, P.A. A bi-layer multi-time coordination method for optimal generation and reserve schedule and dispatch of a grid-connected microgrid. IEEE Access 2019, 7, 44010–44020. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Dai, Y.M.; Song, X.F.; Sun, L.C.; Nie, H.Z. Research on the Economy of UHVDC Transmission under the Background of Global Energy Interconnect. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 439, p. 052022. [Google Scholar]
- European Environment Agency (EEA). Air Quality in Europe—2020 Report; European Environment Agency (EEA): Copenhagen, Denmark, 23 November 2020; Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 24 November 2020).
- European Environment Agency (EEA). National Emissions Reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism; European Environment Agency (EEA): Copenhagen, Denmark, 31 May 2022; Available online: https://www.eea.europa.eu/data-and-maps/data/national-emissions-reported-to-the-unfccc-and-to-the-eu-greenhouse-gas-monitoring-mechanism-18 (accessed on 31 May 2022).
- European Environment Agency (EEA). National Emission Reductions Commitments (NEC) Directive Emission Inventory Data; European Environment Agency (EEA): Copenhagen, Denmark, 30 August 2022; Available online: https://www.eea.europa.eu/data-and-maps/data/national-emission-ceilings-nec-directive-inventory-19 (accessed on 30 August 2022).
- Bompard, E.; Huang, T.; Yang, L. Market equilibrium under incomplete and imperfect information in bilateral electricity markets. IEEE Trans. Power Syst. 2011, 26, 1231–1240. [Google Scholar] [CrossRef]
- Huang, T.; Bompard, E.; Yan, Z. Congestion management impacts on bilateral electricity markets under strategic negotiation. Electr. Power Syst. Res. 2011, 81, 1161–1170. [Google Scholar] [CrossRef]
REF-2030 | REF-2050 | REG-2030 | MIX-2030 | MIX-CP-2030 | REF-2020 | |
---|---|---|---|---|---|---|
TFC (TWh) | 9769.3 | 8773.5 | 8954.5 | 9093.3 | 9227.8 | 10,301.4 |
GDP (G EUR 2015) | 14,813.6 | 19,466.4 | 14,813.6 | 14,813.6 | 14,813.6 | 12,459.5 |
REG-2030 Peak | REG-2030 Off-Peak | MIX-2030 Peak | MIX-2030 Off-Peak | MIX-CP-2030 Peak | MIX-CP-2030 Off-Peak | |
---|---|---|---|---|---|---|
transmission line | AC | AC | AC | AC | AC | AC |
Death from pollution (kpers) | 41.4 | 27.18 | 39 | 25.61 | 36.5 | 24.08 |
RES increased (%) | Wind +20% hydro +20% solar +20% | Wind +20% hydro +20% solar +20% | wind +20% hydro +20% solar +20% | wind +20% hydro +20% solar +20% | wind +20% hydro +20% solar +20% | wind +20% hydro +20% solar +20% |
Storage increased (%) | Battery +20% | Battery +15% | Battery +20% PHS +20% | Battery +15% | Battery +20% PHS +20% | Battery +15% |
Additional storage cost (G EUR) | 29 | 12.7 | 29 | 12.7 | 29 | 12.7 |
DC networks investment cost (G EUR) | 0 | 0 | 0 | 0 | 0 | 0 |
Total cost (G EUR) | 29 | 12.7 | 29 | 12.7 | 29 | 12.7 |
Most load-congested line (%) | 261.40% | 185.20% | 260.40% | 185.20% | 263.20% | 185.20% |
number of congested lines | 24 | 11 | 11 | 28 | 11 |
REG-2030 Peak | REG-2030 Off-Peak | MIX-2030 Peak | MIX-2030 Off-Peak | MIX-CP-2030 Peak | MIX-CP-2030 Off-Peak | |
---|---|---|---|---|---|---|
transmission line | AC + DC | AC + DC | AC + DC | AC + DC | AC + DC | AC + DC |
Death from pollution (kpers) | 41.47 | 27.5 | 39.74 | 25.2 | 36.28 | 24.03 |
RES increased (%) | wind −10% | wind −10% hydro −10% solar −10% | wind −5% | wind −8% | wind −2% | wind −8% |
Storage increased (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Additional storage cost (G EUR) | 0 | 0 | 0 | 0 | 0 | 0 |
DC networks investment cost (G EUR) | 282 | 282 | 282 | 282 | 282 | 282 |
Total cost (G EUR) | 282 | 282 | 282 | 282 | 282 | 282 |
Load most congested line (%) | 0% | 107.30% | 102.50% | 105.80% | 100.30% | 105.20% |
number of congested lines | 0 | 1 | 1 | 1 | 2 | 1 |
REF-2030 Peak | REF-2030 Peak | REF-2030 Peak | REF-2030 Peak | REF-2030 Peak | |
---|---|---|---|---|---|
transmission line | AC + DC | AC + DC | AC + DC | AC + DC | AC + DC |
RES penetration (%) | 88 | 83 | 78 | 73 | 68 |
Death from pollution (kpers) | 44.23 | 47.59 | 51.73 | 25.38 | 60.26 |
Additional storage cost (G EUR) | 0 | 0 | 0 | 0 | 0 |
DC networks investment cost (G EUR) | 282 | 282 | 282 | 282 | 282 |
Reserve margin (GW) | 378.3 | 371.9 | 363.5 | 354.9 | 346.3 |
number of congested lines | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Solida, L.; Huang, T.; Bompard, E. Allowing Large Penetration of Concentrated RES in Europe and North Africa via a Hybrid HVAC-HVDC Grid. Energies 2023, 16, 3138. https://doi.org/10.3390/en16073138
Wu H, Solida L, Huang T, Bompard E. Allowing Large Penetration of Concentrated RES in Europe and North Africa via a Hybrid HVAC-HVDC Grid. Energies. 2023; 16(7):3138. https://doi.org/10.3390/en16073138
Chicago/Turabian StyleWu, Haoke, Lorenzo Solida, Tao Huang, and Ettore Bompard. 2023. "Allowing Large Penetration of Concentrated RES in Europe and North Africa via a Hybrid HVAC-HVDC Grid" Energies 16, no. 7: 3138. https://doi.org/10.3390/en16073138
APA StyleWu, H., Solida, L., Huang, T., & Bompard, E. (2023). Allowing Large Penetration of Concentrated RES in Europe and North Africa via a Hybrid HVAC-HVDC Grid. Energies, 16(7), 3138. https://doi.org/10.3390/en16073138