Chemical Elements Content and Distributions within Different Tissue Types of White Spruce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stand Description
2.2. Sample Collection and Preparation
2.3. Chemical Analysis
2.4. Statistical Analyses
3. Results
3.1. Chemical Content of the White Spruce Tree
3.2. Variation of the Chemical Composition of White Spruce Trees with Tissue Types
3.3. Silvicultural Treatments’ Effects on Spruce Tree Chemical Composition in Different Tissues
3.4. Relationship between Tree Age and Height on the Chemical Composition of Spruce Trees in Different Tissues
4. Discussion
4.1. Content of C, H, and N in White Spruce and Impact of Drying Method
4.2. Variation of the Chemical Composition of White Spruce Tissue Types with Silvicultural Treatments
4.3. Variation of the Chemical Composition of White Spruce Trees with Tissue Types
4.4. Impact of Tree Age and Height on the Chemical Composition of White Spruce Tissues Type
5. Practical Implications and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erol, M.; Haykiri-Acma, H.; Küçükbayrak, S. Calorific value estimation of biomass from their proximate analyses data. Renew. Energy 2010, 35, 170–173. [Google Scholar] [CrossRef]
- Mvolo, C.S. Valorisation Thermochimique et Biochimique de la Biomasse Ligneuse Forestiere au Quebec: Possibles Implications Pour L’amenagement Forestier et les Industries Traditionnelles de la Fibre; Rapport de synthèse environnementale, Université du Québec à Montréal: Montréal, QC, Canada; Université du Québec en Abitibi-Témiscamingue: Rouyn-Noranda, QC, Canada, 2010; 64p. [Google Scholar]
- Brown, C.L. Secondary Growth. In Trees Structure and Function; Zimmermann, M.H., Brown, C.L., Eds.; Springer: New York, NY, USA, 1969; p. 336. [Google Scholar]
- Kramer, P.J.; Kozlowski, T.T. Physiology of Woody Plants; Academic Press, Inc.: New York, NY, USA, 1979. [Google Scholar]
- Lenz, P.; Cloutier, A.; MacKay, J.; Beaulieu, J. Genetic control of wood properties in Picea glauca—An analysis of trends with cambial age. Can. J. For. Res. 2010, 40, 703–715. [Google Scholar] [CrossRef]
- Larson, P.R.; Kretschmann, D.E.; Clark, A., III; Isebrands, J.G. Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis; General Technical Report, FPL-GTR-129; United States, Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2001; p. 42. [Google Scholar]
- Rossi, S.; Deslauriers, A.; Griçar, J.; Seo, J.W.; Rathgeber, C.B.K.; Anfodillo, T.; Morin, H.; Levanic, T.; Oven, P.; Jalkanen, R. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 2008, 17, 696–707. [Google Scholar] [CrossRef]
- Zink-Sharp, A. The Mechanical Properties of Wood. In Wood Quality and Its Biological Basis; Barnett, J.R., Jeronimidis, G., Eds.; Blackwell Publishing: Hoboken, NJ, USA; CRC Press: Oxford, UK, 2003; p. 226. [Google Scholar]
- Pereira, H.; Graça, J.; Rodrigues, J.C. Wood chemistry in relation to quality. In Wood Quality and Its Biological Basis; Barnett, J.R., Jeronimidis, G., Eds.; Blackwell: Oxford, UK, 2003; pp. 53–86. [Google Scholar]
- Petterson, R.C. The Chemical Composition of Wood. In The Chemistry of Solid Wood; Library of Congress Cataloging in Publication Data: Washington, DC, USA, 1984; p. 614. [Google Scholar]
- Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- Young, H.E.; Carpenter, P.N.; Altenberger, R.A. TB20: Preliminary Tables of Some Chemical Elements in Seven Tree Species in Maine; The University of Maine, Maine Agriculture Experiment Station Technical Bulletin 20: Orono, ME, USA, 1965; 93p. [Google Scholar]
- Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar] [CrossRef]
- Skovgaard, J.; Ferrari, S.S.; Knaggård, Å. Mapping and clustering the adoption of carbon pricing policies: What polities price carbon and why? Clim. Policy 2019, 19, 1173–1185. [Google Scholar] [CrossRef] [Green Version]
- Cambronero, M.; Avalos, G.; Alvarez-Vergnani, C. Variation in the Carbon Fraction of Seven Neotropical Palm Species of Different Forest Strata. Palms 2018, 62, 11. [Google Scholar]
- De Aza, C.H.; Turrión, M.B.; Pando, V.; Bravo, F. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Ann. For. Sci. 2011, 68, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Elias, M.; Potvin, C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can. J. For. Res. 2003, 33, 1039–1045. [Google Scholar] [CrossRef]
- Jones, D.A.; O’Hara, K.L. Variation in carbon fraction, density, and carbon density in conifer tree tissues. Forests 2018, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Lamlom, S.H.; Savidge, R.A. Carbon content variation in boles of mature sugar maple and giant sequoia. Tree Physiol. 2006, 26, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.R.; Gezahegn, S.; Thomas, S.C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Can. J. For. Res. 2015, 45, 744–757. [Google Scholar] [CrossRef]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, C.; Wang, X.; Quan, X. Carbon concentration variability of 10 Chinese temperate tree species. For. Ecol. Manag. 2009, 258, 722–727. [Google Scholar] [CrossRef]
- Bert, D.; Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For. Ecol. Manag. 2006, 222, 279–295. [Google Scholar] [CrossRef]
- Gao, B.; Taylor, A.R.; Chen, H.Y.H.; Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. For. Ecol. Manag. 2016, 375, 191–199. [Google Scholar] [CrossRef]
- Kraenzel, M.; Castillo, A.; Moore, T.; Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. For. Ecol. Manag. 2003, 173, 213–225. [Google Scholar] [CrossRef]
- Laiho, R.; Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. For. Ecol. Manag. 1997, 93, 161–169. [Google Scholar] [CrossRef]
- André, F.; Jonard, M.; Ponette, Q. Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. Sci. Total Environ. 2010, 408, 2285–2294. [Google Scholar] [CrossRef]
- Mvolo, C.S.; Stewart, J.D.; Helmeste, C.; Koubaa, A. Variation of White Spruce Carbon Content with Age, Height, Social Classes and Silvicultural Management. Energies 2021, 14, 8015. [Google Scholar] [CrossRef]
- Martin, A.R.; Thomas, S.C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiol. 2013, 33, 1338–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, A.R.; Thomas, S.C.; Zhao, Y. Size-dependent changes in wood chemical traits: A comparison of neotropical saplings and large trees. AoB Plants 2013, 5. [Google Scholar] [CrossRef]
- Merrill, W.; Cowling, E.B. Role of nitrogen in wood deterioration: Amounts and distribution of nitrogen in tree stems. Can. J. Bot. 1966, 44, 1555–1580. [Google Scholar] [CrossRef]
- Peri, P.L.; Gargaglione, V.; Martínez Pastur, G.; Lencinas, M.V. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For. Ecol. Manag. 2010, 260, 229–237. [Google Scholar] [CrossRef]
- Telmo, C.; Lousada, J.; Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [Google Scholar] [CrossRef]
- Bushnell, D.J.; Haluzok, C.; Dadkhah-Nikoo, A. Biomass Fuel Characterization: Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels: Final Report May 1, 1988-July, 1989; USDOE Bonneville Power Administration: Portland, OR, USA, 1898.
- Demirbas, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 2002, 20, 105–111. [Google Scholar] [CrossRef]
- Leckner, B.; Karlsson, M. Gaseous emissions from circulating fluidized bed combustion of wood. Biomass Bioenergy 1993, 4, 379–389. [Google Scholar] [CrossRef]
- Kretschmann, D.E. Mechanical Properties of Wood. In Wood Handbook, Wood as an Engineering Material; Ross, R.J., Ed.; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume FPL-GTR-190, p. 509. [Google Scholar]
- Ward, K.R.; Matejtschuk, P. The principles of freeze-drying and application of analytical technologies. In Cryopreservation and Freeze-Drying Protocols; Methods in Molecular Biology; Wolkers, W.F., Oldenhof, H., Eds.; Humana: New York, NY, USA, 2020; Volume 2180. [Google Scholar] [CrossRef]
- Nienstaedt, H.; Zasada, J.C. White spruce. In Sylvics—Volume 1: Conifers; Agriculture Handbook; Burns, R.M., Honkala, B.H., Eds.; USDA, Forest Service: Washington, DC, USA, 1990; Volume 654, pp. 389–442. [Google Scholar]
- Little, E.L., Jr. Checklist of United States Trees (Native and Naturalized); Agriculture Handbook; United States, Department of Agriculture, Forest Service: Washington, DC, USA, 1979; Volume 541, p. 375.
- Lamlom, S.H.; Savidge, R.A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
- Martin, A.R.; Thomas, S.C. A reassessment of carbon content in tropical trees. PLoS ONE 2011, 6, e23533. [Google Scholar] [CrossRef] [Green Version]
- Mvolo, C.S.; Koubaa, A.; Defo, M.; Beaulieu, J.; Yemele, M.-C.; Cloutier, A. Prediction of tracheid length and diameter in white spruce (Picea glauca (Moench) Voss). IAWA 2015, 36, 186–207. [Google Scholar] [CrossRef]
- Thermofisher. Lindberg/Blue M™ Moldatherm™ Box Furnaces. Available online: https://www.thermofisher.com/order/catalog/product/BF51794C (accessed on 12 November 2021).
- Labconco. FreeZone 2.5 Liter-50C Benchtop Freeze Dryers. Available online: https://www.labconco.com/product/freezone-25-liter-50c-benchtop-freeze-dryers/6102 (accessed on 12 November 2021).
- Leco. 828 Series Combustion. Available online: https://www.leco.com/product/828 (accessed on 12 November 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Shen, Y.; Gao, Z.; Hou, X.; Chen, Z.; Jiang, J.; Sun, J. Spectral and thermal analysis of Eucalyptus wood drying at different temperatures and methods. Dry. Technol. 2020, 38, 313–320. [Google Scholar] [CrossRef]
- Franks, F. Freeze-drying of bioproducts: Putting principles into practice. Eur. J. Pharm. Biopharm. 1998, 45, 221–229. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Hu, L. High efficient freeze-drying technology in food industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 3370–3388. [Google Scholar] [CrossRef]
- Domalski, E.S.; Jobe, T.L., Jr.; Milne, T.A. Thermodynamic Data for Biomass Conversion and Waste Incineration; Solar Energy Research Inst.: Golden, CO, USA; National Bureau of Standards: Washington, DC, USA, 1986.
- Becker, G.S.; Braun, D.; Gliniars, R.; Dalitz, H. Relations between wood variables and how they relate to tree size variables of tropical African tree species. Trees—Struct. Funct. 2012, 26, 1101–1112. [Google Scholar] [CrossRef]
- Young, H.E. Preliminary estimates of bark percentages and chemical elements in complete trees of eight species in Maine. For. Prod. J. 1971, 21, 56. [Google Scholar]
- Laasasenaho, J.; Melkas, T.; Alden, S. Modelling bark thickness of Picea abies with taper curves. For. Ecol. Manag. 2005, 206, 35–47. [Google Scholar] [CrossRef]
- Lemieux, H.; Samson, M.; Usenius, A. Shape and distribution of knots in a sample of Picea abies logs. Scand. J. For. Res. 1997, 12, 50–56. [Google Scholar] [CrossRef]
- Wadenbäck, J.; Clapham, D.; Gellerstedt, G.; Von Arnold, S. Variation in content and composition of lignin in young wood of Norway spruce. Holzforschung 2004, 58, 107–115. [Google Scholar] [CrossRef]
- Maksimuk, Y.; Antonava, Z.; Krouk, V.; Korsakova, A.; Kursevich, V. Prediction of higher heating value based on elemental composition for lignin and other fuels. Fuel 2020, 263, 116727. [Google Scholar] [CrossRef]
- Donaldson, L.A.; Grace, J.; Downes, G.M. Within-tree variation in anatomical properties of compression wood in radiata pine. IAWA J. 2004, 25, 253–271. [Google Scholar] [CrossRef] [Green Version]
- Nordin, A. Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 1994, 6, 339–347. [Google Scholar] [CrossRef]
- Gupta, G.K. Development of Bark-Based Environmental-Friendly Composite Panels; University of Toronto: Toronto, ON, Canada, 2009. [Google Scholar]
- Sonsale, A.N.; Purohit, J.; Pohekar, S. Renewable & alternative energy sources for strategic energy management in recycled paper & pulp industry. Bioresour. Technol. Rep. 2021, 16, 100857. [Google Scholar]
- Jyske, T.; Laakso, T.; Latva-Mäenpää, H.; Tapanila, T.; Saranpää, P. Yield of stilbene glucosides from the bark of young and old Norway spruce stems. Biomass Bioenergy 2014, 71, 216–227. [Google Scholar] [CrossRef]
- Willför, S.; Hemming, J.; Reunanen, M.; Eckerman, C.; Holmbom, B. Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung 2003, 57, 27–36. [Google Scholar] [CrossRef]
- Willför, S.; Nisula, L.; Hemming, J.; Reunanen, M.; Holmbom, B. Bioactive Phenolic Substances in Industrially Important Tree Species. Part 1: Knots and Stem Wood of Different Spruce Species; De Gruyter: Berlin, Germany, 2004; Volume 58, pp. 335–344. [Google Scholar] [CrossRef]
- Willför, S.M.; Ahotupa, M.O.; Hemming, J.E.; Reunanen, M.H.T.; Eklund, P.C.; Sjöholm, R.E.; Eckerman, C.S.E.; Pohjamo, S.P.; Holmbom, B.R. Antioxidant Activity of Knotwood Extractives and Phenolic Compounds of Selected Tree Species. J. Agric. Food Chem. 2003, 51, 7600–7606. [Google Scholar] [CrossRef]
- Holmbom, B.; Willfoer, S.; Hemming, J.; Pietarinen, S.; Nisula, L.; Eklund, P.; Sjoeholm, R. Knots in Trees: A Rich Source of Bioactive Polyphenols. In Material, Chemicals, and Energy from Forest Biomass; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2007; Volume 954. [Google Scholar] [CrossRef]
FDC | FDN | FDH | ODC | ODN | ODH | VMF | Cvol | |
---|---|---|---|---|---|---|---|---|
Part 1—overall means | ||||||||
Mean | 51.14 | 0.18 | 6.18 | 50.55 | 0.17 | 6.06 | 0.02 | 1.88 |
SD | 1.46 | 0.21 | 0.25 | 1.62 | 0.21 | 0.21 | 0.03 | 1.81 |
Max | 54.80 | 0.73 | 6.83 | 54.20 | 0.73 | 6.43 | 0.18 | 10.30 |
Min | 46.10 | 0.01 | 5.58 | 41.10 | 0.01 | 5.04 | 0.00 | 0.01 |
Median | 51.10 | 0.07 | 6.17 | 50.60 | 0.06 | 6.11 | 0.01 | 1.35 |
Part 2—means by spacing | ||||||||
1.2 m | 50.79(1.32) | 0.23(0.23) | 6.16(0.30) | 50.08(0.65) | 0.22(0.24) | 6.02(0.19) | 0.03(0.04) | 2.44(1.79) |
1.8 m | 50.40(1.20) | 0.20(0.23) | 6.11(0.17) | 50.23(0.67) | 0.22(0.23) | 6.10(0.17) | 0.03(0.03) | 1.84(1.39) |
4.3 m | 51.16(1.15) | 0.21(0.22) | 6.11(0.18) | 50.77(0.73) | 0.19(0.19) | 6.08(0.17) | 0.02(0.02) | 1.64(1.35) |
6.1 m | 51.15(1.35) | 0.22(0.27) | 6.03(0.17) | 51.23(0.96) | 0.19(0.23) | 6.04(0.16) | 0.02(0.03) | 0.99(1.31) |
Bark | Cambium | Earlywood | Knot | Latewood | |
---|---|---|---|---|---|
FDC | |||||
Cambium | 0.00 * | ||||
Earlywood | 0.42 | 0.00 * | |||
Knot | 0.00 * | 0.00 * | 0.00 * | ||
Latewood | 0.03 * | 0.00 * | 0.12 | 0.00 * | |
Wood | 0.09 | 0.00 * | 0.89 | 0.00 * | 0.03 * |
FDN | |||||
Cambium | 0.17 | ||||
Earlywood | 0.00 * | 0.00 * | |||
Knot | 0.00 * | 0.00 * | 0.01 * | ||
Latewood | 0.00 * | 0.00 * | 0.17 | 0.64 | |
Wood | 0.00 * | 0.00 * | 0.00 * | 0.95 | 0.53 |
FDH | |||||
Cambium | 0.00 * | ||||
Earlywood | 0.00 * | 0.27 | |||
Knot | 0.00 * | 0.00 * | 0.01 * | ||
Latewood | 0.00 * | 0.06 | 0.51 | 0.01 * | |
Wood | 0.00 * | 0.76 | 0.06 | 0.00 * | 0.18 |
ODC | |||||
Cambium | 0.00 * | ||||
Earlywood | 0.24 | 0.76 | |||
Knot | 0.00 * | 0.00 * | 0.00 * | ||
Latewood | 0.07 | 0.81 | 0.81 | 0.00 * | |
Wood | 0.13 | 0.00 * | 0.76 | 0.00 * | 0.19 |
ODN | |||||
Cambium | 0.59 | ||||
Earlywood | 0.00 * | 0.00 * | |||
Knot | 0.00 * | 0.00 * | 0.06 | ||
Latewood | 0.00 * | 0.00 * | 0.17 | 0.74 | |
Wood | 0.00 * | 0.00 * | 0.08 | 0.59 | 0.91 |
ODH | |||||
Cambium | 0.00 * | ||||
Earlywood | 0.65 | 0.97 | |||
Knot | 0.00 * | 0.97 | 0.97 | ||
Latewood | 0.57 | 0.65 | 0.97 | 0.65 | |
Wood | 0.00 * | 0.88 | 0.97 | 0.97 | 0.65 |
VMF | |||||
Cambium | 0.00 * | ||||
Earlywood | 0.14 | 0.00 * | |||
Knot | 0.00 * | 0.00 * | 0.00 * | ||
Latewood | 0.96 | 0.00 * | 0.15 | 0.00 * | |
Wood | 0.00 * | 0.00 * | 0.84 | 0.00 * | 0.09 |
Cvol | |||||
Cambium | 0.00 * | ||||
Earlywood | 0.95 | 0.20 | |||
Knot | 0.00 * | 0.00 * | 0.34 | ||
Latewood | 0.18 | 0.34 | 0.66 | 0.02 * | |
Wood | 0.01 * | 0.00 * | 0.37 | 0.19 | 0.03 * |
Spacing | 1.2 m | 1.8 m | 4.3 m |
FDC | |||
1.8 m | 0.00 * | ||
4.3 m | 0.04 * | 0.33 | |
6.1 m | 0.00 * | 0.39 | 0.50 |
FDH | |||
1.8 m | 0.09 | ||
4.3 m | 0.31 | 0.63 | |
6.1 m | 0.01 * | 0.02 * | 0.01 * |
ODC | |||
1.8 m | 0.17 | ||
4.3 m | 0.01 * | 0.19 | |
6.1 m | 0.00 * | 0.00 * | 0.01 * |
ODN | |||
1.8 m | 0.01 * | ||
4.3 m | 0.01 * | 0.21 | |
6.1 m | 0.02 * | 0.47 | 0.11 |
ODH | |||
1.8 m | 0.13 | ||
4.3 m | 0.29 | 0.89 | |
6.1 m | 0.06 | 0.01 * | 0.06 |
VMF | |||
1.8 m | 0.05 * | ||
4.3 m | 0.92 | 0.08 | |
6.1 m | 0.16 | 0.00 * | 0.42 |
Cvol | |||
1.8 m | 0.01 * | ||
4.3 m | 0.01 * | 0.19 | |
6.1 m | 0.00 * | 0.00 * | 0.02 * |
Height | ||||||||
FDC | FDN | FDH | ODC | ODN | ODH | VMF | Cvol | |
Bark | ||||||||
rho | −0.41 | −0.03 | −0.29 | −0.29 | 0.15 | −0.38 | −0.17 | −0.09 |
p-value | 0.03 * | 0.88 | 0.14 | 0.14 | 0.46 | 0.05 * | 0.38 | 0.66 |
S | 4611.5 | 3375.1 | 4217.5 | 4234.3 | 2795.2 | 4527.5 | 3845.6 | 3184.6 |
Cambium | ||||||||
rho | 0.19 | 0.01 | 0.04 | −0.22 | −0.25 | −0.74 | 0.26 | 0.38 |
p-value | 0.53 | 0.96 | 0.89 | 0.48 | 0.41 | 0.01 * | 0.39 | 0.19 |
S | 293.8 | 359.66 | 348.72 | 442.36 | 453.66 | 632.1 | 269.44 | 225.07 |
Wood | ||||||||
rho | 0.41 | −0.13 | 0.10 | −0.19 | −0.47 | −0.23 | −0.18 | 0.26 |
p-value | 0.001 * | 0.28 | 0.39 | 0.11 | 0.001 * | 0.06 | 0.12 | 0.03 * |
S | 36,411 | 70,162 | 55,808 | 74,113 | 91,606 | 76,316 | 73,558 | 46,003 |
Age | ||||||||
FDC | FDN | FDH | ODC | ODN | ODH | VMF | Cvol | |
Wood | ||||||||
rho | −0.07 | −0.42 | 0.05 | −0.22 | 0.08 | −0.23 | 0.40 | 0.25 |
p-value | 0.57 | 0.00 * | 0.65 | 0.06 | 0.48 | 0.05 * | 0.00 * | 0.03 * |
S | 66,395 | 88,268 | 58,796 | 76,119 | 57,025 | 76,553 | 37,020 | 46,555 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mvolo, C.S.; Boakye, E.A.; Koubaa, A. Chemical Elements Content and Distributions within Different Tissue Types of White Spruce. Energies 2023, 16, 3257. https://doi.org/10.3390/en16073257
Mvolo CS, Boakye EA, Koubaa A. Chemical Elements Content and Distributions within Different Tissue Types of White Spruce. Energies. 2023; 16(7):3257. https://doi.org/10.3390/en16073257
Chicago/Turabian StyleMvolo, Cyriac S., Emmanuel A. Boakye, and Ahmed Koubaa. 2023. "Chemical Elements Content and Distributions within Different Tissue Types of White Spruce" Energies 16, no. 7: 3257. https://doi.org/10.3390/en16073257
APA StyleMvolo, C. S., Boakye, E. A., & Koubaa, A. (2023). Chemical Elements Content and Distributions within Different Tissue Types of White Spruce. Energies, 16(7), 3257. https://doi.org/10.3390/en16073257